Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros










Intervalo de año de publicación
1.
Pflugers Arch ; 473(1): 3-13, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936320

RESUMEN

The variety of taste sensations, including sweet, umami, bitter, sour, and salty, arises from diverse taste cells, each of which expresses specific taste sensor molecules and associated components for downstream signal transduction cascades. Recent years have witnessed major advances in our understanding of the molecular mechanisms underlying transduction of basic tastes in taste buds, including the identification of the bona fide sour sensor H+ channel OTOP1, and elucidation of transduction of the amiloride-sensitive component of salty taste (the taste of sodium) and the TAS1R-independent component of sweet taste (the taste of sugar). Studies have also discovered an unconventional chemical synapse termed "channel synapse" which employs an action potential-activated CALHM1/3 ion channel instead of exocytosis of synaptic vesicles as the conduit for neurotransmitter release that links taste cells to afferent neurons. New images of the channel synapse and determinations of the structures of CALHM channels have provided structural and functional insights into this unique synapse. In this review, we discuss the current view of taste transduction and neurotransmission with emphasis on recent advances in the field.


Asunto(s)
Sinapsis/clasificación , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Papilas Gustativas/fisiología , Gusto/fisiología , Animales , Humanos
2.
Biochem Biophys Res Commun ; 509(2): 429-434, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30594389

RESUMEN

Appropriate synapse formation during development is necessary for normal brain function, and synapse impairment is often associated with brain dysfunction. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are key factors in regulating synaptic development. We previously reported that BDNF/NT-3 secretion was enhanced by calcium-dependent activator protein for secretion 2 (CADPS2). Although BDNF/NT-3 and CADPS2 are co-expressed in various brain regions, the effect of Cadps2-deficiency on brain region-specific BDNF/NT-3 levels and synaptic development remains elusive. Here, we show developmental changes of BDNF/NT-3 levels and we assess disruption of excitatory/inhibitory synapses in multiple brain regions (cerebellum, hypothalamus, striatum, hippocampus, parietal cortex and prefrontal cortex) of Cadps2 knockout (KO) mice compared with wild-type (WT) mice. Compared with WT, BDNF levels in KO mice were reduced in young/adult hippocampus, but increased in young hypothalamus, while NT-3 levels were reduced in adult cerebellum and young hippocampus, but increased in adult parietal cortex. Immunofluorescence of vGluT1, an excitatory synapse marker, and vGAT, an inhibitory synapse marker, in adult KO showed that vGluT1 was higher in the cerebellum and parietal cortex but lower in the hippocampus, whereas vGAT was lower in the hippocampus and parietal cortex compared with WT. Immunolabeling for both vGluT1 and vGAT was increased in the parietal cortex but vGAT was decreased in the cerebellum in adult KO compared with WT. These data suggest that CADPS2-mediated secretion of BDNF/NT-3 may be involved in development and maturation of synapses and in the balance between inhibitory and excitatory synapses.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Proteínas de Unión al Calcio/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neurotrofina 3/genética , Sinapsis/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipotálamo/citología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuronas/citología , Neurotrofina 3/metabolismo , Especificidad de Órganos , Lóbulo Parietal/citología , Lóbulo Parietal/crecimiento & desarrollo , Lóbulo Parietal/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Sinapsis/clasificación , Sinapsis/metabolismo , Transmisión Sináptica/genética , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
3.
Neurosci Res ; 127: 61-69, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29221908

RESUMEN

In the central nervous system, the frequency at which reliable synaptic transmission can be maintained varies strongly between different types of synapses. Several pre- and postsynaptic processes must interact to enable high-frequency synaptic transmission. One of the mechanistically most challenging issues arises during repetitive neurotransmitter release, when synaptic vesicles fuse in rapid sequence with the presynaptic plasma membrane within the active zone (AZ), potentially interfering with the structural integrity of the AZ itself. Here we summarize potential mechanisms that help to maintain AZ integrity, including arrangement and mobility of release sites, calcium channel mobility, as well as release site clearance via lateral diffusion of vesicular proteins and via endocytotic membrane retrieval. We discuss how different types of synapses use these strategies to maintain high-frequency synaptic transmission.


