Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.182
1.
mSphere ; 9(5): e0076423, 2024 May 29.
Article En | MEDLINE | ID: mdl-38722162

Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.


Anti-Bacterial Agents , Bacillus subtilis , Microbial Sensitivity Tests , Staphylococcus aureus , Streptomyces , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/drug effects , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Polyketides/pharmacology , Polyketides/metabolism , Glycosides/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Proteomics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA Gyrase/genetics , DNA Gyrase/metabolism
2.
mSystems ; 9(5): e0025024, 2024 May 16.
Article En | MEDLINE | ID: mdl-38564716

Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.


Anti-Bacterial Agents , Genome, Bacterial , Multigene Family , Oxytetracycline , Streptomyces rimosus , Oxytetracycline/biosynthesis , Streptomyces rimosus/genetics , Streptomyces rimosus/metabolism , Anti-Bacterial Agents/biosynthesis , Multigene Family/genetics , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/drug effects
3.
Ecotoxicol Environ Saf ; 276: 116313, 2024 May.
Article En | MEDLINE | ID: mdl-38626602

Wheat (Triticum aestivum L.) is a major foodstuff for over 40% of the world's population. However, hexavalent chromium [Cr(VI)] in contaminated soil significantly affects wheat production and its ecological environment. Streptomyces sp. HU2014 was first used to investigate the effects of Cr (VI) stress on wheat growth. We analyzed the Cr(VI) concentration, physicochemical properties of wheat and soil, total Cr content, and microbial community structures during their interactions. HU2014 reduced the toxicity of Cr(VI) and promoted wheat growth by increasing total nitrogen, nitrate nitrogen, total phosphorus, and Olsen-phosphorus in Cr(VI)-contaminated soil. These four soil variables had strong positive effects on two bacterial taxa, Proteobacteria and Bacteroidota, in the HU2014 treatments. In addition, the level of the dominant Proteobacteria positively correlated with the total Cr content in the soil. Among the fungal communities, which had weaker correlations with soil variables compared with bacterial communities, Ascomycota was the most abundant. Our findings suggest that HU2014 can promote the phytoremediation of Cr(VI)-contaminated soil.


Biodegradation, Environmental , Chromium , Rhizosphere , Soil Microbiology , Soil Pollutants , Streptomyces , Triticum , Chromium/toxicity , Streptomyces/drug effects , Triticum/growth & development , Triticum/microbiology , Triticum/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Proteobacteria/drug effects , Nitrogen/metabolism , Phosphorus
4.
Nature ; 629(8010): 165-173, 2024 May.
Article En | MEDLINE | ID: mdl-38632398

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Antibiosis , Bacterial Proteins , Bacterial Toxins , Streptomyces , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antibiosis/drug effects , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Bacterial Proteins/ultrastructure , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Bacterial Toxins/pharmacology , Cryoelectron Microscopy , Lectins/chemistry , Lectins/genetics , Lectins/metabolism , Lectins/ultrastructure , Microbial Sensitivity Tests , Models, Molecular , Streptomyces/chemistry , Streptomyces/drug effects , Streptomyces/genetics , Streptomyces/growth & development , Streptomyces coelicolor/chemistry , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Streptomyces griseus/drug effects , Streptomyces griseus/genetics , Streptomyces griseus/growth & development , Streptomyces griseus/metabolism
5.
Pak J Pharm Sci ; 36(4): 1093-1105, 2023 Jul.
Article En | MEDLINE | ID: mdl-37599484

Streptomyces MDMMH4 cells were immobilized in various matrices with two different techniques for the enhanced and semi-continuous production of extracellular L-methioninase. Of these, agarose was proven to be the most suitable matrix for the immobilization of cells. The optimal agarose concentration was approximately 3% and the initial cell concentration was 150mg/ml (wet cell weight). Agarose-entrapped cells increased the enzyme yield by 21% compared to the highest yield obtained with free cells. Even after twelve successive and efficient fermentation operations, the agarose blocks had good stability. They maintained 69.3% of the enzyme yield obtained in the first cycle. Applying this process on an industrial scale using agarose-entrapped cells, an inexpensive and renewable matrix will allow the stable production of L-methioninase. The purified L-methioninase could be successfully obtained after applying the purification protocol as mentioned in the previous studies. Subsequently, the purified enzyme showed that L- methioninase possessed moderate scavenging activity with high IC50 values of 390.4µg/mL (corresponding to 11.62U/mL). To our knowledge, this is the first report on L-methioninase production by whole-cell immobilization.


Streptomyces , Streptomyces/drug effects , Streptomyces/enzymology , Antioxidants/pharmacology , Sepharose/metabolism
6.
Microb Genom ; 8(1)2022 01.
Article En | MEDLINE | ID: mdl-35040428

The development of spots or lesions symptomatic of common scab on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87-22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S. scabiei is in turn boosted by cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87-22 show a production and/or a transcriptional response to cello-oligosaccharides. Comparative metabolomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include (i) thaxtomin and concanamycin phytotoxins, (ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, (iii) ectoine for protection against osmotic shock once inside the host, and (iv) bottromycin and concanamycin antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cello-oligosaccharides reduced the production of the spore germination inhibitors germicidins thereby giving the 'green light' to escape dormancy and trigger the onset of the pathogenic lifestyle. For most metabolites - either with induced or reduced production - cellotriose was revealed to be a slightly stronger elicitor compared to cellobiose, supporting an earlier hypothesis which suggested the trisaccharide was the real trigger for virulence released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs' expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of a yet unknown mechanism for switching on the virulome. Finally, a transcriptomic analysis revealed nine additional cryptic BGCs that have their expression awakened by cello-oligosaccharides, suggesting that other and yet to be discovered metabolites could be part of the virulome of S. scabiei.


Biosynthetic Pathways/drug effects , Cellobiose/pharmacology , Cellulose/pharmacology , Plant Tubers/microbiology , Streptomyces/growth & development , Trioses/pharmacology , Virulence Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Macrolides/metabolism , Metabolomics , Multigene Family/drug effects , Piperazines/metabolism , Plant Tubers/growth & development , RNA-Seq , Streptomyces/drug effects , Streptomyces/metabolism , Streptomyces/pathogenicity
7.
Bioorg Chem ; 119: 105573, 2022 02.
Article En | MEDLINE | ID: mdl-34952245

Tetrodecadazinone (1), a novel tetrodecamycin-pyridazinone hybrid possessing a new 1,2-dimethyl-1-(2-methylnonyl)decahydronaphthalene skeleton, and 4-hydroxydihydrotetrodecamycin (2) were separated from a culture of Streptomyces sp. HU051, together with a known compound, dihydrotetrodecamycin (3). Diverse spectroscopic approaches were applied to assign the structures of 1-3, and the structure of 1 was further confirmed by single crystal X-ray diffraction analysis. Compound 1 is the first example of a pyridazinone-containing natural product. Biosynthetically, 1 is proposed to be derived from a Michael addition reaction of a PKS-derived tetrodecamycin and a piperazic-acid-derived pyridazinone. Biological evaluation revealed 1 could reduce the expressions of extracellular matrix proteins (fibronectin and collagen I) and α-smooth muscle actin (α-SMA) in transforming growth factor-ß (TGF-ß1)-activated LX-2 cells. Preliminary mechanism study showed 1 exerted its anti-liver fibrosis effect by regulating TGF-ß1/Smad2/3 signaling pathway.


Anti-Bacterial Agents/pharmacology , Liver Cirrhosis/drug therapy , Streptomyces/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/microbiology , Microbial Sensitivity Tests , Molecular Conformation , Signal Transduction/drug effects , Smad2 Protein/antagonists & inhibitors , Smad2 Protein/metabolism , Smad3 Protein/antagonists & inhibitors , Smad3 Protein/metabolism , Structure-Activity Relationship , Transforming Growth Factor beta1/antagonists & inhibitors , Transforming Growth Factor beta1/metabolism
8.
Molecules ; 26(19)2021 Sep 29.
Article En | MEDLINE | ID: mdl-34641466

Peptide natural products displaying a wide range of biological activities have become important drug candidates over the years. Microorganisms have been a powerful source of such bioactive peptides, and Streptomyces have yielded many novel natural products thus far. In an effort to uncover such new, meaningful compounds, the metabolome of Streptomyces acidiscabies was analyzed thoroughly. Three new compounds, scabimycins A-C (1-3), were discovered, and their chemical structures were elucidated by NMR spectroscopy. The relative and absolute configurations were determined using ROESY NMR experiments and advanced Marfey's method.


Biological Products/pharmacology , Metabolome/drug effects , Peptide Fragments/pharmacology , Streptomyces/metabolism , Magnetic Resonance Spectroscopy , Molecular Structure , Streptomyces/drug effects
9.
Sci Rep ; 11(1): 17544, 2021 09 02.
Article En | MEDLINE | ID: mdl-34475427

The marine ecosystem has become the hotspot for finding antibiotic-producing actinomycetes across the globe. Although marine-derived actinomycetes display strain-level genomic and chemodiversity, it is unclear whether functional traits, i.e., antibiotic activity, vary in near-identical Streptomyces species. Here, we report culture-dependent isolation, antibiotic activity, phylogeny, biodiversity, abundance, and distribution of Streptomyces isolated from marine sediments across the west-central Philippines. Out of 2212 marine sediment-derived actinomycete strains isolated from 11 geographical sites, 92 strains exhibited antibacterial activities against multidrug-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The 16S rRNA and rpoB gene sequence analyses confirmed that antibiotic-producing strains belong to the genus Streptomyces, highlighting Streptomyces parvulus as the most dominant species and three possible new species. Antibiotic-producing Streptomyces strains were highly diverse in Southern Antique, and species diversity increase with marine sediment depth. Multiple strains with near-identical 16S rRNA and rpoB gene sequences displayed varying strength of antibiotic activities. The genotyping of PKS and NRPS genes revealed that closely related antibiotic-producing strains have similar BGC domains supported by their close phylogenetic proximity. These findings collectively suggest Streptomyces' intraspecies adaptive characteristics in distinct ecological niches that resulted in outcompeting other bacteria through differential antibiotic production.


Anti-Bacterial Agents/pharmacology , DNA, Bacterial/genetics , Geologic Sediments/microbiology , Microbial Sensitivity Tests/methods , RNA, Ribosomal, 16S/genetics , Streptomyces/classification , Streptomyces/genetics , Ecosystem , Geologic Sediments/analysis , Philippines , Phylogeny , Streptomyces/drug effects , Streptomyces/metabolism
10.
J Antibiot (Tokyo) ; 74(11): 830-833, 2021 11.
Article En | MEDLINE | ID: mdl-34404922

The nucleoside antibiotic angustmycin, produced by some Streptomyces strains, is composed of adenine and C6 sugar and shows antibiotic and antitumor activities. In this study, we propose a biosynthetic pathway for angustmycin using a heterologous expression experiment coupled with in silico analysis of the angustmycin biosynthetic gene (agm) cluster. The biochemical characterization of Agm6 demonstrated its role in angustmycin biosynthesis as an unprecedented dehydratase.


Adenosine/biosynthesis , Anti-Bacterial Agents/biosynthesis , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Multigene Family/genetics , Adenosine/genetics , Computer Simulation , Streptomyces/drug effects
11.
J Antibiot (Tokyo) ; 74(10): 706-716, 2021 10.
Article En | MEDLINE | ID: mdl-34282313

Prostate cancer (PC) is a leading cause of cancer-related death in men in Western countries. Androgen receptor (AR) signaling is a major driver of PC; therefore, androgen deprivation by medical and surgical castration is the standard treatment for patients with PC. However, over time, most patients will progress to metastatic castration-resistant PC. Enzalutamide is the only AR antagonist approved by the Food and Drug Administration for the treatment of metastatic castration-resistant PC. However, resistance to enzalutamide also develops in most patients with castration-resistant PC. Thus, there is an urgent need to develop new AR antagonists with new structures. For this purpose, we conducted both in silico and natural product screenings. From the in silico screening, we obtained T5853872 and more potent compound, STK765173. From the natural product screening, the novel compound arabilin was isolated from Streptomyces sp. MK756-CF1. Unlike STK765173, arabilin could overcome resistance to enzalutamide. Furthermore, we also extracted a novel compound, antarlide A, and its geometric isomers from Streptomyces sp. BB47. Antarlides A-F have novel 22-membered-ring macrocyclic structures, while antarlides G and H have 20-membered-ring structures. Both antarlides B and G showed potent AR antagonist activity in prostate cancer cells and could overcome resistance to enzalutamide.


Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Drug Resistance, Neoplasm/drug effects , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/drug therapy , Streptomyces/drug effects , Androgen Receptor Antagonists/metabolism , Antineoplastic Agents/chemistry , Drug Evaluation, Preclinical , Humans , Male
12.
Appl Environ Microbiol ; 87(17): e0047321, 2021 08 11.
Article En | MEDLINE | ID: mdl-34160269

The heat shock response (HSR) is a universal cellular response that promotes survival following temperature increase. In filamentous Streptomyces, which accounts for ∼70% of commercial antibiotic production, HSR is regulated by transcriptional repressors; in particular, the widespread MerR-family regulator HspR has been identified as a key repressor. However, functions of HspR in other biological processes are unknown. The present study demonstrates that HspR pleiotropically controls avermectin production, morphological development, and heat shock and H2O2 stress responses in the industrially important species Streptomyces avermitilis. HspR directly activated ave structural genes (aveA1 and aveA2) and H2O2 stress-related genes (katA1, catR, katA3, oxyR, ahpC, and ahpD), whereas it directly repressed heat shock genes (HSGs) (the dnaK1-grpE1-dnaJ1-hspR operon, clpB1p, clpB2p, and lonAp) and developmental genes (wblB, ssgY, and ftsH). HspR interacted with PhoP (response regulator of the widespread PhoPR two-component system) at dnaK1p to corepress the important dnaK1-grpE1-dnaJ1-hspR operon. PhoP exclusively repressed target HSGs (htpG, hsp18_1, and hsp18_2) different from those of HspR (clpB1p, clpB2p, and lonAp). A consensus HspR-binding site, 5'-TTGANBBNNHNNNDSTSHN-3', was identified within HspR target promoter regions, allowing prediction of the HspR regulon involved in broad cellular functions. Taken together, our findings demonstrate a key role of HspR in the coordination of a variety of important biological processes in Streptomyces species. IMPORTANCE Our findings are significant to clarify the molecular mechanisms underlying HspR function in Streptomyces antibiotic production, development, and H2O2 stress responses through direct control of its target genes associated with these biological processes. HspR homologs described to date function as transcriptional repressors but not as activators. The results of the present study demonstrate that HspR acts as a dual repressor/activator. PhoP cross talks with HspR at dnaK1p to coregulate the heat shock response (HSR), but it also has its own specific target heat shock genes (HSGs). The novel role of PhoP in the HSR further demonstrates the importance of this regulator in Streptomyces. Overexpression of hspR strongly enhanced avermectin production in Streptomyces avermitilis wild-type and industrial strains. These findings provide new insights into the regulatory roles and mechanisms of HspR and PhoP and facilitate methods for antibiotic overproduction in Streptomyces species.


Bacterial Proteins/metabolism , Heat-Shock Proteins/metabolism , Hydrogen Peroxide/pharmacology , Ivermectin/analogs & derivatives , Repressor Proteins/metabolism , Streptomyces/growth & development , Streptomyces/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Heat-Shock Proteins/genetics , Hot Temperature , Ivermectin/metabolism , Regulon , Repressor Proteins/genetics , Streptomyces/drug effects , Streptomyces/genetics , Stress, Physiological
13.
mSphere ; 6(3): e0042721, 2021 06 30.
Article En | MEDLINE | ID: mdl-34077259

Phenazine-producing Pseudomonas spp. are effective biocontrol agents that aggressively colonize the rhizosphere and suppress numerous plant diseases. In this study, we compared the ability of 63 plant-beneficial phenazine-producing Pseudomonas strains representative of the worldwide diversity to inhibit the growth of three major potato pathogens: the oomycete Phytophthora infestans, the Gram-positive bacterium Streptomyces scabies, and the ascomycete Verticillium dahliae. The 63 Pseudomonas strains are distributed among four different subgroups within the P. fluorescens species complex and produce different phenazine compounds, namely, phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), 2-hydroxyphenazine-1-carboxylic acid, and 2-hydroxphenazine. Overall, the 63 strains exhibited contrasted levels of pathogen inhibition. Strains from the P. chlororaphis subgroup inhibited the growth of P. infestans more effectively than strains from the P. fluorescens subgroup. Higher inhibition was not associated with differential levels of phenazine production nor with specific phenazine compounds. The presence of additional biocontrol-related traits found in P. chlororaphis was instead associated with higher P. infestans inhibition. Inhibition of S. scabies by the 63 strains was more variable, with no clear taxonomic segregation pattern. Inhibition values did not correlate with phenazine production nor with specific phenazine compounds. No additional synergistic biocontrol-related traits were found. Against V. dahliae, PCN producers from the P. chlororaphis subgroup and PCA producers from the P. fluorescens subgroup exhibited greater inhibition. Additional biocontrol-related traits potentially involved in V. dahliae inhibition were identified. This study represents a first step toward harnessing the vast genomic diversity of phenazine-producing Pseudomonas spp. to achieve better biological control of potato pathogens. IMPORTANCE Plant-beneficial phenazine-producing Pseudomonas spp. are effective biocontrol agents, thanks to the broad-spectrum antibiotic activity of the phenazine antibiotics they produce. These bacteria have received considerable attention over the last 20 years, but most studies have focused only on the ability of a few genotypes to inhibit the growth of a limited number of plant pathogens. In this study, we investigated the ability of 63 phenazine-producing strains, isolated from a wide diversity of host plants on four continents, to inhibit the growth of three major potato pathogens: Phytophthora infestans, Streptomyces scabies, and Verticillium dahliae. We found that the 63 strains differentially inhibited the three potato pathogens. These differences are in part associated with the nature and the quantity of the phenazine compounds being produced but also with the presence of additional biocontrol-related traits. These results will facilitate the selection of versatile biocontrol agents against pathogens.


Bacteria/drug effects , Phenazines/pharmacology , Pseudomonas/chemistry , Pseudomonas/genetics , Solanum tuberosum/microbiology , Ascomycota/drug effects , Ascomycota/growth & development , Bacteria/classification , Bacteria/pathogenicity , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Genetic Variation , Genome, Bacterial , Phenazines/chemistry , Phenazines/metabolism , Phytophthora infestans/drug effects , Phytophthora infestans/growth & development , Pseudomonas/classification , Streptomyces/drug effects , Streptomyces/growth & development
14.
Sci Rep ; 11(1): 10062, 2021 05 12.
Article En | MEDLINE | ID: mdl-33980996

Thienamycin, the first representative of carbapenem antibiotics was discovered in the mid-1970s from soil microorganism, Streptomyces cattleya, during the race to discover inhibitors of bacterial peptidoglycan synthesis. Chemically modified into imipenem (N-formimidoyl thienamycin), now one of the most clinically important antibiotics, thienamycin is encoded by a thienamycin gene cluster composed of 22 genes (thnA to thnV) from S. cattleya NRRL 8057 genome. Interestingly, the role of all thn-genes has been experimentally demonstrated in the thienamycin biosynthesis, except thnS, despite its annotation as putative ß-lactamase. Here, we expressed thnS gene and investigated its activities against various substrates. Our analyses revealed that ThnS belonged to the superfamily of metallo-ß-lactamase fold proteins. Compared to known ß-lactamases such as OXA-48 and NDM-1, ThnS exhibited a lower affinity and less efficiency toward penicillin G and cefotaxime, while imipenem is more actively hydrolysed. Moreover, like most MBL fold enzymes, additional enzymatic activities of ThnS were detected such as hydrolysis of ascorbic acid, single strand DNA, and ribosomal RNA. ThnS appears as a MBL enzyme with multiple activities including a specialised ß-lactamase activity toward imipenem. Thus, like toxin/antitoxin systems, the role of thnS gene within the thienamycin gene cluster appears as an antidote against the produced thienamycin.


Anti-Bacterial Agents/pharmacology , Cefotaxime/pharmacology , Cephamycins/pharmacology , Penicillin G/pharmacology , Streptomyces/drug effects , Thienamycins/pharmacology , beta-Lactamases/metabolism , Streptomyces/enzymology
15.
Methods Mol Biol ; 2296: 351-363, 2021.
Article En | MEDLINE | ID: mdl-33977458

Daptomycin is a cyclic lipopeptide antibiotic with potent activity against gram-positive bacteria. It has a calcium-dependent mechanism of action that disrupts multiple features of the bacterial membrane function. This antibiotic is highly demanded due to its effectiveness against to microorganisms resistant to other antibiotics, including vancomycin-resistant Staphylococcus aureus (VRSA) and methicillin-resistant S. aureus (MRSA). Daptomycin is produced by fermentation of Streptomyces roseosporus, currently identified as Streptomyces filamentosus. However, low fermentation yields and high production costs are reported. This chapter describes a method of strain improvement involving random mutagenesis, rational screening by bioassay, and flask fermentation. The ultimate objective is to select mutants of S. roseosporus overproducing daptomycin in order to design a more cost-effective daptomycin production.


Daptomycin/biosynthesis , Streptomyces/metabolism , Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Daptomycin/pharmacology , Fermentation/physiology , Genetic Engineering/methods , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Mutagenesis/genetics , Streptomyces/drug effects , Streptomyces/genetics
16.
BMC Microbiol ; 21(1): 116, 2021 04 17.
Article En | MEDLINE | ID: mdl-33865329

BACKGROUND: To tackle the problem of antibiotic resistance, an extensive search for novel antibiotics is one of the top research priorities. Around 60% of the antibiotics used today were obtained from the genus Streptomyces. The river sediments of Bangladesh are still an unexplored source for antibiotic-producing bacteria (APB). This study aimed to isolate novel APB from Padma and Kapotakkho river sediments having the potential to produce antibacterial compounds with known scaffolds by manipulating their self-protection mechanisms. RESULTS: The antibiotic supplemented starch-casein-nitrate agar (SCNA) media were used to isolate antibiotic-resistant APB from the river sediments. The colonies having Streptomyces-like morphology were selectively purified and their antagonistic activity was screened against a range of test bacteria using the cross-streaking method. A notable decrease of the colony-forming units (CFUs) in the antibiotic supplemented SCNA plates compared to control plates (where added antibiotics were absent) was observed. A total of three azithromycin resistant (AZR) and nine meropenem resistant (MPR) isolates were purified and their antagonistic activity was investigated against a series of test bacteria including Shigella brodie, Escherichia coli, Pseudomonas sp., Proteus sp., Staphylococcus aureus, and Bacillus cereus. All the AZR isolates and all but two MPR isolates exhibited moderate to high broad-spectrum activity. Among the isolates, 16S rDNA sequencing of NAr5 and NAr6 were performed to identify them up to species level. The analyses of the sequences revealed that both belong to the genus Streptomyces. CONCLUSIONS: The results from these studies suggest that manipulation of the self-resistance property of APB is an easy and quick method to search for novel APB having the potential to produce potentially novel antibacterial compounds with known scaffolds.


Anti-Bacterial Agents/metabolism , Bacterial Physiological Phenomena , Drug Resistance, Microbial , Geologic Sediments/microbiology , Microbial Interactions/physiology , Streptomyces/physiology , Anti-Bacterial Agents/pharmacology , Bangladesh , RNA, Ribosomal, 16S/genetics , Rivers/microbiology , Streptomyces/drug effects , Streptomyces/genetics , Streptomyces/isolation & purification
17.
Sci Rep ; 11(1): 3507, 2021 02 10.
Article En | MEDLINE | ID: mdl-33568768

Actinobacteria are among the most prolific sources of medically and agriculturally important compounds, derived from their biosynthetic gene clusters (BGCs) for specialized (secondary) pathways of metabolism. Genomics witnesses that the majority of actinobacterial BGCs are silent, most likely due to their low or zero transcription. Much effort is put into the search for approaches towards activation of silent BGCs, as this is believed to revitalize the discovery of novel natural products. We hypothesized that the global transcriptional factor AdpA, due to its highly degenerate operator sequence, could be used to upregulate the expression of silent BGCs. Using Streptomyces cyanogenus S136 as a test case, we showed that plasmids expressing either full-length adpA or its DNA-binding domain led to significant changes in the metabolome. These were evident as changes in the accumulation of colored compounds, bioactivity, as well as the emergence of a new pattern of secondary metabolites as revealed by HPLC-ESI-mass spectrometry. We further focused on the most abundant secondary metabolite and identified it as the polyene antibiotic lucensomycin. Finally, we uncovered the entire gene cluster for lucensomycin biosynthesis (lcm), that remained elusive for five decades until now, and outlined an evidence-based scenario for its adpA-mediated activation.


Anti-Bacterial Agents/pharmacology , Biosynthetic Pathways/drug effects , Gene Expression Regulation, Bacterial/genetics , Lucensomycin/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial/drug effects , Genes, Regulator/drug effects , Secondary Metabolism/genetics , Streptomyces/drug effects , Transcription Factors/drug effects , Transcription Factors/metabolism
18.
Mar Drugs ; 19(2)2021 Feb 02.
Article En | MEDLINE | ID: mdl-33540548

The manuscript investigated the isolation, characterization and anti-infective potential of valinomycin (3), streptodepsipeptide P11A (2), streptodepsipeptide P11B (1), and one novel valinomycin analogue, streptodepsipeptide SV21 (4), which were all produced by the Gram-positive strain Streptomycescavourensis SV 21. Although the exact molecular weight and major molecular fragments were recently reported for compound 4, its structure elucidation was not based on compound isolation and spectroscopic techniques. We successfully isolated and elucidated the structure based on the MS2 fragmentation pathways as well as 1H and 13C NMR spectra and found that the previously reported structure of compound 4 differs from our analysis. Our findings showed the importance of isolation and structure elucidation of bacterial compounds in the era of fast omics technologies. The here performed anti-infective assays showed moderate to potent activity against fungi, multi drug resistant (MDR) bacteria and infectivity of the Hepatitis C Virus (HCV). While compounds 2, 3 and 4 revealed potent antiviral activity, the observed minor cytotoxicity needs further investigation. Furthermore, the here performed anti-infective assays disclosed that the symmetry of the valinomycin molecule is most important for its bioactivity, a fact that has not been reported so far.


Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Sea Cucumbers/drug effects , Streptomyces/drug effects , Valinomycin/analogs & derivatives , Valinomycin/pharmacology , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/isolation & purification , Antiviral Agents/isolation & purification , Cell Line , Humans , Sea Cucumbers/physiology , Streptomyces/physiology , Valinomycin/isolation & purification
19.
Mar Drugs ; 19(1)2021 Jan 05.
Article En | MEDLINE | ID: mdl-33466541

Biofilms are surface-attached multicellular communities that play critical roles in inducing biofouling and biocorrosion in the marine environment. Given the serious economic losses and problems caused by biofouling and biocorrosion, effective biofilm control strategies are highly sought after. In a screening program of antibiofilm compounds against marine biofilms, we discovered the potent biofilm inhibitory activity of elasnin. Elasnin effectively inhibited the biofilm formation of seven strains of bacteria isolated from marine biofilms. With high productivity, elasnin-based coatings were prepared in an easy and cost-effective way, which exhibited great performance in inhibiting the formation of multi-species biofilms and the attachment of large biofouling organisms in the marine environment. The 16S amplicon analysis and anti-larvae assay revealed that elasnin could prevent biofouling by the indirect impact of changed microbial composition of biofilms and direct inhibitory effect on larval settlement with low toxic effects. These findings indicated the potential application of elasnin in biofilm and biofouling control in the marine environment.


Aquatic Organisms/drug effects , Biofilms/drug effects , Biofouling/prevention & control , Pyrones/pharmacology , Staphylococcus aureus/drug effects , Streptomyces/drug effects , Aquatic Organisms/physiology , Biofilms/growth & development , Dose-Response Relationship, Drug , Microbial Sensitivity Tests/methods , Staphylococcus aureus/physiology , Streptomyces/growth & development
20.
Genomics ; 112(6): 4684-4689, 2020 11.
Article En | MEDLINE | ID: mdl-32822757

The genus Streptomyces is widely recognized for its biotechnological potential. Due to a need to improve crops, clean up the environment and produce novel antimicrobial molecules exploiting Streptomyces has become a priority. To further explore the biotechnological potential of these organisms we analyzed the genome of the strain Streptomyces sp. Z38 isolated from contaminated roots tissues. Our analysis not only confirmed the ability of the strain to produce plant growth promoting traits but also a range of mechanisms to cope with the toxic effect of heavy metals through genes involved in metal homeostasis and oxidative stress response. The production of silver nanoparticles indicated that Streptomyces sp. Z38 may find utility in Green, Grey and Red biotechnology.


Agriculture , Genome, Plant , Nanotechnology , Streptomyces/genetics , Industry , Metal Nanoparticles , Metals, Heavy/toxicity , Oxidative Stress , Phylogeny , Plant Development , Plant Growth Regulators/metabolism , Response Elements , Silver/metabolism , Streptomyces/classification , Streptomyces/drug effects , Streptomyces/metabolism , Whole Genome Sequencing
...