Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753510

RESUMEN

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Asunto(s)
Proteínas de Neoplasias , Multimerización de Proteína , Molécula de Interacción Estromal 1 , Humanos , Sitios de Unión , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Simulación de Dinámica Molecular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Unión Proteica , Dominios Proteicos , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/química
2.
J Exp Clin Cancer Res ; 42(1): 195, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542345

RESUMEN

BACKGROUND: Bone metastasis is a principal cause of mortality in patients with prostate cancer (PCa). Increasing evidence indicates that high expression of stromal interaction molecule 1 (STIM1)-mediated store-operated calcium entry (SOCE) significantly activates the calcium (Ca2+) signaling pathway and is involved in multiple steps of bone metastasis in PCa. However, the regulatory mechanism and target therapy of STIM1 is poorly defined. METHODS: Liquid chromatography-mass spectrometry analysis was performed to identify tetraspanin 18 (TSPAN18) as a binding protein of STIM1. Co-IP assay was carried out to explore the mechanism by which TSPAN18 inhibits STIM1 degradation. The biological function of TSPAN18 in bone metastasis of PCa was further investigated in vitro and in vivo models. RESULT: We identified that STIM1 directly interacted with TSPAN18, and TSPAN18 competitively inhibited E3 ligase tripartite motif containing 32 (TRIM32)-mediated STIM1 ubiquitination and degradation, leading to increasing STIM1 protein stability. Furthermore, TSPAN18 significantly stimulated Ca2+ influx in an STIM1-dependent manner, and then markedly accelerated PCa cells migration and invasion in vitro and bone metastasis in vivo. Clinically, overexpression of TSPAN18 was positively associated with STIM1 protein expression, bone metastasis and poor prognosis in PCa. CONCLUSION: Taken together, this work discovers a novel STIM1 regulative mechanism that TSPAN18 protects STIM1 from TRIM32-mediated ubiquitination, and enhances bone metastasis of PCa by activating the STIM1-Ca2+ signaling axis, suggesting that TSPAN18 may be an attractive therapeutic target for blocking bone metastasis in PCa.


Asunto(s)
Calcio , Neoplasias de la Próstata , Masculino , Humanos , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Neoplasias de la Próstata/genética , Ubiquitinación , Señalización del Calcio , Proteína ORAI1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
3.
Protein Sci ; 32(3): e4571, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36691702

RESUMEN

Stromal interaction molecule 1 (STIM1) resides in the endoplasmic reticulum (ER) membrane and senses luminal calcium (Ca2+ ) concentration. STIM1 activation involves a large-scale conformational transition that exposes a STIM1 domain termed "CAD/SOAR", - which is required for activation of the calcium channel Orai. Under resting cell conditions, STIM1 assumes a quiescent state where CAD/SOAR is suspended in an intramolecular clamp formed by the coiled-coil 1 domain (CC1) and CAD/SOAR. Here, we present a structural model of the cytosolic part of the STIM1 resting state using molecular docking simulations that take into account previously reported interaction sites between the CC1α1 and CAD/SOAR domains. We corroborate and refine previously reported interdomain coiled-coil contacts. Based on our model, we provide a detailed analysis of the CC1-CAD/SOAR binding interface using molecular dynamics simulations. We find a very similar binding interface for a proposed domain-swapped configuration of STIM1, where the CAD/SOAR domain of one monomer interacts with the CC1α1 domain of another monomer of STIM1. The rich structural and dynamical information obtained from our simulations reveals novel interaction sites such as M244, I409, or E370, which are crucial for STIM1 quiescent state stability. We tested our predictions by electrophysiological and Förster resonance energy transfer experiments on corresponding single-point mutants. These experiments provide compelling support for the structural model of the STIM1 quiescent state reported here. Based on transitions observed in enhanced-sampling simulations paired with an analysis of the quiescent STIM1 conformational dynamics, our work offers a first atomistic model for CC1α1-CAD/SOAR detachment.


Asunto(s)
Canales de Calcio , Calcio , Humanos , Calcio/metabolismo , Canales de Calcio/metabolismo , Células HEK293 , Simulación del Acoplamiento Molecular , Proteína ORAI1/metabolismo , Dominios Proteicos , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/metabolismo
4.
J Mol Biol ; 434(24): 167874, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36332662

RESUMEN

Stromal interaction molecule 1 (STIM1) is an endo/sarcoplasmic reticulum (ER/SR) calcium (Ca2+) sensing protein that regulates store-operated calcium entry (SOCE). In SOCE, STIM1 activates Orai1-composed Ca2+ channels in the plasma membrane (PM) after ER stored Ca2+ depletion. S-Glutathionylation of STIM1 at Cys56 evokes constitutive SOCE in DT40 cells; however, the structural and biophysical mechanisms underlying the regulation of STIM1 by this modification are poorly defined. By establishing a protocol for site-specific STIM1 S-glutathionylation using reduced glutathione and diamide, we have revealed that modification of STIM1 at either Cys49 or Cys56 induces thermodynamic destabilization and conformational changes that result in increased solvent-exposed hydrophobicity. Further, S-glutathionylation or point-mutation of Cys56 reduces Ca2+ binding affinity, as measured by intrinsic fluorescence and far-UV circular dichroism spectroscopies. Solution NMR showed S-glutathionylated-induced perturbations in STIM1 are localized to the α1 helix of the canonical EF-hand, the α3 and α4 helices of the non-canonical EF-hand and α6 and α8 helices of the SAM domain. Finally, we designed an S-glutathiomimetic mutation that strongly recapitulates the structural, biophysical and functional effects within the STIM1 luminal domain and we envision to be another tool for understanding the effects of protein S-glutathionylation in vitro, in cellulo and in vivo.


Asunto(s)
Glutatión , Molécula de Interacción Estromal 1 , Calcio/metabolismo , Señalización del Calcio/fisiología , Motivos EF Hand , Retículo Sarcoplasmático/metabolismo , Molécula de Interacción Estromal 1/química , Glutatión/química , Dominios Proteicos , Humanos , Animales
5.
EMBO Rep ; 23(3): e53135, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34942054

RESUMEN

Alternative splicing is a potent modifier of protein function. Stromal interaction molecule 1 (Stim1) is the essential activator of store-operated Ca2+ entry (SOCE) triggering activation of transcription factors. Here, we characterize Stim1A, a splice variant with an additional 31 amino acid domain inserted in frame within its cytosolic domain. Prominent expression of exon A is found in astrocytes, heart, kidney, and testes. Full-length Stim1A functions as a dominant-negative regulator of SOCE and ICRAC, facilitating sequence-specific fast calcium-dependent inactivation and destabilizing gating of Orai channels. Downregulation or absence of native Stim1A results in increased SOCE. Despite reducing SOCE, Stim1A leads to increased NFAT translocation. Differential proteomics revealed an interference of Stim1A with the cAMP-SOCE crosstalk by altered modulation of phosphodiesterase 8 (PDE8), resulting in reduced cAMP degradation and increased PIP5K activity, facilitating NFAT activation. Our study uncovers a hitherto unknown mechanism regulating NFAT activation and indicates that cell-type-specific splicing of Stim1 is a potent means to regulate the NFAT signalosome and cAMP-SOCE crosstalk.


Asunto(s)
Canales de Calcio , Calcio , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Proteína ORAI1/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
6.
PLoS One ; 16(10): e0258670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34653219

RESUMEN

Molecular steps that activate store-operated calcium entry (SOCE) via Orai channel supramolecular complex remain incompletely defined. We have earlier shown that α-SNAP regulates the on-site functional assembly and calcium selectivity of Orai1 channels. Here we investigate the molecular basis of its association with Orai, Stim and find that the affinity of α-SNAP for Orai and Stim is substantially higher than previously reported affinities between Stim and Orai sub-domains. α-SNAP binds the coiled-coil 3 (CC3) sub-domain of Stim1. Mutations of Tryptophan 430 in Stim1-CC3 disrupted α-SNAP association and SOCE, demonstrating a novel α-SNAP dependent function for this crucial subdomain. Further, α-SNAP binds the hinge region near the C-terminus of Orai1 and an additional broad region near the N-terminus and Valine 262 and Leucine 74 were necessary for these respective interactions, but not Orai, Stim co-clustering. Thus, high affinity interactions with α-SNAP are necessary for imparting functionality to Stim, Orai clusters and induction of SOCE.


Asunto(s)
Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Animales , Sitios de Unión , Línea Celular , Clonación Molecular , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones , Mutación , Proteínas de Neoplasias/química , Proteína ORAI1/química , Unión Proteica , Molécula de Interacción Estromal 1/química
7.
J Cell Biol ; 220(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34705029

RESUMEN

Store-operated calcium entry (SOCE) through the Ca2+ release-activated Ca2+ (CRAC) channel is a central mechanism by which cells generate Ca2+ signals and mediate Ca2+-dependent gene expression. The molecular basis for CRAC channel regulation by the SOCE-associated regulatory factor (SARAF) remained insufficiently understood. Here we found that following ER Ca2+ depletion, SARAF facilitates a conformational change in the ER Ca2+ sensor STIM1 that relieves an activation constraint enforced by the STIM1 inactivation domain (ID; aa 475-483) and promotes initial activation of STIM1, its translocation to ER-plasma membrane junctions, and coupling to Orai1 channels. Following intracellular Ca2+ rise, cooperation between SARAF and the STIM1 ID controls CRAC channel slow Ca2+-dependent inactivation. We further show that in T lymphocytes, SARAF is required for proper T cell receptor evoked transcription. Taking all these data together, we uncover a dual regulatory role for SARAF during both activation and inactivation of CRAC channels and show that SARAF fine-tunes intracellular Ca2+ responses and downstream gene expression in cells.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Proteínas Sensoras del Calcio Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Calcio/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico , Células Jurkat , Factores de Transcripción NFATC/metabolismo , Unión Proteica , Conformación Proteica , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 2/metabolismo , Transcripción Genética
8.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360783

RESUMEN

Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the "classical" Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Señalización del Calcio , Calcio , Retículo Endoplásmico , Animales , Calcio/química , Calcio/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/química , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Relación Estructura-Actividad
9.
Cell Rep ; 34(11): 108844, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730587

RESUMEN

Store-operated Ca2+-entry (SOCE) regulates basal and receptor-triggered Ca2+ signaling with STIM proteins sensing the endoplasmic reticulum (ER) Ca2+ content and triggering Ca2+ entry by gating Orai channels. Although crucial for immune cells, STIM1's role in neuronal Ca2+ homeostasis is controversial. Here, we characterize a splice variant, STIM1B, which shows exclusive neuronal expression and protein content surpassing conventional STIM1 in cerebellum and of significant abundance in other brain regions. STIM1B expression results in a truncated protein with slower kinetics of ER-plasma membrane (PM) cluster formation and ICRAC, as well as reduced inactivation. In primary wild-type neurons, STIM1B is targeted by its spliced-in domain B to presynaptic sites where it converts classic synaptic depression into Ca2+- and Orai-dependent short-term synaptic enhancement (STE) at high-frequency stimulation (HFS). In conjunction with altered STIM1 splicing in human Alzheimer disease, our findings highlight STIM1 splicing as an important regulator of neuronal calcium homeostasis and of synaptic plasticity.


Asunto(s)
Molécula de Interacción Estromal 1/metabolismo , Sinapsis/metabolismo , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Exones/genética , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteína ORAI1/metabolismo , Fenotipo , Terminales Presinápticos/metabolismo , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN/genética , Transducción de Señal , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/genética
10.
J Biol Chem ; 296: 100224, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361160

RESUMEN

The initial activation step in the gating of ubiquitously expressed Orai1 calcium (Ca2+) ion channels represents the activation of the Ca2+-sensor protein STIM1 upon Ca2+ store depletion of the endoplasmic reticulum. Previous studies using constitutively active Orai1 mutants gave rise to, but did not directly test, the hypothesis that STIM1-mediated Orai1 pore opening is accompanied by a global conformational change of all Orai transmembrane domain (TM) helices within the channel complex. We prove that a local conformational change spreads omnidirectionally within the Orai1 complex. Our results demonstrate that these locally induced global, opening-permissive TM motions are indispensable for pore opening and require clearance of a series of Orai1 gating checkpoints. We discovered these gating checkpoints in the middle and cytosolic extended TM domain regions. Our findings are based on a library of double point mutants that contain each one loss-of-function with one gain-of-function point mutation in a series of possible combinations. We demonstrated that an array of loss-of-function mutations are dominant over most gain-of-function mutations within the same as well as of an adjacent Orai subunit. We further identified inter- and intramolecular salt-bridge interactions of Orai subunits as a core element of an opening-permissive Orai channel architecture. Collectively, clearance and synergistic action of all these gating checkpoints are required to allow STIM1 coupling and Orai1 pore opening. Our results unravel novel insights in the preconditions of the unique fingerprint of CRAC channel activation, provide a valuable source for future structural resolutions, and help to understand the molecular basis of disease-causing mutations.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Activación del Canal Iónico/genética , Proteínas de Neoplasias/química , Proteína ORAI1/química , Molécula de Interacción Estromal 1/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Regulación de la Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Liposomas/química , Liposomas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Simulación de Dinámica Molecular , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Técnicas de Placa-Clamp , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
11.
Cell Calcium ; 90: 102240, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32574907

RESUMEN

STIM1, an ER-located Ca2+ sensor, activates Orai1 channels upon Ca2+-storedepletion. Prior to this, STIM1 undergoes a sequence of conformational changes, which cannot be controlled individually with high spatiotemporal resolution. Ma et al. [1] used the power of optogenetic engineering to transfer light-sensitivity to STIM1 and precisely characterize individual STIM1 activation steps.


Asunto(s)
Luz , Molécula de Interacción Estromal 1/metabolismo , Animales , Humanos , Modelos Biológicos , Optogenética , Dominios Proteicos , Molécula de Interacción Estromal 1/química
12.
Int J Mol Sci ; 21(12)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575830

RESUMEN

Stromal interaction molecule 1 (STIM1) is a ubiquitously expressed Ca2+ sensor protein that induces permeation of Orai Ca2+ channels upon endoplasmic reticulum Ca2+-store depletion. A drop in luminal Ca2+ causes partial unfolding of the N-terminal STIM1 domains and thus initial STIM1 activation. We compared the STIM1 structure upon Ca2+ depletion from our molecular dynamics (MD) simulations with a recent 2D NMR structure. Simulation- and structure-based results showed unfolding of two α-helices in the canonical and in the non-canonical EF-hand. Further, we structurally and functionally evaluated mutations in the non-canonical EF-hand that have been shown to cause tubular aggregate myopathy. We found these mutations to cause full constitutive activation of Ca2+-release-activated Ca2+ currents (ICRAC) and to promote autophagic processes. Specifically, heterologously expressed STIM1 mutations in the non-canonical EF-hand promoted translocation of the autophagy transcription factors microphthalmia-associated transcription factor (MITF) and transcription factor EB (TFEB) into the nucleus. These STIM1 mutations additionally stimulated an enhanced production of autophagosomes. In summary, mutations in STIM1 that cause structural unfolding promoted Ca2+ down-stream activation of autophagic processes.


Asunto(s)
Autofagia , Miopatías Estructurales Congénitas/genética , Proteínas de Neoplasias/genética , Molécula de Interacción Estromal 1/genética , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Motivos EF Hand , Humanos , Simulación de Dinámica Molecular , Mutación , Miopatías Estructurales Congénitas/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Conformación Proteica en Hélice alfa , Desplegamiento Proteico , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/metabolismo
13.
Cell Physiol Biochem ; 54(2): 252-270, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32176842

RESUMEN

BACKGROUND/AIMS: Store-operated Ca2+ entry (SOCE) through plasma membrane Ca2+ channel Orai1 is essential for many cellular processes. SOCE, activated by ER Ca2+ store-depletion, relies on the gating function of STIM1 Orai1-activating region SOAR of the ER-anchored Ca2+-sensing protein STIM1. Electrophysiologically, SOCE is characterized as Ca2+ release-activated Ca2+ current (ICRAC). A major regulatory mechanism that prevents deleterious Ca2+ overload is the slow Ca2+-dependent inactivation (SCDI) of ICRAC. Several studies have suggested a role of Ca2+/calmodulin (Ca2+/CaM) in triggering SCDI. However, a direct contribution of STIM1 in regulating Ca2+/CaM-mediated SCDI of ICRAC is as yet unclear. METHODS: The Ca2+/CaM binding to STIM1 was tested by pulling down recombinant GFP-tagged human STIM1 C-terminal fragments on CaM sepharose beads. STIM1 was knocked out by CRISPR/Cas9 technique in HEK293 cells stably overexpressing human Orai1. Store-operated Ca2+ influx was measured using Fluorometric Imaging Plate Reader and whole-cell patch clamp in cells transfected with STIM1 CaM binding mutants. The involvement of Ca2+/CaM in SCDI was investigated by including recombinant human CaM in patch pipette in electrophysiology. RESULTS: Here we identified residues Leu374/Val375 (H1) and Leu390/Phe391 (H2) within SOAR that serve as hydrophobic anchor sites for Ca2+/CaM binding. The bifunctional H2 site is critical for both Orai1 activation and Ca2+/CaM binding. Single residue mutations of Phe391 to less hydrophobic residues significantly diminished SOCE and ICRAC, independent of Ca2+/CaM. Hence, the role of H2 residues in Ca2+/CaM-mediated SCDI cannot be precisely evaluated. In contrast, the H1 site controls exclusively Ca2+/CaM binding and subsequently SCDI, but not Orai1 activation. V375A but not V375W substitution eliminated SCDI of ICRAC caused by Ca2+/CaM, proving a direct role of STIM1 in coordinating SCDI. CONCLUSION: Taken together, we propose a mechanistic model, wherein binding of Ca2+/CaM to STIM1 hydrophobic anchor residues, H1 and H2, triggers SCDI by disrupting the functional interaction between STIM1 and Orai1. Our findings reveal how STIM1, Orai1, and Ca2+/CaM are functionally coordinated to control ICRAC.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiología , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/fisiología , Sistemas CRISPR-Cas , Canales de Calcio/genética , Señalización del Calcio , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/metabolismo , Modelos Químicos , Modelos Moleculares , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/genética , Unión Proteica , Dominios Proteicos , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Regulación hacia Arriba
14.
Nat Commun ; 11(1): 1039, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098964

RESUMEN

Genetically encoded photoswitches have enabled spatial and temporal control of cellular events to achieve tailored functions in living cells, but their applications to probe the structure-function relations of signaling proteins are still underexplored. We illustrate herein the incorporation of various blue light-responsive photoreceptors into modular domains of the stromal interaction molecule 1 (STIM1) to manipulate protein activity and faithfully recapitulate STIM1-mediated signaling events. Capitalizing on these optogenetic tools, we identify the molecular determinants required to mediate protein oligomerization, intramolecular conformational switch, and protein-target interactions. In parallel, we have applied these synthetic devices to enable light-inducible gating of calcium channels, conformational switch, dynamic protein-microtubule interactions and assembly of membrane contact sites in a reversible manner. Our optogenetic engineering approach can be broadly applied to aid the mechanistic dissection of cell signaling, as well as non-invasive interrogation of physiological processes with high precision.


Asunto(s)
Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Optogenética/métodos , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Calcio/metabolismo , Criptocromos/genética , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Activación del Canal Iónico , Proteínas Luminiscentes/genética , Mutación , Proteínas de Neoplasias/química , Neoplasias/genética , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Molécula de Interacción Estromal 1/química , Relación Estructura-Actividad
15.
Nat Commun ; 11(1): 210, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924789

RESUMEN

Optogenetic approaches for controlling Ca2+ channels provide powerful means for modulating diverse Ca2+-specific biological events in space and time. However, blue light-responsive photoreceptors are, in principle, considered inadequate for deep tissue stimulation unless accompanied by optic fiber insertion. Here, we present an ultra-light-sensitive optogenetic Ca2+ modulator, named monSTIM1 encompassing engineered cryptochrome2 for manipulating Ca2+ signaling in the brain of awake mice through non-invasive light delivery. Activation of monSTIM1 in either excitatory neurons or astrocytes of mice brain is able to induce Ca2+-dependent gene expression without any mechanical damage in the brain. Furthermore, we demonstrate that non-invasive Ca2+ modulation in neurons can be sufficiently and effectively translated into changes in behavioral phenotypes of awake mice.


Asunto(s)
Canales de Calcio/metabolismo , Criptocromos/metabolismo , Tecnología de Fibra Óptica , Optogenética , Molécula de Interacción Estromal 1/metabolismo , Animales , Astrocitos , Encéfalo/metabolismo , Calcio/metabolismo , Criptocromos/química , Criptocromos/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Neuronas/metabolismo , Alineación de Secuencia , Molécula de Interacción Estromal 1/química , Vigilia
16.
Curr Drug Targets ; 21(1): 55-75, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31556856

RESUMEN

BACKGROUND: Calcium (Ca2+) ion is a major intracellular signaling messenger, controlling a diverse array of cellular functions like gene expression, secretion, cell growth, proliferation, and apoptosis. The major mechanism controlling this Ca2+ homeostasis is store-operated Ca2+ release-activated Ca2+ (CRAC) channels. CRAC channels are integral membrane protein majorly constituted via two proteins, the stromal interaction molecule (STIM) and ORAI. Following Ca2+ depletion in the Endoplasmic reticulum (ER) store, STIM1 interacts with ORAI1 and leads to the opening of the CRAC channel gate and consequently allows the influx of Ca2+ ions. A plethora of studies report that aberrant CRAC channel activity due to Loss- or gain-of-function mutations in ORAI1 and STIM1 disturbs this Ca2+ homeostasis and causes several autoimmune disorders. Hence, it clearly indicates that the therapeutic target of CRAC channels provides the space for a new approach to treat autoimmune disorders. OBJECTIVE: This review aims to provide the key structural and mechanical insights of STIM1, ORAI1 and other molecular modulators involved in CRAC channel regulation. RESULTS AND CONCLUSION: Understanding the structure and function of the protein is the foremost step towards improving the effective target specificity by limiting their potential side effects. Herein, the review mainly focusses on the structural underpinnings of the CRAC channel gating mechanism along with its biophysical properties that would provide the solid foundation to aid the development of novel targeted drugs for an autoimmune disorder. Finally, the immune deficiencies caused due to mutations in CRAC channel and currently used pharmacological blockers with their limitation are briefly summarized.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Canales de Calcio Activados por la Liberación de Calcio/química , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Canales de Calcio Activados por la Liberación de Calcio/antagonistas & inhibidores , Canales de Calcio Activados por la Liberación de Calcio/genética , Señalización del Calcio/fisiología , Humanos , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética
17.
Genomics ; 112(3): 2146-2153, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31843504

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a disease with poor prognosis which urgently is in need of effective prognostic marker. To discover novel prognostic protein marker for ESCC, we applied a high-throughput monoclonal antibody microarray to compare tumor and adjacent non-tumor tissues from ESCC patients. Antibody #ESmAb270 was consistent higher expressed in tumors and it was identified via mass spectrometry to be stromal interaction molecule 1 (STIM1). STIM1 H scores in tumor tissues were significantly up-regulated in esophageal tumor tissues compared to non-tumor tissues in 105 ESCC patients. We also observed that high STIM1 expression was correlated with advanced tumor grade and poor prognosis of ESCC. In addition, attenuation of STIM1 by siRNA or chemical inhibitors significantly inhibited cell viability and migration of ESCC cells. Evidence from high-throughput monoclonal antibody microarray, IHC microarray with associated survival data and functional analysis show that STIM1 is an unfavorable prognostic biomarker in ESCC.


Asunto(s)
Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales , Línea Celular Tumoral , Movimiento Celular , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/mortalidad , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/mortalidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/química , Proteínas de Neoplasias/inmunología , Pronóstico , Análisis por Matrices de Proteínas , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/inmunología
18.
Sci Rep ; 9(1): 19140, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31844136

RESUMEN

Stromal interaction molecule 1 (STIM1) mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism, which is involved in the physiological functions of various tissues, including skeletal muscle. STIM1 is also associated with skeletal muscle diseases, but its pathological mechanisms have not been well addressed. The present study focused on examining the pathological mechanism(s) of a mutant STIM1 (R429C) that causes human muscular hypotonia. R429C was expressed in mouse primary skeletal myotubes, and the properties of the skeletal myotubes were examined using single-cell Ca2+ imaging of myotubes and transmission electron microscopy (TEM) along with biochemical approaches. R429C did not interfere with the terminal differentiation of myoblasts to myotubes. Unlike wild-type STIM1, there was no further increase of SOCE by R429C. R429C bound to endogenous STIM1 and slowed down the initial rate of SOCE that were mediated by endogenous STIM1. Moreover, R429C increased intracellular Ca2+ movement in response to membrane depolarization by eliminating the attenuation on dihydropyridine receptor-ryanodine receptor (DHPR-RyR1) coupling by endogenous STIM1. The cytosolic Ca2+ level was also increased due to the reduction in SR Ca2+ level. In addition, R429C-expressing myotubes showed abnormalities in mitochondrial shape, a significant decrease in ATP levels, and the higher expression levels of mitochondrial fission-mediating proteins. Therefore, serial defects in SOCE, intracellular Ca2+ movement, and cytosolic Ca2+ level along with mitochondrial abnormalities in shape and ATP level could be a pathological mechanism of R429C for human skeletal muscular hypotonia. This study also suggests a novel clue that STIM1 in skeletal muscle could be related to mitochondria via regulating intra and extracellular Ca2+ movements.


Asunto(s)
Calcio/metabolismo , Espacio Extracelular/metabolismo , Espacio Intracelular/metabolismo , Hipotonía Muscular/genética , Músculo Esquelético/patología , Mutación/genética , Proteínas de Neoplasias/genética , Molécula de Interacción Estromal 1/genética , Canales de Calcio Tipo L/metabolismo , Citosol/metabolismo , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Hipotonía Muscular/patología , Proteínas de Neoplasias/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Molécula de Interacción Estromal 1/química
19.
Sci Signal ; 12(608)2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31744929

RESUMEN

The stromal interaction molecule 1 (STIM1) has two important functions, Ca2+ sensing within the endoplasmic reticulum and activation of the store-operated Ca2+ channel Orai1, enabling plasma-membrane Ca2+ influx. We combined molecular dynamics (MD) simulations with live-cell recordings and determined the sequential Ca2+-dependent conformations of the luminal STIM1 domain upon activation. Furthermore, we identified the residues within the canonical and noncanonical EF-hand domains that can bind to multiple Ca2+ ions. In MD simulations, a single Ca2+ ion was sufficient to stabilize the luminal STIM1 complex. Ca2+ store depletion destabilized the two EF hands, triggering disassembly of the hydrophobic cleft that they form together with the stable SAM domain. Point mutations associated with tubular aggregate myopathy or cancer that targeted the canonical EF hand, and the hydrophobic cleft yielded constitutively clustered STIM1, which was associated with activation of Ca2+ entry through Orai1 channels. On the basis of our results, we present a model of STIM1 Ca2+ binding and refine the currently known initial steps of STIM1 activation on a molecular level.


Asunto(s)
Calcio/metabolismo , Simulación de Dinámica Molecular , Proteínas de Neoplasias/química , Dominios Proteicos , Desplegamiento Proteico , Molécula de Interacción Estromal 1/química , Algoritmos , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Motivos EF Hand , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Confocal , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Ratas , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
20.
Dis Model Mech ; 13(2)2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31666234

RESUMEN

STIM and ORAI proteins play a fundamental role in calcium signaling, allowing for calcium influx through the plasma membrane upon depletion of intracellular stores, in a process known as store-operated Ca2+ entry. Point mutations that lead to gain-of-function activity of either STIM1 or ORAI1 are responsible for a cluster of ultra-rare syndromes characterized by motor disturbances and platelet dysfunction. The prevalence of these disorders is at present unknown. In this study, we describe the generation and characterization of a knock-in mouse model (KI-STIM1I115F) that bears a clinically relevant mutation located in one of the two calcium-sensing EF-hand motifs of STIM1. The mouse colony is viable and fertile. Myotubes from these mice show an increased store-operated Ca2+ entry, as predicted. This most likely causes the dystrophic muscle phenotype observed, which worsens with age. Such histological features are not accompanied by a significant increase in creatine kinase. However, animals have significantly worse performance in rotarod and treadmill tests, showing increased susceptibility to fatigue, in analogy to the human disease. The mice also show increased bleeding time and thrombocytopenia, as well as an unexpected defect in the myeloid lineage and in natural killer cells. The present model, together with recently described models bearing the R304W mutation (located on the coiled-coil domain in the cytosolic side of STIM1), represents an ideal platform to characterize the disorder and test therapeutic strategies for patients with STIM1 mutations, currently without therapeutic solutions.This article has an associated First Person interview with Celia Cordero-Sanchez, co-first author of the paper.


Asunto(s)
Motivos EF Hand/genética , Mutación/genética , Miopatías Estructurales Congénitas/genética , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/genética , Animales , Calcio/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Miopatías Estructurales Congénitas/patología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA