Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 154
1.
Eur J Pharm Sci ; 197: 106773, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38641124

Cytochrome P450 (CYP) system is a critical elimination route to most pharmaceuticals in human, but also prone to drug-drug interactions arising from the fact that concomitantly administered pharmaceuticals inhibit one another's CYP metabolism. The most severe form of CYP interactions is irreversible inhibition, which results in permanent inactivation of the critical CYP pathway and is only restored by de novo synthesis of new functional enzymes. In this study, we conceptualize a microfluidic approach to mechanistic CYP inhibition studies using human liver microsomes (HLMs) immobilized onto the walls of a polymer micropillar array. We evaluated the feasibility of these HLM chips for CYP inhibition studies by establishing the stability and the enzyme kinetics for a CYP2C9 model reaction under microfluidic flow and determining the half-maximal inhibitory concentrations (IC50) of three human CYP2C9 inhibitors (sulfaphenazole, tienilic acid, miconazole), including evaluation of their inhibition mechanisms and nonspecific microsomal binding on chip. Overall, the enzyme kinetics of CYP2C9 metabolism on the HLM chip (KM = 127 ± 55 µM) was shown to be similar to that of static HLM incubations (KM = 114 ± 14 µM) and the IC50 values toward CYP2C9 derived from the microfluidic assays (sulfaphenazole 0.38 ± 0.09 µM, tienilic acid 3.4 ± 0.6 µM, miconazole 0.54 ± 0.09 µM) correlated well with those determined using current standard IC50 shift assays. Most importantly, the HLM chip could distinguish between reversible (sulfaphenazole) and irreversible (tienilic acid) enzyme inhibitors in a single, automated experiment, indicating the great potential of the HLM chip to simplify current workflows used in mechanistic CYP inhibition studies. Furthermore, the results suggest that the HLM chip can also identify irreversible enzyme inhibitors, which are not necessarily resulting in a time-dependent inhibition (like suicide inhibitors), but whose inhibition mechanism is based on other kind of covalent or irreversible interaction with the CYP system. With our HLM chip approach, we could identify miconazole as such a compound that nonselectively inhibits the human CYP system with a prolonged, possibly irreversible impact in vitro, even if it is not a time-dependent inhibitor according to the IC50 shift assay.


Microsomes, Liver , Humans , Microsomes, Liver/metabolism , Cytochrome P-450 CYP2C9/metabolism , Kinetics , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Miconazole/pharmacology , Enzymes, Immobilized/metabolism , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Sulfaphenazole/pharmacology , Microfluidics/methods
2.
Sci Rep ; 12(1): 12622, 2022 07 23.
Article En | MEDLINE | ID: mdl-35871073

Pressure injuries, also known as pressure ulcers, are regions of localized damage to the skin and/or underlying tissue. Repeated rounds of ischemia-reperfusion (I/R) have a major causative role for tissue damage in pressure injury. Ischemia prevents oxygen/nutrient supply, and restoration of blood flow induces a burst of reactive oxygen species that damages blood vessels, surrounding tissues and can halt blood flow return. Minimizing the consequences of repeated I/R is expected to provide a protective effect against pressure injury. Sulfaphenazole (SP), an off patent sulfonamide antibiotic, is a potent CYP 2C6 and CYP 2C9 inhibitor, functioning to decrease post-ischemic vascular dysfunction and increase blood flow. The therapeutic effect of SP on pressure injury was therefore investigated in apolipoprotein E knockout mice, a model of aging susceptible to ischemic injury, which were subjected to repeated rounds of I/R-induced skin injury. SP reduced overall severity, improved wound closure and increased wound tensile strength compared to vehicle-treated controls. Saliently, SP restored tissue perfusion in and around the wound rapidly to pre-injury levels, decreased tissue hypoxia, and reduced both inflammation and fibrosis. SP also demonstrated bactericidal activity through enhanced M1 macrophage activity. The efficacy of SP in reducing thermal injury severity was also demonstrated. SP is therefore a potential therapeutic option for pressure injury and other ischemic skin injuries.


Pressure Ulcer , Reperfusion Injury , Sulfaphenazole , Animals , Mice , Ischemia , Perfusion , Reactive Oxygen Species , Reperfusion Injury/drug therapy , Sulfaphenazole/pharmacology
3.
Biochem Pharmacol ; 195: 114850, 2022 01.
Article En | MEDLINE | ID: mdl-34822809

Arachidonic acid (AA)-derived cytochrome P450 (CYP) derivatives, epoxyeicosatrienoic acids (EETs) and 20-hidroxyeicosatetranoic acid (20-HETE), play a key role in kidney tubular and vascular functions and blood pressure. Altered metabolism of CYP epoxygenases and CYP hydroxylases has differentially been involved in the pathogenesis of metabolic disease-associated vascular complications, although the mechanisms responsible for the vascular injury are unclear. The present study aimed to assess whether obesity-induced changes in CYP enzymes may contribute to oxidative stress and endothelial dysfunction in kidney preglomerular arteries. Endothelial function and reactive oxygen species (ROS) production were assessed in interlobar arteries of obese Zucker rats (OZR) and their lean counterparts lean Zucker rats (LZR) and the effects of CYP2C and CYP4A inhibitors sulfaphenazole and HET0016, respectively, were examined on the endothelium-dependent relaxations and O2- and H2O2 levels of preglomerular arteries. Non-nitric oxide (NO) non-prostanoid endothelium-derived hyperpolarization (EDH)-type responses were preserved but resistant to the CYP epoxygenase blocker sulfaphenazole in OZR in contrast to those in LZR. Sulfaphenazole did not further inhibit reduced arterial H2O2 levels, and CYP2C11/CYP2C23 enzymes were downregulated in intrarenal arteries from OZR. Renal EDH-mediated relaxations were preserved in obese rats by the enhanced activity and expression of endothelial calcium-activated potassium channels (KCa). CYP4A blockade restored impaired NO-mediated dilatation and inhibited augmented O2- production in kidney arteries from OZR. The current data demonstrate that both decreased endothelial CYP2C11/ CYP2C23-derived vasodilator H2O2 and augmented CYP4A-derived 20-HETE contribute to endothelial dysfunction and vascular oxidative stress in obesity. CYP4A inhibitors ameliorate arterial oxidative stress and restore endothelial function which suggests its therapeutic potential for the vascular complications of obesity-associated kidney injury.


Cytochrome P-450 Enzyme System/metabolism , Endothelium, Vascular/metabolism , Kidney/metabolism , Obesity/metabolism , Oxidative Stress , Renal Artery/metabolism , Amidines/pharmacology , Animals , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP2J2/metabolism , Cytochrome P-450 CYP4A/metabolism , Cytochrome P450 Family 2/metabolism , Hydrogen Peroxide/metabolism , Hydroxyeicosatetraenoic Acids/antagonists & inhibitors , Hydroxyeicosatetraenoic Acids/metabolism , Kidney/blood supply , Male , Obesity/physiopathology , Rats, Zucker , Reactive Oxygen Species/metabolism , Renal Artery/drug effects , Renal Artery/physiopathology , Steroid 16-alpha-Hydroxylase/metabolism , Sulfaphenazole/pharmacology , Vasodilation/drug effects
4.
Bioorg Med Chem Lett ; 40: 127924, 2021 05 15.
Article En | MEDLINE | ID: mdl-33705901

In this study, a series of sulfonamide compounds was designed and synthesized through the systematic optimization of the antibacterial agent sulfaphenazole for the treatment of Mycobacterium tuberculosis (M. tuberculosis). Preliminary results indicate that the 4-aminobenzenesulfonamide moiety plays a key role in maintaining antimycobacterial activity. Compounds 10c, 10d, 10f and 10i through the optimization on phenyl ring at the R2 site on the pyrazole displayed promising antimycobacterial activity paired with low cytotoxicity. In particular, compound 10d displayed good activity (MIC = 5.69 µg/mL) with low inhibition of CYP 2C9 (IC50 > 10 µM), consequently low potential risk of drug-drug interaction. These promising results provide new insight into the combination regimen using sulfonamide as one component for the treatment of M. tuberculosis.


Antitubercular Agents/pharmacology , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Sulfaphenazole/analogs & derivatives , Sulfaphenazole/pharmacology , Sulfonamides/pharmacology , Antitubercular Agents/chemical synthesis , Cytochrome P-450 CYP2C9 Inhibitors/chemical synthesis , Drug Design , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/enzymology , Structure-Activity Relationship , Sulfonamides/chemical synthesis
5.
Br J Pharmacol ; 176(3): 466-477, 2019 02.
Article En | MEDLINE | ID: mdl-30447161

BACKGROUND AND PURPOSE: The aim of this study was to characterize the human cytochrome P450s (CYPs) involved in oxidative bioactivation of flucloxacillin to 5-hydroxymethyl flucloxacillin, a metabolite with high cytotoxicity towards biliary epithelial cells. EXPERIMENTAL APPROACH: The CYPs involved in hydroxylation of flucloxacillin were characterized using recombinant human CYPs, pooled liver microsomes in the presence of CYP-specific inhibitors and by correlation analysis using a panel of liver microsomes from 16 donors. KEY RESULTS: Recombinant CYPs showing the highest specific activity were CYP3A4, CYP3A7 and to lower extent CYP2C9 and CTP2C8. Michaelis-Menten enzyme kinetics were determined for pooled human liver microsomes, recombinant CYP3A4, CYP3A7 and CYP2C9. Surprisingly, sulfaphenazole appeared to be a potent inhibitor of 5'-hydroxylation of flucloxacillin by both recombinant CYP3A4 and CYP3A7. CONCLUSIONS AND IMPLICATIONS: The combined results show that the 5'-hydroxylation of flucloxacillin is primarily catalysed by CYP3A4, CYP3A7 and CYP2C9. The large variability of the hepatic expression of these enzymes could affect the formation of 5'-hydroxymethyl flucloxacillin, which may determine the differences in susceptibility to flucloxacillin-induced liver injury. Additionally, the strong inhibition in CYP3A-catalysed flucloxacillin metabolism by sulfaphenazole suggests that unanticipated drug-drug interactions could occur with coadministered drugs.


Cytochrome P-450 Enzyme System/metabolism , Floxacillin/metabolism , Sulfaphenazole/pharmacology , Biocatalysis/drug effects , Floxacillin/chemistry , Humans , Hydroxylation/drug effects , Kinetics , Molecular Structure , Sulfaphenazole/chemistry
6.
Biopharm Drug Dispos ; 39(4): 205-217, 2018 Apr.
Article En | MEDLINE | ID: mdl-29488228

Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC50 values beyond 1000 µM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC50 value of 32.23 µM and Ki value of 30.80 µM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC50 of 6.08 µM and Ki of 1.16 µM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/Ki ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates.


Anti-Inflammatory Agents/pharmacology , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Cytochrome P-450 CYP2C9/metabolism , Anthraquinones/pharmacology , Arthritis/drug therapy , Chondroitin/pharmacology , Cytochrome P-450 CYP2C9/chemistry , Drug Interactions , Glucosamine/pharmacology , Molecular Docking Simulation , Sulfaphenazole/pharmacology , Valsartan/pharmacology
7.
Bull Exp Biol Med ; 162(1): 170-174, 2016 Nov.
Article En | MEDLINE | ID: mdl-27882460

We developed a cytochrome P450 substrate-inhibitor panel for preclinical in vitro evaluation of drugs in a 3D histotypical microfluidic cell model of human liver (liver-on-a-chip technology). The concentrations of substrates and inhibitors were optimized to ensure reliable detection of the principal metabolites by HPLC-mass-spectroscopy. The selected specific substrate-inhibitor pairs, namely bupropion/2-phenyl-2-(1-piperidinyl)propane) for evaluation of CYP2B6B activity, tolbutamide/sulfaphenazole for CYP2C9, omeprazole/(+)-N-benzylnirvanol for CYP2C19, and testosterone/ketoconazole for CYP3A4, enable reliable evaluation of the drug metabolism pathway. In contrast to animal models characterized by species-specific expression profile and activity of cytochrome P450 isoforms, our in vitro model reflects the metabolism of human hepatocytes in vivo.


Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP3A/metabolism , Lab-On-A-Chip Devices , Bupropion/metabolism , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP2B6/analysis , Cytochrome P-450 CYP2C19/analysis , Cytochrome P-450 CYP2C9/analysis , Cytochrome P-450 CYP3A/analysis , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Humans , Ketoconazole/pharmacology , Liver/drug effects , Liver/enzymology , Mass Spectrometry , Mephenytoin/analogs & derivatives , Mephenytoin/pharmacology , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Omeprazole/metabolism , Phencyclidine/analogs & derivatives , Phencyclidine/pharmacology , Substrate Specificity , Sulfaphenazole/pharmacology , Testosterone/metabolism , Tolbutamide/metabolism
8.
PLoS One ; 11(10): e0164465, 2016.
Article En | MEDLINE | ID: mdl-27736935

We have been investigating the role that phosphatidylethanolamine (PE) and phosphatidylcholine (PC) content plays in modulating the solubility of the Parkinson's disease protein alpha-synuclein (α-syn) using Saccharomyces cerevisiae and Caenorhabditis elegans. One enzyme that synthesizes PE is the conserved enzyme phosphatidylserine decarboxylase (Psd1/yeast; PSD-1/worms), which is lodged in the inner mitochondrial membrane. We previously found that decreasing the level of PE due to knockdown of Psd1/psd-1 affects the homeostasis of α-syn in vivo. In S. cerevisiae, the co-occurrence of low PE and α-syn in psd1Δ cells triggers mitochondrial defects, stress in the endoplasmic reticulum, misprocessing of glycosylphosphatidylinositol-anchored proteins, and a 3-fold increase in the level of α-syn. The goal of this study was to identify drugs that rescue this phenotype. We screened the Prestwick library of 1121 Food and Drug Administration-approved drugs using psd1Δ + α-syn cells and identified cyclosporin A, meclofenoxate hydrochloride, and sulfaphenazole as putative protective compounds. The protective activity of these drugs was corroborated using C. elegans in which α-syn is expressed specifically in the dopaminergic neurons, with psd-1 depleted by RNAi. Worm populations were examined for dopaminergic neuron survival following psd-1 knockdown. Exposure to cyclosporine, meclofenoxate, and sulfaphenazole significantly enhanced survival at day 7 in α-syn-expressing worm populations whereby 50-55% of the populations displayed normal neurons, compared to only 10-15% of untreated animals. We also found that all three drugs rescued worms expressing α-syn in dopaminergic neurons that were deficient in the phospholipid cardiolipin following cardiolipin synthase (crls-1) depletion by RNAi. We discuss how these drugs might block α-syn pathology in dopaminergic neurons.


Mitochondria/metabolism , Parkinson Disease/pathology , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Carboxy-Lyases/antagonists & inhibitors , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Cyclosporine/pharmacology , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Endoplasmic Reticulum Stress/drug effects , Meclofenoxate/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Parkinson Disease/metabolism , Protective Agents/pharmacology , Solubility , Sulfaphenazole/pharmacology , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
9.
Drug Metab Pers Ther ; 31(4): 221-228, 2016 12 01.
Article En | MEDLINE | ID: mdl-27718490

BACKGROUND: The fraction of an absorbed drug metabolized by the different hepatic cytochrome P450 (CYP) enzymes, relative to total hepatic CYP metabolism (fmCYP), can be estimated by measuring the inhibitory effects of presumably selective CYP inhibitors on the intrinsic metabolic clearance of a drug using human liver microsomes. However, the chemical inhibition data are often affected by cross-reactivities of the chemical inhibitors used in this assay. METHODS: To overcome this drawback, the cross-reactivities exhibited by six chemical inhibitors (furafylline, montelukast, sulfaphenazole, ticlopidine, quinidine and ketoconazole) were quantified using specific CYP enzyme marker reactions. The determined cross-reactivities were used to correct the in vitro fmCYPs of nine marketed drugs. The corrected values were compared with reference data obtained by physiologically based pharmacokinetics simulation using the software SimCYP. RESULTS: Uncorrected in vitro fmCYPs of the nine drugs showed poor linear correlation with their reference data (R2=0.443). Correction by factoring in inhibitor cross-reactivities significantly improved the correlation (R2=0.736). CONCLUSIONS: Correcting in vitro chemical inhibition results for cross-reactivities appear to offer a straightforward and easily adoptable approach to provide improved fmCYP data for a drug.


Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Acetates/pharmacology , Cyclopropanes , Humans , Ketoconazole/pharmacology , Phenotype , Quinidine/pharmacology , Quinolines/pharmacology , Sulfaphenazole/pharmacology , Sulfides , Theophylline/analogs & derivatives , Theophylline/pharmacology , Ticlopidine/pharmacology
10.
Eur J Pharmacol ; 767: 17-23, 2015 Nov 15.
Article En | MEDLINE | ID: mdl-26420355

We aimed at assessing the role of endothelial cell calcium for the endothelial dysfunction of mesenteric resistance arteries of db/db mice (a model of type 2 diabetes) and determine whether treatment with sulfaphenazole, improves endothelial calcium signaling and function. Pressure myography was used to study acetylcholine (ACh) -induced vasodilation. Intracellular calcium ([Ca(2+)]i) transients was measured by confocal laser scanning microscopy and smooth muscle membrane potential with sharp microelectrodes. The impaired dilation to ACh observed in mesenteric resistance arteries from db/db mice was improved by treatment of the mice with sulfaphenazole for 8 weeks. The impaired dilation to ACh was associated with decreased endothelial [Ca(2+)]i and smooth muscle hyperpolarization. Sulfaphenazole applied in vitro improved endothelial mediated dilation of arteries from db/db mice both in the absence and the presence of inhibitors of nitric oxide and cyclooxygenase. Sulfaphenazole also increased the percentage of endothelial cells with ACh induced increases of [Ca(2+)]i. The study shows that impaired endothelial [Ca(2+)]i control can explain the reduced endothelial function in arteries from diabetic mice and that sulfaphenazole treatment improves endothelial [Ca(2+)]i responses to ACh and consequently endothelium-dependent vasodilation. These observations provide mechanistic insight into endothelial dysfunction in diabetes.


Acetylcholine/pharmacology , Calcium Signaling/drug effects , Diabetes Mellitus, Type 2/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Mesenteric Arteries/drug effects , Vasodilation/drug effects , Animals , Cyclooxygenase Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/biosynthesis , Cytochrome P450 Family 2 , Diabetes Mellitus, Type 2/genetics , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Male , Membrane Potentials/drug effects , Mice , Mice, Mutant Strains , Nitric Oxide/antagonists & inhibitors , Prostaglandin-Endoperoxide Synthases , Sulfaphenazole/pharmacology
11.
Food Chem Toxicol ; 78: 10-6, 2015 Apr.
Article En | MEDLINE | ID: mdl-25656643

Studies analyzing the impact of natural antioxidants (NA) on Endothelial Cells (ECs) have dramatically increased during the last years, since a deregulated ECs redox state is at the base of the onset and progression of several cardiovascular diseases. However, whether NA can provide cardiovascular benefits is still a controversial area of debate. Resveratrol (RES), a natural polyphenol found in grapes, is believed to provide cardiovascular benefits by virtue of its antioxidant effect on the endothelium. Here, we report that tissue-attainable doses of resveratrol increased the intracellular oxidative state, thus affecting mitochondrial membrane depolarization and inducing EC death. Cyclosporine A, a mitochondrial permeability transition pore inhibitor, prevented oxidative-mediated cell death, thus implicating mitochondria in resveratrol-induced EC impairment. The specific cytochrome P450 (CYP) 2C9 inhibitor, sulfaphenazole, counteracted both oxidative stress and mitochondrial membrane depolarization, providing EC protection against resveratrol-elicited pro-oxidant effects. Our findings strongly suggest that CYP2C9 mediates resveratrol-induced oxidative stress leading to mitochondria impairment and EC death.


Human Umbilical Vein Endothelial Cells/drug effects , Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Oxidative Stress/drug effects , Stilbenes/pharmacology , Cell Death/drug effects , Cell Survival/drug effects , Cyclosporine/pharmacology , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Mitochondrial Permeability Transition Pore , Reactive Oxygen Species/metabolism , Resveratrol , Sulfaphenazole/pharmacology
12.
J Biol Chem ; 289(12): 8337-52, 2014 Mar 21.
Article En | MEDLINE | ID: mdl-24519941

Degenerative loss of photoreceptors occurs in inherited and age-related retinal degenerative diseases. A chemical screen facilitates development of new testing routes for neuroprotection and mechanistic investigation. Herein, we conducted a mouse-derived photoreceptor (661W cell)-based high throughput screen of the Food and Drug Administration-approved Prestwick drug library to identify putative cytoprotective compounds against light-induced, synthetic visual chromophore-precipitated cell death. Different classes of hit compounds were identified, some of which target known genes or pathways pathologically associated with retinitis pigmentosa. Sulfaphenazole (SFZ), a selective inhibitor of human cytochrome P450 (CYP) 2C9 isozyme, was identified as a novel and leading cytoprotective compound. Expression of CYP2C proteins was induced by light. Gene-targeted knockdown of CYP2C55, the homologous gene of CYP2C9, demonstrated viability rescue to light-induced cell death, whereas stable expression of functional CYP2C9-GFP fusion protein further exacerbated light-induced cell death. Mechanistically, SFZ inhibited light-induced necrosis and mitochondrial stress-initiated apoptosis. Light elicited calcium influx, which was mitigated by SFZ. Light provoked the release of arachidonic acid from membrane phospholipids and production of non-epoxyeicosatrienoic acid metabolites. Administration of SFZ further stimulated the production of non-epoxyeicosatrienoic acid metabolites, suggesting a metabolic shift of arachidonic acid under inhibition of the CYP2C pathway. Together, our findings indicate that CYP2C genes play a direct causative role in photochemical stress-induced death of photoreceptors and suggest that the CYP monooxygenase system is a risk factor for retinal photodamage, especially in individuals with Stargardt disease and age-related macular degeneration that deposit condensation products of retinoids.


Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytoprotection/drug effects , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/radiation effects , Sulfaphenazole/pharmacology , Amino Acid Sequence , Animals , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases/chemistry , Aryl Hydrocarbon Hydroxylases/genetics , Cell Death/drug effects , Cell Death/radiation effects , Cell Line , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P450 Family 2 , Drug Evaluation, Preclinical , Gene Expression , Gene Silencing , Humans , Light , Mice , Molecular Sequence Data , Photoreceptor Cells, Vertebrate/enzymology , Sequence Alignment
13.
Drug Metab Lett ; 7(1): 34-8, 2013 Mar.
Article En | MEDLINE | ID: mdl-24329780

"K2" or "Spice" is an emerging drug of abuse that is laced with psychoactive synthetic cannabinoids JWH-018 and AM2201. Previous studies have identified hydroxylated (OH) and carboxylated (COOH) species as primary human metabolites, and kinetic studies have implicated CYP2C9 and -1A2 as major hepatic P450s involved in JWH-018 and AM2201 oxidation. The present study extends these findings by testing the hypothesis that CYP2C9- and 1A2-selective chemical inhibitors, sulfaphenazole (SFZ) and α-naphthoflavone (ANF), block oxidation of JWH-018 and AM2201 in human liver microsomes (HLM). A concentration-dependent inhibition of JWH-018 and AM2201 oxidation was observed in the presence of increasing concentration of SFZ (0.5 - 50 µM) and ANF (0.1 - 5.0 µM). No metabolic inhibition was observed with omeprazole, quinidine, and ketoconazole. The results presented herein further demonstrate the importance of CYP2C9- and 1A2-mediated oxidation of JWH-018 and AM2201 and the likelihood of adverse toxicity in populations with polymorphic alleles of these enzymes.


Anti-Infective Agents/pharmacology , Benzoflavones/pharmacology , Cannabinoids/pharmacokinetics , Indoles/pharmacokinetics , Naphthalenes/pharmacokinetics , Sulfaphenazole/pharmacology , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Female , Humans , Illicit Drugs , Male , Microsomes, Liver/metabolism , Oxidation-Reduction
14.
Cardiovasc Toxicol ; 13(3): 301-6, 2013 Sep.
Article En | MEDLINE | ID: mdl-23504614

Evidence that higher natural antioxidants (NA) intake provides cardiovascular protection is contradictory. The endothelium plays a pivotal role in cardiovascular homeostasis, and for this reason, the molecular events resulting from the interaction of NA with endothelial cells (ECs) are actively investigated. Here, we show that moderately high doses of coumaric acid (CA) induced intracellular reactive oxygen species (ROS) production, mitochondrial membrane depolarization and ECs death. Treatment of ECs with cyclosporine A, a mitochondrial permeability transition pore inhibitor, prevented the oxidative-mediated cell damage indicating mitochondrial involvement in CA-induced ECs impairment. CA-induced intracellular ROS generation was counteracted by the specific cytochrome P450 (CYP) 2C9 inhibitor sulfaphenazole (SPZ). SPZ also prevented CA-induced mitochondrial membrane depolarization and ECs death, implicating CYP2C9 in mediating the cellular response upon CA treatment. Our results indicate that moderately high doses of CA can promote CYP2C9-mediated oxidative stress eliciting mitochondrial-dependent ECs death and may pave the way toward mechanistic insight into NA effects on cardiovascular cells.


Cell Death/drug effects , Coumaric Acids/pharmacology , Endothelial Cells/drug effects , Mitochondria/drug effects , Oxidative Stress/drug effects , Aryl Hydrocarbon Hydroxylases/metabolism , Cell Survival/drug effects , Cells, Cultured , Cyclosporine/pharmacology , Cytochrome P-450 CYP2C9 , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Sulfaphenazole/pharmacology
15.
Yao Xue Xue Bao ; 48(12): 1823-8, 2013 Dec.
Article Zh | MEDLINE | ID: mdl-24689241

Mesaconitine was incubated with rat liver microsomes in vitro. The metabolites of mesaconitine in rat liver microsomes were identified by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method with high resolution power. A typical reaction mixture of 100 mol L-1 Tris-HCI buffer (pH 7.4) containing 0.5 gL-1 microsomal protein and 50 micro molL-1 mesaconitine was prepared. The above reaction mixture was divided into six groups, and the volume of each group was 200 micro L. The incubation mixture was pre-incubated at 37 degrees C for 2 min and the reactions were initiated by adding NADPH generating system. After 90 min incubation at 37 degrees C, 200 micro L of acetonitrile was added to each group to stop the reaction. The metabolites of mesaconitine were investigated by UPLC-MS/MS method. Mesaconitine and 6 metabolites M1-M6 were found in the incubation system. The structures were characterized according to the data from MS/MS spectra and literatures. The metabolic reactions of mesaconitine in rat liver microsomes included the demethylation, deacetylation, dehydrogenation and hydroxylation. The major metabolic pathways of mesaconitine in rat liver microsomes were determined by UPLC-MS/MS on multiple reaction monitoring (MRM) mode combined with specific inhibitors of cytochrome P450 (CYP) isoforms, including alpha-naphthoflavone (CYP1A2), quinine (CYP2D), diethyldithiocarbamate (CYP2E1), ketoconazole (CYP3A) and sulfaphenazole (CYP2C), separately. Mesaconitine was mainly metabolized by CYP3A. CYP2C and CYP2D were also more important CYP isoforms for the metabolism reactions of mesaconitine, but CYP1A2 and CYP2E1 haven't any contribution to MA metabolism in rat liver microsomes.


Aconitine/analogs & derivatives , Cytochrome P-450 Enzyme System/metabolism , Microsomes, Liver/metabolism , Aconitine/metabolism , Animals , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Ketoconazole/pharmacology , Male , Metabolic Networks and Pathways , Microsomes, Liver/enzymology , Quinine/pharmacology , Rats , Rats, Sprague-Dawley , Sulfaphenazole/pharmacology , Tandem Mass Spectrometry
16.
Biol Pharm Bull ; 35(10): 1849-53, 2012.
Article En | MEDLINE | ID: mdl-23037177

Treatment of intracerebral hemorrhage is often pointless, although considerable effort has been devoted to developing treatments for ischemic stroke. The purpose of this study was to determine the influence of drugs in improving neurological outcomes with pharmaceutical therapy after intracerebral hemorrhage. The free-radical hypothesis for intracerebral hemorrhage is based on the cytotoxicity triggered by blood components and its degradation products, such as heme and iron as a potent pro-oxidant atom. Sulfaphenazole (SPZ) has a different mechanism such as reactive oxygen species scavenging, in addition to the inhibition of superoxide production by cytochrome P450. The present study investigated the properties of SPZ in collagenase-induced intracerebral hemorrhage rat brain damage. The results show that systemic SPZ treatment after intracerebral hemorrhage reduces striatal dysfunction, the elevation of lipid peroxidation, and brain edema in the rat. These results suggest that SPZ is a potentially effective therapeutic approach for intracerebral hemorrhage as the effect of SPZ was initiated for either 1 h or 3 d post-intracerebral hemorrhage.


Brain Edema/drug therapy , Cerebral Hemorrhage/drug therapy , Neuroprotective Agents/therapeutic use , Sulfaphenazole/therapeutic use , Animals , Behavior, Animal/drug effects , Brain Edema/chemically induced , Brain Edema/pathology , Brain Edema/physiopathology , Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/physiopathology , Collagenases , Disease Models, Animal , Lipid Peroxidation/drug effects , Male , Neuroprotective Agents/pharmacology , Rats , Rats, Wistar , Sulfaphenazole/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism
17.
Biomed Pharmacother ; 66(8): 612-6, 2012 Dec.
Article En | MEDLINE | ID: mdl-23089473

Although cancer stem cells (CSCs) are believed to be the key drivers in tumor growth and resistance to therapy, the specific signaling of CSCs is largely unknown. In this study, we evaluated the roles of hypoxia and STAT3 signaling on the treatment resistance of CSCs. Side population (SP) cell analysis and sorting were used to detect subpopulations that function as CSCs. Huh-7 cells, doxorubicin, sulfaphenazole (a CYP2C9 inhibitor), and AG490 (a STAT3 inhibitor) were used in this study. Cell growth and apoptosis were assessed using MTS assays, and apoptotic and kinase signaling pathways were explored by immunoblotting. Treatment with IL-6 induced STAT3 activation more significantly in SP than non-SP cells. Hypoxia induced SP cell proliferation, and microarray analysis showed that the expression of CYP2C9 was significantly increased in hypoxic than normoxic SP cells. Although hypoxic SP cells were less sensitive to doxorubicin-induced apoptosis, pretreatment with sulfaphenazole sensitized hypoxic SP cells to doxorubicin cytotoxicity. These results indicate that STAT3 is critical for CSC survival and hypoxia-inducible CYP2C9 expression is responsible the doxorubicin resistance of CSCs under hypoxic conditions. Thus, the selective inhibition of CYP2C9 and STAT3 may be implicated in the sensitization of CSCs to anti-cancer treatment, particularly in advanced cases.


Aryl Hydrocarbon Hydroxylases/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Side-Population Cells/metabolism , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , Cell Hypoxia , Cell Proliferation/drug effects , Cytochrome P-450 CYP2C9 , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Flow Cytometry , Humans , Immunoblotting , Interleukin-6/pharmacology , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , STAT3 Transcription Factor/antagonists & inhibitors , Side-Population Cells/enzymology , Side-Population Cells/pathology , Sulfaphenazole/pharmacology , Tyrphostins/pharmacology
18.
J Pharmacol Sci ; 119(3): 251-9, 2012.
Article En | MEDLINE | ID: mdl-22785021

We previously reported the administration of a potent cytochrome P450 inhibitor, sulfaphenazole (SPZ), to suppress oxidative stress and the extension of myocardial infarct size in a rat model of cardiac ischemia-reperfusion (I/R). The aim of this study was to investigate the effects of SPZ on the myocardial cell apoptosis induced by I/R in rats. I/R injury was evoked by ligation of the left anterior descending coronary artery for 1 h, followed by reperfusion for 3 h. TUNEL-positive nuclei were detected and nucleosomal DNA fragmentation was observed 3 h after reperfusion. The administration of SPZ largely suppressed the cardiac DNA fragmentation induced by I/R. A pan-caspase inhibitor, z-VAD-fmk, had no effect on DNA fragmentation. Caspase-3/7 was not activated 3 h after reperfusion. Decreases in the mitochondrial membrane potential and cytochrome c release from the mitochondria to cytosol were detected 3 h after reperfusion. The expression levels of BimEL and Noxa were elevated 3 h after reperfusion. These phenomena were suppressed by the administration of SPZ. Taken together, treatment with SPZ could attenuate the myocardial cell apoptosis accompanied with I/R by inhibiting the mitochondrial dysfunction due to decreases in the expression of BimEL and Noxa.


Apoptosis/drug effects , Myocardial Reperfusion Injury/drug therapy , Myocytes, Cardiac/drug effects , Reperfusion Injury/drug therapy , Sulfaphenazole/pharmacology , Animals , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Caspase 3/metabolism , Caspase 7/metabolism , Cytochromes c/metabolism , Cytosol/drug effects , Cytosol/metabolism , DNA Fragmentation/drug effects , In Situ Nick-End Labeling/methods , Male , Membrane Potential, Mitochondrial/drug effects , Membrane Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Wistar , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
19.
J Physiol ; 590(15): 3523-34, 2012 Aug 01.
Article En | MEDLINE | ID: mdl-22674719

While it is accepted that NO is responsible for ∼60% of the plateau in cutaneous thermal hyperaemia, a large portion of the response remains unknown. We sought to determine whether the remaining ∼40% could be attributed to EDHF-mediated activation of KCa channels, and whether the epoxyeicosatrienoic acids (EETs), derived via cytochrome P450, were the predominant EDHF active in the response. Four microdialysis fibres were placed in the forearm skin of 20 subjects. In Protocol 1 (n = 10): (1) Control, (2) N(G)-nitro-l-arginine methyl ester (l-NAME), (3) a KCa channel inhibitor, tetraethylammonium (TEA), and (4) TEA + l-NAME. In Protocol 2 (n = 10): (1) Control, (2) l-NAME, (3) a cytochrome P450 inhibitor, sulfaphenazole, and (4) sulfaphenazole + l-NAME. Local heating to 42°C was performed and skin blood flow was measured with laser Doppler flowmetry. Data are presented as the percentage of maximal cutaneous vascular conductance (CVC). All drug sites attenuated plateau CVC from the control site (86 ± 1%) to 79 ± 3% with sulfaphenazole (P = 0.02 from control), 71 ± 3% with TEA (P = 0.01 from control), and further to 38 ± 2% with l-NAME (P < 0.001 from control, P < 0.001 from TEA). Plateau was largely attenuated with sulfaphenazole + l-NAME (24 ± 2%; P = 0.002 from l-NAME), and nearly abolished with l-NAME + TEA (13 ± 2%; P = 0.001 from sulfaphenazole + l-NAME), which was not different from baseline (P = 0.14). Furthermore, the initial peak was just 17 ± 2% with TEA + l-NAME (P < 0.001 from l-NAME). These data suggest EDHFs are responsible for a large portion of initial peak and the remaining 40% of the plateau phase, as administration of TEA in combination with l-NAME abolished the majority of hyperaemia. These data also suggest EETs contribute to about half of the EDHF response.


Biological Factors/physiology , Eicosanoids/physiology , Hyperemia/physiopathology , Potassium Channels, Calcium-Activated/physiology , Adolescent , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Cytochrome P-450 CYP2C9 , Enzyme Inhibitors/pharmacology , Female , Hot Temperature , Humans , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/physiology , Potassium Channel Blockers/pharmacology , Skin Temperature , Sulfaphenazole/pharmacology , Tetraethylammonium/pharmacology , Vasodilation , Young Adult
20.
Xenobiotica ; 42(5): 483-95, 2012 May.
Article En | MEDLINE | ID: mdl-22416982

It has been reported that hypertension exponentially increases in the patients with type 2 diabetes mellitus. Thus, this study was performed to investigate the pharmacokinetic and pharmacodynamic interactions between nifedipine and metformin, since both drugs were commonly metabolized via hepatic CYP2C and 3A subfamilies in rats. Nifedipine (3 mg/kg) and metformin (100 mg/kg) were simultaneously administered intravenously or orally to rats. Concentrations (I) of each drug in the liver and intestine, maximum velocity (V(max)), Michaelis-Menten constant (K(m)), and intrinsic clearance (CL(int)) for the disappearance of each drug, apparent inhibition constant (K(i)) and [I]/K(i) ratios of each drug in liver and intestine were determined. Also the metabolism of each drug in rat and human CYPs and blood pressure were also measured. After the simultaneous single intravenous administration of both drugs together, the AUCs of each drug were significantly greater than that in each drug alone due to the competitive inhibition for the metabolism of nifedipine by metformin via hepatic CYP3A1/2 and of metformin by nifedipine via hepatic CYP2C6 and 3A1/2. After the simultaneous single oral administration of both drugs, the significantly greater AUCs of each drug than that in each drug alone could have mainly been due to the competitive inhibition for the metabolism of nifedipine and metformin by each other via intestinal CYP3A1/2 in addition to competitive inhibition for the hepatic metabolism of each drug as same as the intravenous study.


Cytochrome P-450 CYP3A/metabolism , Metformin/pharmacology , Metformin/pharmacokinetics , Nifedipine/pharmacology , Nifedipine/pharmacokinetics , Administration, Oral , Animals , Baculoviridae/drug effects , Baculoviridae/metabolism , Blood Proteins/metabolism , Cell Line , Dexamethasone/pharmacology , Drug Interactions , Humans , Injections, Intravenous , Intestinal Mucosa/metabolism , Intestines/drug effects , Isoenzymes/metabolism , Kinetics , Male , Metformin/administration & dosage , Metformin/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Nifedipine/administration & dosage , Nifedipine/metabolism , Protein Binding/drug effects , Quinine/pharmacology , Rats , Rats, Sprague-Dawley , Sulfaphenazole/pharmacology , Troleandomycin/pharmacology
...