Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 489
1.
Microbiol Spectr ; 12(6): e0034724, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38700333

We have evaluated the inhibitory effects of supernatants and lysates derived from several candidate probiotics, on the growth and biofilm formation of wound pathogens, and their ability to protect human primary epidermal keratinocytes from the toxic effects of pathogens. Supernatants (neutralized and non-neutralized) and lysates (via sonication) from Lactiplantibacillus plantarum, Limosilactobacillus reuteri, Bifidobacterium longum, Lacticaseibacillus rhamnosus GG, and Escherichia coli Nissle 1917 were tested for their inhibitory effects against Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumanni. The supernatants of L. plantarum, L. rhamnosus, B. longum, and L. rhamnosus GG reduced the growth of S. aureus, E. coli, and A. baumanni. B. longum additionally inhibited P. aeruginosa growth. However, neutralized Lactobacillus supernatants did not inhibit growth and in some cases were stimulatory. Lysates of L. plantarum and L. reuteri inhibited S. pyogenes while B. longum lysates inhibited E. coli and S. aureus growth. E. coli Nissle 1917 lysates enhanced the growth of S. pyogenes and P. aeruginosa. Biofilm formation by E. coli was reduced by lysates of L. reuteri and neutralized supernatants of all candidate probiotics. P. aeruginosa biofilm formation was reduced by E. coli Nissle supernatant but increased by L. plantarum, L. reuteri, and Bifidobacterium longum lysates. L. reuteri decreased the toxic effects of S. aureus on keratinocytes while E. coli Nissle 1917 lysates protected keratinocytes from S. pyogenes toxicity. In conclusion, lactobacilli and E. coli Nissle lysates confer inhibitory effects on pathogenic growth independently of acidification and may beneficially alter the outcome of interactions between host cell-pathogen in a species-specific manner.IMPORTANCEOne of the attributes of probiotics is their ability to inhibit pathogens. For this reason, many lactobacilli have been investigated for their effects as potential topical therapeutics against skin pathogens. However, this field is in its infancy. Even though probiotics are known to be safe when taken orally, the potential safety concerns when applied to potentially compromised skin are unknown. For this reason, we believe that extracts of probiotics will offer advantages over the use of live bacteria. In this study, we have surveyed five candidate probiotics, when used as extracts, in terms of their effects against common wound pathogens. Our data demonstrate that some probiotic extracts promote the growth of pathogens and highlight the need for careful selection of species and strains when probiotics are to be used topically.


Biofilms , Escherichia coli , Keratinocytes , Probiotics , Pseudomonas aeruginosa , Staphylococcus aureus , Humans , Keratinocytes/microbiology , Escherichia coli/drug effects , Escherichia coli/growth & development , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/growth & development , Streptococcus pyogenes/physiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/physiology , Acinetobacter baumannii/growth & development , Wound Infection/microbiology
2.
Immunol Cell Biol ; 102(1): 21-33, 2024 Jan.
Article En | MEDLINE | ID: mdl-37795567

The human pathogen Streptococcus pyogenes, or Group A Streptococcus (GAS), is associated with a variety of diseases ranging from mild skin and soft tissue infections to invasive diseases and immune sequelae such as rheumatic heart disease. We have recently reported that one of the virulence factors of this pathogen, the pilus, has inflammatory properties and strongly stimulates the innate immune system. Here we used a range of nonpathogenic Lactococcus lactis gain-of-function mutants, each expressing one of the major pilus types of GAS, to compare the immune responses generated by various types of fully assembled pili. In vitro assays indicated variability in the inflammatory response induced by different pili, with the fibronectin-binding, collagen-binding, T antigen (FCT)-1-type pilus from GAS serotype M6/T6 inducing significantly stronger cytokine secretion than other pili. Furthermore, we established that the same trend of pili-mediated immune response could be modeled in Galleria mellonella larvae, which possess a similar innate immune system to vertebrates. Counterintuitively, across the panel of pili types examined in this study, we observed a negative correlation between the intensity of the immune response demonstrated in our experiments and the disease severity observed clinically in the GAS strains associated with each pilus type. This observation suggests that pili-mediated inflammation is more likely to promote bacterial clearance instead of causing disruptive damages that intensify pathogenesis. This also indicates that pili may not be the main contributor to the inflammatory symptoms seen in GAS diseases. Rather, the immune-potentiating properties of the pilus components could potentially be exploited as a vaccine adjuvant.


Fimbriae, Bacterial , Streptococcus pyogenes , Animals , Humans , Virulence , Streptococcus pyogenes/physiology , Fimbriae, Bacterial/physiology , Skin , Bacterial Proteins
3.
Nucleic Acids Res ; 51(14): 7438-7450, 2023 08 11.
Article En | MEDLINE | ID: mdl-37293964

The Streptococcus pyogenes type II-A CRISPR-Cas systems provides adaptive immunity through the acquisition of short DNA sequences from invading viral genomes, called spacers. Spacers are transcribed into short RNA guides that match regions of the viral genome followed by a conserved NGG DNA motif, known as the PAM. These RNA guides, in turn, are used by the Cas9 nuclease to find and destroy complementary DNA targets within the viral genome. While most of the spacers present in bacterial populations that survive phage infection target protospacers flanked by NGG sequences, there is a small fraction that target non-canonical PAMs. Whether these spacers originate through accidental acquisition of phage sequences and/or provide efficient defense is unknown. Here we found that many of them match phage target regions flanked by an NAGG PAM. Despite being scarcely present in bacterial populations, NAGG spacers provide substantial immunity in vivo and generate RNA guides that support robust DNA cleavage by Cas9 in vitro; with both activities comparable to spacers that target sequences followed by the canonical AGG PAM. In contrast, acquisition experiments showed that NAGG spacers are acquired at very low frequencies. We therefore conclude that discrimination against these sequences occurs during immunization of the host. Our results reveal unexpected differences in PAM recognition during the spacer acquisition and targeting stages of the type II-A CRISPR-Cas immune response.


Bacteriophages , CRISPR-Cas Systems , Streptococcus pyogenes , Bacteriophages/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems/genetics , Nucleotide Motifs , Streptococcus pyogenes/physiology , Streptococcus pyogenes/virology
4.
Infect Immun ; 90(1): e0042321, 2022 01 25.
Article En | MEDLINE | ID: mdl-34662211

To understand protective immune responses against the onset of group A Streptococcus respiratory infection, we investigated whether MyD88 KO mice were susceptible to acute infection through transmission. After commingling with mice that had intranasal group A Streptococcus (GAS) inoculation, MyD88-/- recipient mice had increased GAS loads in the nasal cavity and throat that reached a mean throat colonization of 6.3 × 106 CFU/swab and mean GAS load of 5.2 × 108 CFU in the nasal cavity on day 7. Beyond day 7, MyD88-/- recipient mice became moribund, with mean 1.6 × 107 CFU/swab and 2.5 × 109 CFU GAS in the throat and nasal cavity, respectively. Systemic GAS infection occurred a couple of days after the upper respiratory infection. GAS infects the lip, the gingival sulcus of the incisor teeth, and the lamina propria of the turbinate but not the nasal cavity and nasopharyngeal tract epithelia, and C57BL/6J recipient mice had no or low levels of GAS in the nasal cavity and throat. Direct nasal GAS inoculation of MyD88-/- mice caused GAS infection, mainly in the lamina propria of the turbinate. In contrast, C57BL/6J mice with GAS inoculation had GAS bacteria in the nasal cavity but not in the lamina propria of the turbinates. Thus, MyD88-/- mice are highly susceptible to acute and lethal GAS infection through transmission, and MyD88 signaling is critical for protection of the respiratory tract lamina propria but not nasal and nasopharyngeal epithelia against GAS infection.


Epithelium/microbiology , Host-Pathogen Interactions , Myeloid Differentiation Factor 88/deficiency , Respiratory Mucosa/microbiology , Respiratory Tract Infections/etiology , Streptococcal Infections/etiology , Streptococcal Infections/transmission , Streptococcus pyogenes/physiology , Animals , Biopsy , Disease Susceptibility , Epithelium/pathology , Genetic Predisposition to Disease , Immunohistochemistry , Mice , Mice, Knockout , Neutrophil Infiltration , Organ Specificity , Respiratory Mucosa/pathology , Respiratory Tract Infections/pathology , Streptococcal Infections/pathology
5.
J Innate Immun ; 14(2): 69-88, 2022.
Article En | MEDLINE | ID: mdl-34649250

Bacteria possess the ability to evolve varied and ingenious strategies to outwit the host immune system, instigating an evolutionary arms race. Proteases are amongst the many weapons employed by bacteria, which specifically cleave and neutralize key signalling molecules required for a coordinated immune response. In this article, we focus on a family of S8 subtilisin-like serine proteases expressed as cell-envelope proteases (CEPs) by group A and group B streptococci. Two of these proteases known as Streptococcus pyogenes CEP (SpyCEP) and C5a peptidase cleave the chemokine CXCL8 and the complement fragment C5a, respectively. Both CXCL8 and C5a are potent neutrophil-recruiting chemokines, and by neutralizing their activity, streptococci evade a key defence mechanism of innate immunity. We review the mechanisms by which CXCL8 and C5a recruit neutrophils and the characterization of SpyCEP and C5a peptidase, including both in vitro and in vivo studies. Recently described structural insights into the function of this CEP family are also discussed. We conclude by examining the progress of prototypic vaccines incorporating SpyCEP and C5a peptidase in their preparation. Since streptococci-producing SpyCEP and C5a peptidase are responsible for a considerable global disease burden, targeting these proteases by vaccination strategies or by small-molecule antagonists should provide protection from and promote the resolution of streptococcal infections.


Peptide Hydrolases , Streptococcal Infections , Cell Wall , Humans , Neutrophils , Streptococcus pyogenes/physiology
6.
J Immunol Methods ; 500: 113194, 2022 01.
Article En | MEDLINE | ID: mdl-34801540

Group A Streptococcus (GAS) is a major human pathogen responsible for superficial infections through to life-threatening invasive disease and the autoimmune sequelae acute rheumatic fever (ARF). Despite a significant global economic and health burden, there is no licensed vaccine available to prevent GAS disease. Several pre-clinical vaccines that target conserved GAS antigens are in development. Assays that measure antigen-specific antibodies are essential for vaccine research. The aim of this study was to develop a multiplex beadbased immunoassay that can detect and quantify antibody responses to multiple GAS antigen targets in small volume blood samples. This builds on our existing triplex assay comprised of antigens used in clinical serology for the diagnosis of ARF (SLO, DNase B and SpnA). Five additional conserved putative GAS vaccine antigens (Spy0843, SCPA, SpyCEP, SpyAD and the Group A carbohydrate), were coupled to spectrally unique beads to form an 8-plex antigen panel. After optimisation of the assay protocol, standard curves were generated, and assessments of assay specificity, precision and reproducibility were conducted. A broad range of antibody (IgG) titres were able to be quickly and accurately quantified from a single serum dilution. Assay utility was assessed using a panel of 62 clinical samples including serum from adults with GAS bacteraemia and children with ARF. Circulating IgG to all eight antigens was elevated in patients with GAS disease (n = 23) compared to age-matched controls (n = 39) (P < 0.05). The feasibility of using dried blood samples to quantify antigen-specific IgG was also demonstrated. In summary, a robust and reproducible 8-plex assay has been developed that simultaneously quantifies IgG antibodies to GAS vaccine and diagnostic antigens.


Antigens, Bacterial/immunology , Autoimmune Diseases/diagnosis , Rheumatic Fever/diagnosis , Serologic Tests/methods , Streptococcal Infections/diagnosis , Streptococcal Vaccines/immunology , Streptococcus pyogenes/physiology , Adult , Antibodies, Bacterial/blood , Autoimmune Diseases/immunology , Child , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/blood , Microspheres , Rheumatic Fever/immunology , Streptococcal Infections/immunology , Vaccine Development
7.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article En | MEDLINE | ID: mdl-34638904

Group A Streptococcus (GAS) causes invasive human diseases with the cytokine storm. Interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis is known to drive TH2 response, while its effect on GAS infection is unclear. We used an air pouch model to examine the effect of the IL-33/ST2 axis on GAS-induced necrotizing fasciitis. GAS infection induced IL-33 expression in wild-type (WT) C57BL/6 mice, whereas the IL-33- and ST2-knockout mice had higher mortality rates, more severe skin lesions and higher bacterial loads in the air pouches than those of WT mice after infection. Surveys of infiltrating cells in the air pouch of GAS-infected mice at the early stage found that the number and cell viability of infiltrating cells in both gene knockout mice were lower than those of WT mice. The predominant effector cells in GAS-infected air pouches were neutrophils. Absence of the IL-33/ST2 axis enhanced the expression of inflammatory cytokines, but not TH1 or TH2 cytokines, in the air pouch after infection. Using in vitro assays, we found that the IL-33/ST2 axis not only enhanced neutrophil migration but also strengthened the bactericidal activity of both sera and neutrophils. These results suggest that the IL-33/ST2 axis provided the protective effect on GAS infection through enhancing the innate immunity.


Immunity, Innate/immunology , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-33/immunology , Streptococcal Infections/immunology , Streptococcus pyogenes/immunology , Animals , Cell Movement/immunology , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/cytology , Neutrophils/immunology , Neutrophils/microbiology , Signal Transduction/immunology , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology
8.
Infect Immun ; 89(11): e0036021, 2021 10 15.
Article En | MEDLINE | ID: mdl-34424754

Bacteria form biofilms for their protection against environmental stress and produce virulence factors within the biofilm. Biofilm formation in acidified environments is regulated by a two-component system, as shown by studies on isogenic mutants of the sensor protein of the two-component regulatory system in Streptococcus pyogenes. In this study, we found that the LiaS histidine kinase sensor mediates biofilm production and pilus expression in an acidified environment through glucose fermentation. The liaS isogenic mutant produced biofilms in a culture acidified by hydrochloric acid but not glucose, suggesting that the acidified environment is sensed by another protein. In addition, the trxS isogenic mutant could not produce biofilms or activate the mga promoter in an acidified environment. Mass spectrometry analysis showed that TrxS regulates M protein, consistent with the transcriptional regulation of emm, which encodes M protein. Our results demonstrate that biofilm production during environmental acidification is directly under the control of TrxS.


Bacterial Proteins/physiology , Biofilms/growth & development , Streptococcus pyogenes/physiology , Antigens, Bacterial/biosynthesis , Bacterial Outer Membrane Proteins/biosynthesis , Bacterial Proteins/genetics , Carrier Proteins/biosynthesis , Exotoxins/physiology , Histidine Kinase/physiology , Hydrogen-Ion Concentration , Phosphorylation , Promoter Regions, Genetic
9.
J Biol Chem ; 297(3): 100992, 2021 09.
Article En | MEDLINE | ID: mdl-34298018

Streptococcus pyogenes, or Group A Streptococcus, is a Gram-positive bacterium that can be both a human commensal and a pathogen. Central to this dichotomy are temperate bacteriophages that incorporate into the bacterial genome as prophages. These genetic elements encode both the phage proteins and the toxins harmful to the human host. One such conserved phage protein, paratox (Prx), is always found encoded adjacent to the toxin genes, and this linkage is preserved during all stages of the phage life cycle. Within S. pyogenes, Prx functions to inhibit the quorum-sensing receptor-signal pair ComRS, the master regulator of natural competence, or the ability to uptake endogenous DNA. However, the mechanism by which Prx directly binds and inhibits the receptor ComR is unknown. To understand how Prx inhibits ComR at the molecular level, we pursued an X-ray crystal structure of Prx bound to ComR. The structural data supported by solution X-ray scattering data demonstrate that Prx induces a conformational change in ComR to directly access its DNA-binding domain. Furthermore, electromobility shift assays and competition binding assays reveal that Prx effectively uncouples the interdomain conformational change required for activation of ComR via the signaling molecule XIP. Although to our knowledge the molecular mechanism of quorum-sensing inhibition by Prx is unique, it is analogous to the mechanism employed by the phage protein Aqs1 in Pseudomonas aeruginosa. Together, this demonstrates an example of convergent evolution between Gram-positive and Gram-negative phages to inhibit quorum-sensing and highlights the versatility of small phage proteins.


Bacteriophages/metabolism , Quorum Sensing , Streptococcus pyogenes/physiology , Viral Proteins/metabolism , Protein Binding
10.
Viruses ; 13(4)2021 04 02.
Article En | MEDLINE | ID: mdl-33918348

Bacteriophages exert strong evolutionary pressure on their microbial hosts. In their lytic lifecycle, complete bacterial subpopulations are utilized as hosts for bacteriophage replication. However, during their lysogenic lifecycle, bacteriophages can integrate into the host chromosome and alter the host's genomic make-up, possibly resulting in evolutionary important adjustments. Not surprisingly, bacteria have evolved sophisticated immune systems to protect against phage infection. Streptococcus pyogenes isolates are frequently lysogenic and their prophages have been shown to be major contributors to the virulence of this pathogen. Most S. pyogenes phage research has focused on genomic prophages in relation to virulence, but little is known about the defensive arsenal of S. pyogenes against lytic phage infection. Here, we characterized Phage A1, an S. pyogenes bacteriophage, and investigated several mechanisms that S. pyogenes utilizes to protect itself against phage predation. We show that Phage A1 belongs to the Siphoviridae family and contains a circular double-stranded DNA genome that follows a modular organization described for other streptococcal phages. After infection, the Phage A1 genome can be detected in isolated S. pyogenes survivor strains, which enables the survival of the bacterial host and Phage A1 resistance. Furthermore, we demonstrate that the type II-A CRISPR-Cas system of S. pyogenes acquires new spacers upon phage infection, which are increasingly detectable in the absence of a capsule. Lastly, we show that S. pyogenes produces membrane vesicles that bind to phages, thereby limiting the pool of phages available for infection. Altogether, this work provides novel insight into survival strategies employed by S. pyogenes to combat phage predation.


Microbial Viability , Streptococcus Phages/genetics , Streptococcus Phages/pathogenicity , Streptococcus pyogenes/physiology , Streptococcus pyogenes/virology , CRISPR-Cas Systems , Genome, Viral , Lysogeny , Prophages/genetics , Virulence
11.
Sci Rep ; 11(1): 8200, 2021 04 15.
Article En | MEDLINE | ID: mdl-33859234

Group A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Biofilm formation has been implicated in both pharyngeal and dermal GAS infections. In vitro, plate-based assays have shown that several GAS M-types form biofilms, and multiple GAS virulence factors have been linked to biofilm formation. Although the contributions of these plate-based studies have been valuable, most have failed to mimic the host environment, with many studies utilising abiotic surfaces. GAS is a human specific pathogen, and colonisation and subsequent biofilm formation is likely facilitated by distinct interactions with host tissue surfaces. As such, a host cell-GAS model has been optimised to support and grow GAS biofilms of a variety of GAS M-types. Improvements and adjustments to the crystal violet biofilm biomass assay have also been tailored to reproducibly detect delicate GAS biofilms. We propose 72 h as an optimal growth period for yielding detectable biofilm biomass. GAS biofilms formed are robust and durable, and can be reproducibly assessed via staining/washing intensive assays such as crystal violet with the aid of methanol fixation prior to staining. Lastly, SEM imaging of GAS biofilms formed by this model revealed GAS cocci chains arranged into three-dimensional aggregated structures with EPS matrix material. Taken together, we outline an efficacious GAS biofilm pharyngeal cell model that can support long-term GAS biofilm formation, with biofilms formed closely resembling those seen in vivo.


Biofilms/growth & development , Pharynx/microbiology , Streptococcus pyogenes/physiology , Calibration , Cell Culture Techniques/standards , Cells, Cultured , Humans , Microbiological Techniques/standards , Models, Biological , Pharynx/cytology , Streptococcal Infections/microbiology , Streptococcus pyogenes/growth & development , Streptococcus pyogenes/pathogenicity , Virulence Factors/metabolism
12.
Infect Immun ; 89(4)2021 03 17.
Article En | MEDLINE | ID: mdl-33468578

The second messenger cyclic di-AMP (c-di-AMP) controls biofilm formation, stress response, and virulence in Streptococcus pyogenes The deletion of the c-di-AMP synthase gene, dacA, results in pleiotropic effects including reduced expression of the secreted protease SpeB. Here, we report a role for K+ transport in c-di-AMP-mediated SpeB expression. The deletion of ktrB in the ΔdacA mutant restores SpeB expression. KtrB is a subunit of the K+ transport system KtrAB that forms a putative high-affinity K+ importer. KtrB forms a membrane K+ channel, and KtrA acts as a cytosolic gating protein that controls the transport capacity of the system by binding ligands including c-di-AMP. SpeB induction in the ΔdacA mutant by K+ specific ionophore treatment also supports the importance of cellular K+ balance in SpeB production. The ΔdacA ΔktrB double deletion mutant not only produces wild-type levels of SpeB but also partially or fully reverts the defective ΔdacA phenotypes of biofilm formation and stress responses, suggesting that many ΔdacA phenotypes are due to cellular K+ imbalance. However, the null pathogenicity of the ΔdacA mutant in a murine subcutaneous infection model is not restored by ktrB deletion, suggesting that c-di-AMP controls not only cellular K+ balance but also other metabolic and/or virulence pathways. The deletion of other putative K+ importer genes, kup and kimA, does not phenocopy the deletion of ktrB regarding SpeB induction in the ΔdacA mutant, suggesting that KtrAB is the primary K+ importer that is responsible for controlling cellular K+ levels under laboratory growth conditions.


Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Cation Transport Proteins/metabolism , Dinucleoside Phosphates/metabolism , Exotoxins/genetics , Gene Expression Regulation, Bacterial , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology , Biological Transport , Cation Transport Proteins/genetics , Host-Pathogen Interactions/immunology , Mutation , Open Reading Frames , Potassium , Stress, Physiological , Virulence
13.
mBio ; 11(6)2020 12 01.
Article En | MEDLINE | ID: mdl-33262259

Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion.IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.


Copper/metabolism , Glutathione/metabolism , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Biological Transport , Copper/pharmacology , Cytoplasm/metabolism , Disease Models, Animal , Energy Metabolism , Gene Expression Regulation, Bacterial/drug effects , Homeostasis , Mice , Mutation , Streptococcus pyogenes/drug effects , Stress, Physiological , Virulence
14.
J Photochem Photobiol B ; 210: 111985, 2020 Sep.
Article En | MEDLINE | ID: mdl-32771915

It is estimated over 600 million pharyngotonsillitis (PT) cases worldwide per year and 30% of this total are caused by Streptococcus pyogenes with standard antibiotic treatment. Antimicrobial Photodynamic Therapy (aPDT) has been studied for the clinical research in infectious diseases. The study aim was to analyze the evolution of aPDT on inactivation of clinical strains of multiple cycles. S. pyogenes and clinical strains isolated from patients with PT were incubated with curcumin in formulation (2.25 mg/ml) and irradiated at 450 nm in Light fluence rates. A mortality was a measure of the counting colony forming units per milliliter (CFU/ml) surviving. Parameters of bacterial biofilm formation, uptake of photosensitizer (PS) and efficacy of antibiotics on survival of bacteria of each cycle were tested. The bacteria profile remains unchanged between 10 aPDT cycles was observed. The bacterial colony survival presented a reduction in capacity to form biofilm due adhesion of strains and PS uptake rate. The antibiotic remained efficient after aPDT cycles. Our in vitro results suggested a low-level of development of PDT resistance, however a decrease of photosensitizer uptake was observed. Furthermore, there is no cross effect on aPDT cycles and the first application of antibiotics.


Anti-Infective Agents/pharmacology , Pharyngeal Diseases/drug therapy , Photosensitizing Agents/therapeutic use , Streptococcus pyogenes/drug effects , Biofilms/drug effects , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/therapeutic use , Humans , Light , Pharyngeal Diseases/microbiology , Pharyngeal Diseases/pathology , Photochemotherapy , Photosensitizing Agents/chemistry , Streptococcus pyogenes/isolation & purification , Streptococcus pyogenes/physiology
15.
Infect Immun ; 88(10)2020 09 18.
Article En | MEDLINE | ID: mdl-32747598

Streptococcus pyogenes is a human-restricted pathogen most often found in the human nasopharynx. Multiple bacterial factors are known to contribute to persistent colonization of this niche, and many are important in mucosal immunity and vaccine development. In this work, mice were infected intranasally with transcriptional regulator mutants of the Rgg2/3 quorum sensing (QS) system-a peptide-based signaling system conserved in sequenced isolates of S. pyogenes Deletion of the QS system's transcriptional activator (Δrgg2) dramatically diminished the percentage of colonized mice, while deletion of the transcriptional repressor (Δrgg3) increased the percentage of colonized mice compared to that of the wild type (WT). Stimulation of the QS system using synthetic pheromones prior to inoculation did not significantly increase the percentage of animals colonized, indicating that QS-dependent colonization is responsive to the intrinsic conditions within the host upper respiratory tract. Bacterial RNA extracted directly from oropharyngeal swabs and evaluated by quantitative reverse transcription-PCR (qRT-PCR) subsequently confirmed QS upregulation within 1 h of inoculation. In the nasal-associated lymphoid tissue (NALT), a muted inflammatory response to the Δrgg2 bacteria suggests that their rapid elimination failed to elicit the previously characterized response to intranasal inoculation of GAS. This work identifies a new transcriptional regulatory system governing the ability of S. pyogenes to colonize the nasopharynx and provides knowledge that could help lead to decolonization therapeutics.


Bacterial Proteins/metabolism , Oropharynx/microbiology , Quorum Sensing , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology , Trans-Activators/metabolism , Animals , Bacterial Proteins/genetics , Disease Models, Animal , Gene Expression Regulation, Bacterial , Mice , Mutation , Pharyngitis/microbiology , Quorum Sensing/genetics , Trans-Activators/genetics
16.
PLoS One ; 15(6): e0235139, 2020.
Article En | MEDLINE | ID: mdl-32574205

Viral infections complicated by a bacterial infection are typically referred to as coinfections or superinfections. Streptococcus pyogenes, the group A streptococcus (GAS), is not the most common bacteria associated with influenza A virus (IAV) superinfections but did cause significant mortality during the 2009 influenza pandemic even though all isolates are susceptible to penicillin. One approach to improve the outcome of these infections is to use passive immunization targeting GAS. To test this idea, we assessed the efficacy of passive immunotherapy using antisera against either the streptococcal M protein or streptolysin O (SLO) in a murine model of IAV-GAS superinfection. Prophylactic treatment of mice with antiserum to either SLO or the M protein decreased morbidity compared to mice treated with non-immune sera; however, neither significantly decreased mortality. Therapeutic use of antisera to SLO decreased morbidity compared to mice treated with non-immune sera but neither antisera significantly reduced mortality. Overall, the results suggest that further development of antibodies targeting the M protein or SLO may be a useful adjunct in the treatment of invasive GAS diseases, including IAV-GAS superinfections, which may be particularly important during influenza pandemics.


Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Carrier Proteins/immunology , Immunotherapy/methods , Influenza A virus/immunology , Orthomyxoviridae Infections/immunology , Streptococcal Infections/immunology , Streptococcus pyogenes/immunology , Streptolysins/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Coinfection/microbiology , Coinfection/therapy , Coinfection/virology , Female , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Immune Sera/immunology , Immune Sera/pharmacology , Influenza A virus/physiology , Mice, Inbred BALB C , Orthomyxoviridae Infections/therapy , Orthomyxoviridae Infections/virology , Rabbits , Streptococcal Infections/microbiology , Streptococcal Infections/therapy , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/physiology , Streptolysins/antagonists & inhibitors , Streptolysins/metabolism , Superinfection/microbiology , Superinfection/therapy , Superinfection/virology
17.
Curr Microbiol ; 77(8): 1518-1524, 2020 Aug.
Article En | MEDLINE | ID: mdl-32240341

Streptococcus pyogenes or Group A Streptococcus (GAS) infections are the leading cause of bacterial tonsillopharyngitis. The bacterium can survive and persist within the human host for a long time as it is observed in up to 40% of the population who are considered as carriers. Recurrent tonsillopharyngitis is a particular problem in children which is caused either by relapses due to failed bacterial clearance or by reinfection. A prolonged survival in tonsillar crypts or on inanimate surfaces might be sources for reinfection. We therefore examined 64 clinical GAS isolates from children with tonsillopharyngitis for their long-term survival under either liquid or desiccated culture conditions. After 6 weeks, the overall GAS survival rate was 400-fold increased under desiccated culture conditions compared to liquid culture conditions, but varied depending on the emm-type between 20-fold (emm4) and 14000-fold (emm3). The survival rates of isolates from emm75 were significantly lower which is probably due to their production of hydrogen peroxide up to fatal doses. No hydrogen peroxide production could be detected for other emm-types. Furthermore, 11 isolates from patients with recurrent tonsillopharyngitis were compared to isolates of the same emm-type from patients with single episodes of tonsillopharyngitis. A significant elevated pH value and an increased survival rate for isolates from patients with recurrent infections were observed. In conclusion, significant differences in long-term survival of different GAS isolates as well as survival under desiccated culture conditions might contribute to both failed bacterial clearance and reinfection in patients with recurrent tonsillopharyngitis.


Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Carrier Proteins/genetics , Desiccation , Microbial Viability , Streptococcal Infections/microbiology , Streptococcus pyogenes/physiology , Adolescent , Child , Child, Preschool , Genotype , Humans , Infant , Pharyngitis/microbiology , Reinfection/microbiology , Streptococcus pyogenes/genetics
18.
Proc Natl Acad Sci U S A ; 117(12): 6708-6716, 2020 03 24.
Article En | MEDLINE | ID: mdl-32161123

Antibodies against neuronal receptors and synaptic proteins are associated with a group of ill-defined central nervous system (CNS) autoimmune diseases termed autoimmune encephalitides (AE), which are characterized by abrupt onset of seizures and/or movement and psychiatric symptoms. Basal ganglia encephalitis (BGE), representing a subset of AE syndromes, is triggered in children by repeated group A Streptococcus (GAS) infections that lead to neuropsychiatric symptoms. We have previously shown that multiple GAS infections of mice induce migration of Th17 lymphocytes from the nose into the brain, causing blood-brain barrier (BBB) breakdown, extravasation of autoantibodies into the CNS, and loss of excitatory synapses within the olfactory bulb (OB). Whether these pathologies induce functional olfactory deficits, and the mechanistic role of Th17 lymphocytes, is unknown. Here, we demonstrate that, whereas loss of excitatory synapses in the OB is transient after multiple GAS infections, functional deficits in odor processing persist. Moreover, mice lacking Th17 lymphocytes have reduced BBB leakage, microglial activation, and antibody infiltration into the CNS, and have their olfactory function partially restored. Th17 lymphocytes are therefore critical for selective CNS entry of autoantibodies, microglial activation, and neural circuit impairment during postinfectious BGE.


Brain/pathology , Disease Models, Animal , Encephalitis/etiology , Encephalomyelitis, Autoimmune, Experimental/etiology , Hashimoto Disease/etiology , Olfaction Disorders/etiology , Streptococcal Infections/complications , Th17 Cells/immunology , Animals , Autoantibodies/immunology , Basal Ganglia/immunology , Basal Ganglia/pathology , Blood-Brain Barrier , Brain/immunology , Encephalitis/metabolism , Encephalitis/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Hashimoto Disease/metabolism , Hashimoto Disease/pathology , Mice , Microglia/immunology , Microglia/pathology , Neurons/immunology , Neurons/pathology , Olfaction Disorders/metabolism , Olfaction Disorders/pathology , Olfactory Perception , Streptococcus pyogenes/physiology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th17 Cells/pathology
19.
BMC Res Notes ; 13(1): 99, 2020 Feb 24.
Article En | MEDLINE | ID: mdl-32093784

OBJECTIVE: For the majority of people with acute sore throat, over-the-counter treatments represent the primary option for symptomatic relief. This study evaluated the in vitro bactericidal activity of lozenges containing the antiseptic hexylresorcinol against five bacteria associated with acute sore throat: Staphylococcus aureus, Streptococcus pyogenes, Moraxella catarrhalis, Haemophilus influenzae and Fusobacterium necrophorum. RESULTS: Hexylresorcinol 2.4 mg lozenges were dissolved into 5 mL of artificial saliva medium. Inoculum cultures were prepared in triplicate for each test organism to give an approximate population of 108 colony-forming units (cfu)/mL. Bactericidal activity was measured by log reduction in cfu. Greater than 3log10 reductions in cfu were observed at 1 min after dissolved hexylresorcinol lozenges were added to S. aureus (log10 reduction cfu/mL ± standard deviation, 3.3 ± 0.2), M. catarrhalis (4.7 ± 0.4), H. influenzae (5.8 ± 0.4) and F. necrophorum (4.5 ± 0.2) and by 5 min for S. pyogenes (4.3 ± 0.4). Hexylresorcinol lozenges achieved a > 99.9% reduction in cfu against all tested organisms within 5 min, which is consistent with the duration for a lozenge to dissolve in the mouth. In conclusion, in vitro data indicate that hexylresorcinol lozenges offer rapid bactericidal activity against organisms implicated in acute sore throat.


Bacterial Infections/drug therapy , Common Cold/drug therapy , Hexylresorcinol/therapeutic use , Oropharynx/drug effects , Administration, Oral , Anti-Infective Agents, Local/administration & dosage , Anti-Infective Agents, Local/therapeutic use , Bacterial Infections/microbiology , Bacterial Load/drug effects , Common Cold/microbiology , Fusobacterium necrophorum/drug effects , Fusobacterium necrophorum/physiology , Haemophilus influenzae/drug effects , Haemophilus influenzae/physiology , Hexylresorcinol/administration & dosage , Humans , Microbial Sensitivity Tests , Moraxella catarrhalis/drug effects , Moraxella catarrhalis/physiology , Oropharynx/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/physiology , Time Factors
20.
J Med Microbiol ; 69(3): 478-486, 2020 Mar.
Article En | MEDLINE | ID: mdl-31935181

Introduction. Pseudomonas syringae pv. actinidiae (Psa) has emerged as a major bacterial pathogen of kiwifruit cultivation throughout the world.Aim. We aim to introduce a CRISPR-Cas9 system, a commonly used genome editing tool, into Psa. The protocols may also be useful in other Pseudomonas species.Methodology. Using standard molecular biology techniques, we modified plasmid pCas9, which carries the CRISPR-Cas9 sequences from Streptococcus pyogenes, for use in Psa. The final plasmid, pJH1, was produced in a series of steps and is maintained with selection in both Escherichia coli and Psa.Results. We have constructed plasmids carrying a CRISPR-Cas9 system based on that of S. pyogenes, which can be maintained, under selection, in Psa. We have shown that the gene targeting capacity of the CRISPR-Cas9 system is active and that the Cas9 protein is able to cleave the targeted sites. The Cas9 was directed to several different sites in the P. syringae genome. Using Cas9 we have generated Psa transformants that no longer carry the native plasmid present in Psa, and other transformants that lack the integrative, conjugative element, Pac_ICE1. Targeting of a specific gene, a chromosomal non-ribosomal peptide synthetase, led to gene knockouts with the transformants having deletions encompassing the target site.Conclusion. We have constructed shuttle plasmids carrying a CRISPR-Cas9 system that are maintained in both E. coli and P. syringae pv. actinidiae. We have used this gene editing system to eliminate features of the accessory genome (plasmids or ICEs) from Psa and to target a single chromosomal gene.


CRISPR-Cas Systems/physiology , Pseudomonas syringae/physiology , Actinidia/microbiology , CRISPR-Cas Systems/genetics , Escherichia coli/physiology , Fruit/microbiology , Gene Deletion , Gene Knockout Techniques , Gene Targeting , Genetic Engineering , Peptide Synthases/genetics , Plasmids , Pseudomonas syringae/genetics , Sequence Analysis, DNA , Streptococcus pyogenes/physiology , Whole Genome Sequencing
...