Asunto(s)
Terminales Presinápticos/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Animales , Canales de Calcio , Endocitosis , Neuronas/citología , Neuronas/fisiología , Sinapsis/clasificación
4.
J Neurosci ; 37(50): 12106-12122, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29089443

RESUMEN

The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational models of heterosynaptic spike-timing-dependent plasticity (STDP) to show that the excitatory/inhibitory balance in dendritic branches is robustly achieved through heterosynaptic interactions between excitatory and inhibitory synapses. The model reproduces key features of experimental heterosynaptic STDP well, and provides analytical insights. Furthermore, heterosynaptic STDP explains how the maturation of inhibitory neurons modulates the selectivity of excitatory neurons for binocular matching in the critical period plasticity. The model also provides an alternative explanation for the potential mechanism underlying the somatic detailed balance that is commonly associated with inhibitory STDP. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and the resultant dendritic computation.SIGNIFICANCE STATEMENT Recent experimental studies reveal that relative differences in spike timings experienced among neighboring glutamatergic and GABAergic synapses on a dendritic branch significantly influences changes in the efficiency of these synapses. This heterosynaptic form of spike-timing-dependent plasticity (STDP) is potentially important for shaping the synaptic organization and computation of neurons, but its functional role remains elusive. Through computational modeling at the parameter regime where previous experimental results are well reproduced, we show that heterosynaptic plasticity serves to finely balance excitatory and inhibitory inputs on the dendrite. Our results suggest a principle of GABA-driven neural circuit formation.


Asunto(s)
Potenciales de Acción/fisiología , Región CA1 Hipocampal/fisiología , Señalización del Calcio/fisiología , Simulación por Computador , Cuerpo Estriado/fisiología , Dendritas/fisiología , Modelos Neurológicos , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Región CA1 Hipocampal/citología , Cuerpo Estriado/citología , Aprendizaje/fisiología , Ratones , Ratas , Sinapsis/clasificación , Factores de Tiempo , Ácido gamma-Aminobutírico/fisiología
5.
J Neurosci ; 37(50): 12247-12262, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29114073

RESUMEN

As neuronal dendrites develop, they acquire cell-type-specific features including characteristic size, shape, arborization, location and synaptic patterns. These features, in turn, are major determinants of type-specific neuronal function. Because neuronal diversity complicates the task of relating developmental programs to adult structure and function, we analyzed dendritic morphogenesis in a single retinal ganglion cell (RGC) type in mouse called J-RGC. We documented the emergence of five dendritic features that underlie J-RGC physiology: (1) dendritic field size, which approximate receptive field size; (2) dendritic complexity, which affects how J-RGCs sample space; (3) asymmetry, which contributes to direction-selectivity; (4) restricted lamination within the inner plexiform layer (IPL), which renders J-RGCs responsive to light decrements; and (5) distribution of synaptic inputs, which generate a color-opponent receptive field. We found dendritic growth in J-RGCs is accompanied by a refinement in dendritic self-crossing. Asymmetry arises by a combination of selective pruning and elaboration, whereas laminar restriction results from biased outgrowth toward the outermost IPL. Interestingly, asymmetry develops in a protracted dorsoventral wave, whereas lamination does so in a rapid centrifugal wave. As arbors mature, they acquire excitatory and inhibitory synapses, with the latter forming first and being concentrated in proximal dendrites. Thus, distinct mechanisms operate in different spatiotemporal dimensions of J-RGC dendritic patterning to generate the substrate for specific patterns of synaptogenesis. Finally, we asked whether the defining molecular signature of J-RGCs, the adhesion molecule JAM-B, regulates morphogenesis, and showed that it promotes dendro-dendritic interactions. Our results reveal multiple mechanisms that shape a dendritic arbor.SIGNIFICANCE STATEMENT Visual perception begins in the retina, where distinct types of retinal ganglion cells (RGCs) are tuned to specific visual features such as direction of motion. The features to which each RGC type responds are determined largely by the number and type of synaptic inputs it receives, and these, in turn, are greatly influenced by the size, shape, arborization pattern, and location of its dendrites. We analyzed dendritic morphogenesis in a functionally characterized RGC type, the J-RGC, demonstrating distinct mechanisms that operate in different dimensions to generate the dendritic scaffold and synaptic patterns for feature detection. Our work elucidates cellular and molecular mechanisms that shape dendritic arbors and synaptic distribution, enabling J-RGC connectivity and thus, function.


Asunto(s)
Percepción de Color/fisiología , Sensibilidad de Contraste/fisiología , Dendritas/fisiología , Morfogénesis/fisiología , Percepción de Movimiento/fisiología , Células Ganglionares de la Retina/ultraestructura , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/fisiología , Comunicación Celular , Forma de la Célula , Tamaño de la Célula , Dendritas/química , Genes Reporteros , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/fisiología , Sinapsis/clasificación , Sinapsis/fisiología
6.
Genetics ; 206(3): 1251-1269, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28684604

RESUMEN

The nervous system of most animals is sexually dimorphic but such dimorphisms are generally poorly mapped on an anatomical, cellular, and molecular level. The adult nervous system of the nematode Caenorhabditis elegans displays a number of clearly defined anatomical sexual dimorphisms, but molecular features of sexually dimorphic neurons remain sparse. In this resource paper, we provide a comprehensive atlas of neurotransmitters used in the nervous system of the male and compare it to that of the hermaphrodite. Among the three major neurotransmitter systems, acetylcholine (ACh) is the most frequently used, followed by glutamate (Glu), and lastly γ-aminobutyric acid (GABA). Many male-specific neurons utilize multiple neurotransmitter systems. Interestingly, we find that neurons that are present in both sexes alter their neurotransmitter usage depending on the sex of the animal. One neuron scales up its usage of ACh, another becomes serotonergic in males, and another one adds a new neurotransmitter (glutamate) to its nonsex-specific transmitter (ACh). In all these cases, neurotransmitter changes are correlated with substantial changes in synaptic connectivity. We assembled the neurotransmitter maps of the male-specific nervous system into a comprehensive atlas that describes the anatomical position of all the neurons of the male-specific nervous system relative to the sex-shared nervous system. We exemplify the usefulness of the neurotransmitter atlas by using it as a tool to define the expression pattern of a synaptic organizer molecule in the male tail. Taken together, the male neurotransmitter atlas provides an entry point for future functional and developmental analysis of the male nervous system.


Asunto(s)
Acetilcolina/metabolismo , Caenorhabditis elegans/metabolismo , Ácido Glutámico/metabolismo , Serotonina/metabolismo , Caracteres Sexuales , Sinapsis/metabolismo , Animales , Caenorhabditis elegans/fisiología , Femenino , Masculino , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Neuronas/clasificación , Neuronas/metabolismo , Sinapsis/clasificación , Transmisión Sináptica
7.
J Comp Neurol ; 525(9): 2175-2191, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28256708

RESUMEN

The excitatory glutamatergic synapse is the principal site of communication between cortical pyramidal neurons and their targets, a key locus of action of many drugs, and highly vulnerable to dysfunction and loss in neurodegenerative disease. A detailed knowledge of the structure of these synapses in distinct cortical areas and across species is a prerequisite for understanding the anatomical underpinnings of cortical specialization and, potentially, selective vulnerability in neurological disorders. We used serial electron microscopy to assess the ultrastructural features of excitatory (asymmetric) synapses in the layers 2-3 (L2-3) neuropil of visual (V1) and frontal (FC) cortices of the adult mouse and compared findings to those in the rhesus monkey (V1 and lateral prefrontal cortex [LPFC]). Analyses of multiple ultrastructural variables revealed four organizational features. First, the density of asymmetric synapses does not differ between frontal and visual cortices in either species, but is significantly higher in mouse than in monkey. Second, the structural properties of asymmetric synapses in mouse V1 and FC are nearly identical, by stark contrast to the significant differences seen between monkey V1 and LPFC. Third, while the structural features of postsynaptic entities in mouse and monkey V1 do not differ, the size of presynaptic boutons are significantly larger in monkey V1. Fourth, both presynaptic and postsynaptic entities are significantly smaller in the mouse FC than in the monkey LPFC. The diversity of synaptic ultrastructural features demonstrated here have broad implications for the nature and efficacy of glutamatergic signaling in distinct cortical areas within and across species.


Asunto(s)
Lóbulo Frontal/ultraestructura , Macaca mulatta/anatomía & histología , Ratones/anatomía & histología , Sinapsis/ultraestructura , Corteza Visual/ultraestructura , Análisis de Varianza , Animales , Femenino , Lóbulo Frontal/metabolismo , Imagenología Tridimensional , Masculino , Microscopía Inmunoelectrónica , Neuronas/metabolismo , Neuronas/ultraestructura , Neurópilo/metabolismo , Neurópilo/ultraestructura , Terminales Presinápticos/ultraestructura , Especificidad de la Especie , Sinapsis/clasificación , Sinapsis/metabolismo , Corteza Visual/metabolismo
8.
J Neurosci ; 37(10): 2746-2763, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28179558

RESUMEN

Multiple kinase activations contribute to long-term synaptic plasticity, a cellular mechanism mediating long-term memory. The sensorimotor synapse of Aplysia expresses different forms of long-term facilitation (LTF)-nonassociative and associative LTF-that require the timely activation of kinases, including protein kinase C (PKC). It is not known which PKC isoforms in the sensory neuron or motor neuron L7 are required to sustain each form of LTF. We show that different PKMs, the constitutively active isoforms of PKCs generated by calpain cleavage, in the sensory neuron and L7 are required to maintain each form of LTF. Different PKMs or calpain isoforms were blocked by overexpressing specific dominant-negative constructs in either presynaptic or postsynaptic neurons. Blocking either PKM Apl I in L7, or PKM Apl II or PKM Apl III in the sensory neuron 2 d after 5-hydroxytryptamine (5-HT) treatment reversed persistent nonassociative LTF. In contrast, blocking either PKM Apl II or PKM Apl III in L7, or PKM Apl II in the sensory neuron 2 d after paired stimuli reversed persistent associative LTF. Blocking either classical calpain or atypical small optic lobe (SOL) calpain 2 d after 5-HT treatment or paired stimuli did not disrupt the maintenance of persistent LTF. Soon after 5-HT treatment or paired stimuli, however, blocking classical calpain inhibited the expression of persistent associative LTF, while blocking SOL calpain inhibited the expression of persistent nonassociative LTF. Our data suggest that different stimuli activate different calpains that generate specific sets of PKMs in each neuron whose constitutive activities sustain long-term synaptic plasticity.SIGNIFICANCE STATEMENT Persistent synaptic plasticity contributes to the maintenance of long-term memory. Although various kinases such as protein kinase C (PKC) contribute to the expression of long-term plasticity, little is known about how constitutive activation of specific kinase isoforms sustains long-term plasticity. This study provides evidence that the cell-specific activities of different PKM isoforms generated from PKCs by calpain-mediated cleavage maintain two forms of persistent synaptic plasticity, which are the cellular analogs of two forms of long-term memory. Moreover, we found that the activation of specific calpains depends on the features of the stimuli evoking the different forms of synaptic plasticity. Given the recent controversy over the role of PKMζ maintaining memory, these findings are significant in identifying roles of multiple PKMs in the retention of memory.


Asunto(s)
Calpaína/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/clasificación , Neuronas/fisiología , Proteína Quinasa C/metabolismo , Transmisión Sináptica/fisiología , Animales , Aplysia , Células Cultivadas , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Memoria a Largo Plazo/fisiología , Isoformas de Proteínas , Sinapsis/clasificación , Sinapsis/fisiología
9.
J Comp Neurol ; 525(9): 2075-2089, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28074478

RESUMEN

Coordinated activity of neural circuitry in the primate dorsolateral prefrontal cortex (DLPFC) supports a range of cognitive functions. Altered DLPFC activation is implicated in a number of human psychiatric and neurological illnesses. Proper DLPFC activity is, in part, maintained by two populations of neurons containing the calcium-binding protein parvalbumin (PV): local inhibitory interneurons that form Type II synapses, and long-range glutamatergic inputs from the thalamus that form Type I synapses. Understanding the contributions of each PV neuronal population to human DLPFC function requires a detailed examination of their anatomical properties. Consequently, we performed an electron microscopic analysis of (1) the distribution of PV immunoreactivity within the neuropil, (2) the properties of dendritic shafts of PV-IR interneurons, (3) Type II PV-IR synapses from PV interneurons, and (4) Type I PV-IR synapses from long-range projections, within the superficial and middle laminar zones of the human DLPFC. In both laminar zones, Type II PV-IR synapses from interneurons comprised ∼60% of all PV-IR synapses, and Type I PV-IR synapses from putative thalamocortical terminals comprised the remaining ∼40% of PV-IR synapses. Thus, the present study suggests that innervation from PV-containing thalamic nuclei extends across superficial and middle layers of the human DLPFC. These findings contrast with previous ultrastructural studies in monkey DLPFC where Type I PV-IR synapses were not identified in the superficial laminar zone. The presumptive added modulation of DLPFC circuitry by the thalamus in human may contribute to species-specific, higher-order functions.


Asunto(s)
Neuronas/ultraestructura , Parvalbúminas/metabolismo , Corteza Prefrontal/citología , Sinapsis/metabolismo , Sinapsis/ultraestructura , Adulto , Axones/metabolismo , Axones/ultraestructura , Dendritas/metabolismo , Dendritas/ultraestructura , Femenino , Humanos , Masculino , Microscopía Inmunoelectrónica , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Vías Nerviosas/metabolismo , Vías Nerviosas/ultraestructura , Neuronas/metabolismo , Neurópilo/metabolismo , Neurópilo/ultraestructura , Parvalbúminas/ultraestructura , Corteza Prefrontal/metabolismo , Sinapsis/clasificación , Núcleos Talámicos/metabolismo , Núcleos Talámicos/ultraestructura
10.
J Neurosci ; 36(43): 10964-10977, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27798178

RESUMEN

C57BL/6J (B6) and DBA/2J (D2) mice are well known to differentially express a number of behavioral phenotypes, including anxiety-like behavior, fear conditioning, and drug self-administration. However, the cellular mechanisms contributing to these differences remain unclear. Given the basolateral amygdala (BLA) contributes to these behaviors, we characterized strain-dependent differences in presynaptic and postsynaptic function in BLA neurons by integrating electrophysiological, biochemical, and genetic approaches to identify specific molecular mechanisms. We found that D2 glutamatergic synapses expressed enhanced release probability and lower sensitivity to both the inhibitory effects of low extracellular calcium and facilitation by phorbol esters. Furthermore, repetitive stimulation of BLA afferents at low (2 Hz) or high (40 Hz) frequencies revealed that B6 terminals, relative to D2 terminals, were more sensitive to synaptic fatigue principally because of reduced vesicle recycling rates. Additionally, B6 synapses exhibited more robust augmentation of spontaneous release after repetitive stimulation relative to the D2 strain. In silico analysis of the inheritance of synaptic physiology from an array of BXD recombinant inbred strains (Jansen et al., 2011) identified a segment on chromosome 4 containing the gene encoding Munc13-2, which has calcium-/phorbol ester-binding domains and controls presynaptic function. We subsequently found that B6 mice express substantially higher levels of Munc13-2 compared with the D2 strain whereas expression of several release-related proteins, including Munc13-1, was equivalent. We then knocked down the expression of Munc13-2 in B6 mice using a short hairpin RNA and found this recapitulated the presynaptic phenotype of D2 BLA synapses. SIGNIFICANCE STATEMENT: DBA/2J and C57BL/6J mice have been used to understand the genetic mechanisms controlling behaviors related to a number of psychiatric illnesses. However, the fundamental neurobiological mechanisms producing these behavioral characteristics remain unresolved. Here we identify a critical family of presynaptic proteins differentially expressed by these strains that control strain-dependent synaptic physiology. This family of proteins regulates excitation/secretion coupling, vesicle recycling, and short-term plasticity throughout the CNS. Thus, differential inheritance of proteins like Munc13-2 has broad implications for genetic control over a wide variety of pathological behaviors. Importantly, these proteins also contain a large number of modulatory sites, making them attractive potential targets for the development of novel neuropharmaceutical treatments.


Asunto(s)
Complejo Nuclear Basolateral/metabolismo , Ácido Glutámico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/clasificación , Sinapsis/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Fenotipo , Especificidad de la Especie
12.
J Neurophysiol ; 116(3): 995-1011, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27281752

RESUMEN

The thalamic reticular nucleus (nRt), composed of GABAergic cells providing inhibition of relay neurons in the dorsal thalamus, receives excitation from the neocortex and thalamus. The two excitatory pathways promoting feedback or feedforward inhibition of thalamocortical neurons contribute to sensory processing and rhythm generation. While synaptic inhibition within the nRt has been carefully characterized, little is known regarding the biophysics of synaptic excitation. To characterize the functional properties of thalamocortical and corticothalamic connections to the nRt, we recorded minimal electrically evoked excitatory postsynaptic currents from nRt cells in vitro. A hierarchical clustering algorithm distinguished two types of events. Type 1 events had larger amplitudes and faster kinetics, largely mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, whereas type 2 responses had more prominent N-methyl-d-aspartate (NMDA) receptor contribution. Type 1 responses showed subnormal axonal propagation and paired pulse depression, consistent with thalamocortical inputs. Furthermore, responses kinetically similar to type 1 events were evoked by glutamate-mediated activation of thalamic neurons. Type 2 responses, in contrast, likely arise from corticothalamic inputs, with larger NMDA conductance and weak Mg(2+)-dependent block, suggesting that NMDA receptors are critical for the cortical excitation of reticular neurons. The long-lasting action of NMDA receptors would promote reticular cell burst firing and produce powerful inhibitory output to relay neurons proposed to be important in triggering epilepsy. This work provides the first complete voltage-clamp analysis of the kinetics and voltage dependence of AMPA and NMDA responses of thalamocortical and corticothalamic synapses in the nRt and will be critical in optimizing biologically realistic neural network models of thalamocortical circuits relevant to sensory processing and thalamocortical oscillations.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Sinapsis/clasificación , Sinapsis/fisiología , Núcleos Talámicos/citología , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Análisis por Conglomerados , Estimulación Eléctrica , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ácido Glutámico/farmacología , Técnicas In Vitro , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
14.
J Neurophysiol ; 116(2): 619-28, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226449

RESUMEN

Endocannabinoids can elicit persistent depression of excitatory and inhibitory synapses, reducing or enhancing (disinhibiting) neural circuit output, respectively. In this study, we examined whether differences in Cl(-) gradients can regulate which synapses undergo endocannabinoid-mediated synaptic depression vs. disinhibition using the well-characterized central nervous system (CNS) of the medicinal leech, Hirudo verbana Exogenous application of endocannabinoids or capsaicin elicits potentiation of pressure (P) cell synapses and depression of both polymodal (Npoly) and mechanical (Nmech) nociceptive synapses. In P synapses, blocking Cl(-) export prevented endocannabinoid-mediated potentiation, consistent with a disinhibition process that has been indicated by previous experiments. In Nmech neurons, which are depolarized by GABA due to an elevated Cl(-) equilibrium potentials (ECl), endocannabinoid-mediated depression was prevented by blocking Cl(-) import, indicating that this decrease in synaptic signaling was due to depression of excitatory GABAergic input (disexcitation). Npoly neurons are also depolarized by GABA, but endocannabinoids elicit depression in these synapses directly and were only weakly affected by disruption of Cl(-) import. Consequently, the primary role of elevated ECl may be to protect Npoly synapses from disinhibition. All forms of endocannabinoid-mediated plasticity required activation of transient potential receptor vanilloid (TRPV) channels. Endocannabinoid/TRPV-dependent synaptic plasticity could also be elicited by distinct patterns of afferent stimulation with low-frequency stimulation (LFS) eliciting endocannabinoid-mediated depression of Npoly synapses and high-frequency stimulus (HFS) eliciting endocannabinoid-mediated potentiation of P synapses and depression of Nmech synapses. These findings demonstrate a critical role of differences in Cl(-) gradients between neurons in determining the sign, potentiation vs. depression, of synaptic modulation under normal physiological conditions.


Asunto(s)
Cloruros/metabolismo , Endocannabinoides/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Neuronas/efectos de los fármacos , Sinapsis/clasificación , Sinapsis/efectos de los fármacos , Anilidas/farmacología , Animales , Biofisica , Bumetanida/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Capsaicina/farmacocinética , Sistema Nervioso Central/citología , Cinamatos/farmacología , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Lactonas/farmacología , Sanguijuelas , Orlistat , Técnicas de Placa-Clamp , Fármacos del Sistema Sensorial/farmacología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Ácido gamma-Aminobutírico/farmacología
15.
Neuromolecular Med ; 18(4): 497-539, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27230661

RESUMEN

Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.


Asunto(s)
Neuronas/citología , Sinapsis/fisiología , Animales , Biodiversidad , Sinapsis/clasificación
16.
Sci Rep ; 6: 24210, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27072994

RESUMEN

Type-specificity of synapses, excitatory and inhibitory, regulates information process in neural networks via chemical neurotransmitters. To lay a foundation of synapse-based neural interfaces, artificial dendrites are generated by covering abiotic substrata with ectodomains of type-specific synaptogenic proteins that are C-terminally tagged with biotinylated fluorescent proteins. The excitatory artificial synapses displaying engineered ectodomains of postsynaptic neuroligin-1 (NL1) induce the formation of excitatory presynapses with mixed culture of neurons in various developmental stages, while the inhibitory artificial dendrites displaying engineered NL2 and Slitrk3 induce inhibitory presynapses only with mature neurons. By contrast, if the artificial dendrites are applied to the axonal components of micropatterned neurons, correctly-matched synaptic specificity emerges regardless of the neuronal developmental stages. The hemisynapses retain their initially established type-specificity during neuronal development and maintain their synaptic strength provided live neurons, implying the possibility of durable synapse-based biointerfaces.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/farmacología , Dendritas/fisiología , Sinapsis/fisiología , Animales , Axones/efectos de los fármacos , Axones/fisiología , Células Cultivadas , Células HEK293 , Humanos , Neurogénesis , Ratas , Ratas Sprague-Dawley , Sinapsis/clasificación , Sinapsis/efectos de los fármacos , Transmisión Sináptica
17.
J Neurophysiol ; 116(2): 351-68, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27121576

RESUMEN

Synaptic inhibition plays a crucial role in the precise timing of spiking activity in the cerebral cortex. Synchronized, rhythmic inhibitory activity in the gamma (30-80 Hz) range is thought to be especially important for the active, information-processing neocortex, but the circuit mechanisms that give rise to synchronized inhibition are uncertain. In particular, the relative contributions of reciprocal inhibitory connections, excitatory-inhibitory interactions, and electrical synapses to precise spike synchrony among inhibitory interneurons are not well understood. Here we describe experiments on mouse barrel cortex in vitro as it spontaneously generates slow (<1 Hz) oscillations (Up and Down states). During Up states, inhibitory postsynaptic currents (IPSCs) are generated at gamma frequencies and are more synchronized than excitatory postsynaptic currents (EPSCs) among neighboring pyramidal cells. Furthermore, spikes in homotypic pairs of interneurons are more synchronized than in pairs of pyramidal cells. Comparing connexin36 knockout and wild-type animals, we found that electrical synapses make a minimal contribution to synchronized inhibition during Up states. Estimations of the delays between EPSCs and IPSCs in single pyramidal cells showed that excitation often preceded inhibition by a few milliseconds. Finally, tonic optogenetic activation of different interneuron subtypes in the absence of excitation led to only weak synchrony of IPSCs in pairs of pyramidal neurons. Our results suggest that phasic excitatory inputs are indispensable for synchronized spiking in inhibitory interneurons during Up states and that electrical synapses play a minimal role.


Asunto(s)
Ritmo Gamma/fisiología , Interneuronas/fisiología , Neocórtex/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Channelrhodopsins , Conexinas/deficiencia , Conexinas/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/genética , Interneuronas/efectos de los fármacos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Neocórtex/citología , Inhibición Neural/efectos de los fármacos , Parvalbúminas/genética , Parvalbúminas/metabolismo , Células Piramidales/efectos de los fármacos , Quinoxalinas/farmacología , Somatostatina/genética , Somatostatina/metabolismo , Sinapsis/clasificación , Transmisión Sináptica/efectos de los fármacos , Valina/análogos & derivados , Valina/farmacología , Proteína delta-6 de Union Comunicante
18.
J Neurophysiol ; 116(2): 232-51, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26912589

RESUMEN

Oscillations of neuronal activity in different frequency ranges are thought to reflect important aspects of cortical network dynamics. Here we investigate how various mechanisms that contribute to oscillations in neuronal networks may interact. We focus on networks with inhibitory, excitatory, and electrical synapses, where the subnetwork of inhibitory interneurons alone can generate interneuron gamma (ING) oscillations and the interactions between interneurons and pyramidal cells allow for pyramidal-interneuron gamma (PING) oscillations. What type of oscillation will such a network generate? We find that ING and PING oscillations compete: The mechanism generating the higher oscillation frequency "wins"; it determines the frequency of the network oscillation and suppresses the other mechanism. For type I interneurons, the network oscillation frequency is equal to or slightly above the higher of the ING and PING frequencies in corresponding reduced networks that can generate only either of them; if the interneurons belong to the type II class, it is in between. In contrast to ING and PING, oscillations mediated by gap junctions and oscillations mediated by inhibitory synapses may cooperate or compete, depending on the type (I or II) of interneurons and the strengths of the electrical and chemical synapses. We support our computer simulations by a theoretical model that allows a full theoretical analysis of the main results. Our study suggests experimental approaches to deciding to what extent oscillatory activity in networks of interacting excitatory and inhibitory neurons is dominated by ING or PING oscillations and of which class the participating interneurons are.


Asunto(s)
Potenciales de Acción/fisiología , Ritmo Gamma/fisiología , Modelos Neurológicos , Neuronas/fisiología , Sinapsis/fisiología , Animales , Simulación por Computador , Hipocampo/citología , Neuronas/clasificación , Sinapsis/clasificación
19.
Artículo en Inglés | MEDLINE | ID: mdl-26834567

RESUMEN

During development, sensory systems switch from an immature to an adult mode of function along with the emergence of the active cortical states. Here, we used patch-clamp recordings from neocortical slices in vitro to characterize the developmental changes in the basic electrophysiological properties of excitatory L4 neurons and their connectivity before and after the developmental switch, which occurs in the rat barrel cortex in vivo at postnatal day P8. Prior to the switch, L4 neurons had higher resting membrane potentials, higher input resistance, lower membrane capacity, as well as action potentials (APs) with smaller amplitudes, longer durations and higher AP thresholds compared to the neurons after the switch. A sustained firing pattern also emerged around the switch. Dual patch-clamp recordings from L4 neurons revealed that recurrent connections between L4 excitatory cells do not exist before and develop rapidly across the switch. In contrast, electrical coupling between these neurons waned around the switch. We suggest that maturation of electrophysiological features, particularly acquisition of a sustained firing pattern, and a transition from the immature electrical to mature chemical synaptic coupling between excitatory L4 neurons, contributes to the developmental switch in the cortical mode of function.


Asunto(s)
Fenómenos Biofísicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/crecimiento & desarrollo , Sinapsis/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Técnicas In Vitro , Técnicas de Placa-Clamp , Terminales Presinápticos/fisiología , Ratas , Estadísticas no Paramétricas , Sinapsis/clasificación
20.
Neuron ; 87(4): 781-96, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26291161

RESUMEN

Neuroligins are postsynaptic cell-adhesion molecules that bind presynaptic neurexins and are genetically linked to autism. Neuroligins are proposed to organize synaptogenesis and/or synaptic transmission, but no systematic analysis of neuroligins in a defined circuit is available. Here, we show that conditional deletion of all neuroligins in cerebellar Purkinje cells caused loss of distal climbing-fiber synapses and weakened climbing-fiber but not parallel-fiber synapses, consistent with alternative use of neuroligins and cerebellins as neurexin ligands for the excitatory climbing-fiber versus parallel-fiber synapses. Moreover, deletion of neuroligins increased the size of inhibitory basket/stellate-cell synapses but simultaneously severely impaired their function. Multiple neuroligin isoforms differentially contributed to climbing-fiber and basket/stellate-cell synapse functions, such that inhibitory synapse-specific neuroligin-2 was unexpectedly essential for maintaining normal climbing-fiber synapse numbers. Using systematic analyses of all neuroligins in a defined neural circuit, our data thus show that neuroligins differentially contribute to various Purkinje-cell synapses in the cerebellum in vivo.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/fisiología , Células de Purkinje/fisiología , Sinapsis/clasificación , Sinapsis/fisiología , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/fisiología , Ratones , Ratones Noqueados , Red Nerviosa/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA