Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.715
2.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745307

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Encephalomyelitis, Autoimmune, Experimental , Interleukin-9 , Mice, Inbred C57BL , Microglia , Synapses , Tumor Necrosis Factor-alpha , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Mice , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Interleukin-9/metabolism , Female , Tumor Necrosis Factor-alpha/metabolism , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Membrane Glycoproteins/metabolism , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Disease Models, Animal
3.
CNS Neurosci Ther ; 30(5): e14744, 2024 05.
Article En | MEDLINE | ID: mdl-38727249

BACKGROUND: Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood-brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. RESULTS: Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. CONCLUSIONS: This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.


Stroke , Synapses , Humans , Animals , Synapses/pathology , Synapses/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/complications , Stroke/physiopathology
4.
Cereb Cortex ; 34(13): 121-128, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696601

Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.


Membrane Proteins , Prefrontal Cortex , Synapses , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Humans , Male , Female , Synapses/pathology , Synapses/metabolism , Adult , Middle Aged , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Young Adult , Adolescent , Child , Autistic Disorder/metabolism , Autistic Disorder/pathology , Neural Inhibition/physiology , Vesicular Glutamate Transport Protein 1/metabolism
5.
Hear Res ; 447: 109022, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705005

The disruption of ribbon synapses in the cochlea impairs the transmission of auditory signals from the cochlear sensory receptor cells to the auditory cortex. Although cisplatin-induced loss of ribbon synapses is well-documented, and studies have reported nitration of cochlear proteins after cisplatin treatment, yet the underlying mechanism of cochlear synaptopathy is not fully understood. This study tests the hypothesis that cisplatin treatment alters the abundance of cochlear synaptosomal proteins, and selective targeting of nitrative stress prevents the associated synaptic dysfunction. Auditory brainstem responses of mice treated with cisplatin showed a reduction in amplitude and an increase in latency of wave I, indicating cisplatin-induced synaptic dysfunction. The mass spectrometry analysis of cochlear synaptosomal proteins identified 102 proteins that decreased in abundance and 249 that increased in abundance after cisplatin treatment. Pathway analysis suggested that the dysregulated proteins were involved in calcium binding, calcium ion regulation, synapses, and endocytosis pathways. Inhibition of nitrative stress by co-treatment with MnTBAP, a peroxynitrite scavenger, attenuated cisplatin-induced changes in the abundance of 27 proteins. Furthermore, MnTBAP co-treatment prevented the cisplatin-induced decrease in the amplitude and increase in the latency of wave I. Together, these findings suggest a potential role of oxidative/nitrative stress in cisplatin-induced cochlear synaptic dysfunction.


Cisplatin , Cochlea , Evoked Potentials, Auditory, Brain Stem , Proteomics , Synapses , Synaptosomes , Cisplatin/toxicity , Cisplatin/pharmacology , Animals , Cochlea/drug effects , Cochlea/metabolism , Cochlea/pathology , Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem/drug effects , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Synaptosomes/metabolism , Synaptosomes/drug effects , Oxidative Stress/drug effects , Mice, Inbred CBA , Male , Ototoxicity/metabolism , Ototoxicity/physiopathology , Mice
6.
Nat Rev Neurosci ; 25(6): 393-413, 2024 Jun.
Article En | MEDLINE | ID: mdl-38600347

Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.


Parkinson Disease , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/metabolism , Humans , Animals , Mitochondria/genetics , Mitochondria/metabolism , Dopaminergic Neurons/pathology , Dopaminergic Neurons/metabolism , Lysosomes/metabolism , Lysosomes/genetics , Synapses/pathology , Synapses/genetics , Synapses/metabolism
7.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673819

Perineuronal nets (PNN) are a special highly structured type of extracellular matrix encapsulating synapses on large populations of CNS neurons. PNN undergo structural changes in schizophrenia, epilepsy, Alzheimer's disease, stroke, post-traumatic conditions, and some other brain disorders. The functional role of the PNN microstructure in brain pathologies has remained largely unstudied until recently. Here, we review recent research implicating PNN microstructural changes in schizophrenia and other disorders. We further concentrate on high-resolution studies of the PNN mesh units surrounding synaptic boutons to elucidate fine structural details behind the mutual functional regulation between the ECM and the synaptic terminal. We also review some updates regarding PNN as a potential pharmacological target. Artificial intelligence (AI)-based methods are now arriving as a new tool that may have the potential to grasp the brain's complexity through a wide range of organization levels-from synaptic molecular events to large scale tissue rearrangements and the whole-brain connectome function. This scope matches exactly the complex role of PNN in brain physiology and pathology processes, and the first AI-assisted PNN microscopy studies have been reported. To that end, we report here on a machine learning-assisted tool for PNN mesh contour tracing.


Artificial Intelligence , Brain , Extracellular Matrix , Humans , Brain/pathology , Brain/diagnostic imaging , Extracellular Matrix/metabolism , Animals , Microscopy/methods , Nerve Net/pathology , Synapses/pathology , Brain Diseases/pathology , Neurons/pathology , Neurons/metabolism
8.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673871

Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.


Ketamine , Microglia , Rats, Sprague-Dawley , Synapses , Animals , Ketamine/administration & dosage , Ketamine/pharmacology , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Rats , Male , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Head Injuries, Closed/pathology , Axons/drug effects , Axons/metabolism , Axons/pathology , Disease Models, Animal , Geniculate Bodies/pathology , Geniculate Bodies/drug effects , Brain Concussion/pathology , Brain Concussion/metabolism , Disks Large Homolog 4 Protein/metabolism , Synapsins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage
9.
PLoS One ; 19(4): e0298006, 2024.
Article En | MEDLINE | ID: mdl-38669239

BACKGROUND: As a leading cause of mortality and long-term disability, acute ischemic stroke can produce far-reaching pathophysiological consequences. Accumulating evidence has demonstrated abnormalities in the lower motor system following stroke, while the existence of Transsynaptic degeneration of contralateral spinal cord ventral horn (VH) neurons is still debated. METHODS: Using a rat model of acute ischemic stroke, we analyzed spinal cord VH neuron counts contralaterally and ipsilaterally after stroke with immunofluorescence staining. Furthermore, we estimated the overall lower motor unit abnormalities after stroke by simultaneously measuring the modified neurological severity score (mNSS), compound muscle action potential (CMAP) amplitude, repetitive nerve stimulation (RNS), spinal cord VH neuron counts, and the corresponding muscle fiber morphology. The activation status of microglia and extracellular signal-regulated kinase 1/2 (ERK 1/2) in the spinal cord VH was also assessed. RESULTS: At 7 days after stroke, the contralateral CMAP amplitudes declined to a nadir indicating lower motor function damage, and significant muscle disuse atrophy was observed on the same side; meanwhile, the VH neurons remained intact. At 14 days after focal stroke, lower motor function recovered with alleviated muscle disuse atrophy, while transsynaptic degeneration occurred on the contralateral side with elevated activation of ERK 1/2, along with the occurrence of neurogenic muscle atrophy. No apparent decrement of CMAP amplitude was observed with RNS during the whole experimental process. CONCLUSIONS: This study offered an overview of changes in the lower motor system in experimental ischemic rats. We demonstrated that transsynaptic degeneration of contralateral VH neurons occurred when lower motor function significantly recovered, which indicated the minor role of transsynaptic degeneration in lower motor dysfunction during the acute and subacute phases of focal ischemic stroke.


Anterior Horn Cells , Animals , Rats , Male , Anterior Horn Cells/pathology , Rats, Sprague-Dawley , Synapses/pathology , Synapses/physiology , Disease Models, Animal , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Motor Neurons/pathology , Motor Neurons/physiology , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Microglia/pathology , Action Potentials/physiology
10.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38608784

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Brain-Derived Neurotrophic Factor , Cerebral Cortex , Disease Models, Animal , Huntington Disease , Neurons , Synapses , Animals , Huntington Disease/metabolism , Huntington Disease/pathology , Brain-Derived Neurotrophic Factor/metabolism , Synapses/metabolism , Synapses/drug effects , Synapses/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Mice , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Mice, Transgenic , Cells, Cultured , Synapsins/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Mice, Inbred C57BL
11.
Neuropharmacology ; 252: 109940, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570068

The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.


Arachidonic Acids , Encephalomyelitis, Autoimmune, Experimental , Endocannabinoids , Glycerides , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Glycerides/metabolism , Mice , Endocannabinoids/metabolism , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Synapses/drug effects , Synapses/pathology , Synapses/metabolism , Microglia/drug effects , Microglia/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism
12.
Pharmacol Biochem Behav ; 239: 173750, 2024 Jun.
Article En | MEDLINE | ID: mdl-38494007

Although the antidepressant effects of running exercise have been widely reported, further research is still needed to determine the structural bases for these effects. Astrocyte processes physically contact many synapses and directly regulate the numbers of synapses, but it remains unclear whether running exercise can modulate astrocyte morphological complexity and astrocyte-contacted synapses in the hippocampus of the mice with depressive-like behavior. Male C57BL/6 J mice underwent four weeks of running exercise after four weeks of chronic unpredictable stress (CUS). The sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were used to assess anhedonia in mice. Western blotting was used to measure the expression of astrocyte- and synapse-related proteins. Immunofluorescence and 3D reconstruction were used to quantify the density and morphology of astrocytes, and astrocyte-contacted synapses in each hippocampal subregion. Four weeks of running exercise alleviated depressive-like symptoms in mice. The expression of astrocyte- and synapse-related proteins in the hippocampus; astrocyte process lengths, process numbers, and dendritic arborization; and the number of astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions were significantly decreased in the mice with depressive-like behavior, and running exercise successfully reserved these changes. Running exercise improved the decreases in astrocyte morphological complexity and astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions of the mice with depressive-like behavior, suggesting that the physical interactions between astrocytes and synapses can be increased by running exercise, which might be an important structural basis for the antidepressant effects of running exercise.


Astrocytes , Depression , Disease Models, Animal , Hippocampus , Mice, Inbred C57BL , Physical Conditioning, Animal , Synapses , Animals , Astrocytes/metabolism , Male , Synapses/pathology , Synapses/physiology , Hippocampus/pathology , Hippocampus/metabolism , Mice , Physical Conditioning, Animal/physiology , Depression/therapy , Stress, Psychological/therapy , Stress, Psychological/metabolism , Running/physiology
13.
Alzheimers Dement ; 20(5): 3157-3166, 2024 May.
Article En | MEDLINE | ID: mdl-38477490

INTRODUCTION: We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS: One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS: Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aß) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION: The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.


Amyloid beta-Peptides , Apolipoprotein E4 , Cognitive Dysfunction , Positron-Emission Tomography , Synapses , Humans , Male , Female , Apolipoprotein E4/genetics , Aged , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Synapses/pathology , Synapses/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Genotype , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Biomarkers , Middle Aged , Alleles , Aged, 80 and over , Brain/pathology , Brain/diagnostic imaging
14.
Hum Mol Genet ; 33(11): 991-1000, 2024 May 18.
Article En | MEDLINE | ID: mdl-38484778

MUNC18-1 is an essential protein of the regulated secretion machinery. De novo, heterozygous mutations in STXBP1, the human gene encoding this protein, lead to a severe neurodevelopmental disorder. Here, we describe the electrophysiological characteristics of a unique case of STXBP1-related disorder caused by a homozygous mutation (L446F). We engineered this mutation in induced pluripotent stem cells from a healthy donor (STXBP1LF/LF) to establish isogenic cell models. We performed morphological and electrophysiological analyses on single neurons grown on glial micro-islands. Human STXBP1LF/LF neurons displayed normal morphology and normal basal synaptic transmission but increased paired-pulse ratios and charge released, and reduced synaptic depression compared to control neurons. Immunostainings revealed normal expression levels but impaired recognition by a mutation-specific MUNC18-1 antibody. The electrophysiological gain-of-function phenotype is in line with earlier overexpression studies in Stxbp1 null mouse neurons, with some potentially human-specific features. Therefore, the present study highlights important differences between mouse and human neurons critical for the translatability of pre-clinical studies.


Homozygote , Induced Pluripotent Stem Cells , Munc18 Proteins , Neurons , Synaptic Transmission , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Synaptic Transmission/genetics , Induced Pluripotent Stem Cells/metabolism , Animals , Mice , Mutation , Synapses/metabolism , Synapses/genetics , Synapses/pathology
15.
Nature ; 627(8004): 604-611, 2024 Mar.
Article En | MEDLINE | ID: mdl-38448582

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Aging , Astrocytes , Neurons , Prefrontal Cortex , Schizophrenia , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , Aging/metabolism , Aging/pathology , Astrocytes/cytology , Astrocytes/metabolism , Astrocytes/pathology , Cholesterol/metabolism , Cognition , GABAergic Neurons/metabolism , Genetic Predisposition to Disease , Glutamine/metabolism , Health , Individuality , Neural Inhibition , Neuronal Plasticity , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Single-Cell Gene Expression Analysis , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Synaptic Membranes/chemistry , Synaptic Membranes/metabolism
16.
Sensors (Basel) ; 24(4)2024 Feb 14.
Article En | MEDLINE | ID: mdl-38400369

Amyloid plays a critical role in the pathogenesis of Alzheimer's disease (AD) and can aggregate to form oligomers and fibrils in the brain. There is increasing evidence that highly toxic amyloid-ß oligomers (AßOs) lead to tau protein aggregation, hyperphosphorylation, neuroinflammation, neuronal loss, synaptic loss, and dysfunction. Although the effects of AßOs on neurons have been investigated using conventional biochemical experiments, there are no established criteria for electrical evaluation. To this end, we explored electrophysiological changes in mouse hippocampal neurons (HT22) following exposure to AßOs and/or naringenin (Nar, a flavonoid compound) using electrical impedance spectroscopy (EIS). AßO-induced HT22 showed a decreased impedance amplitude and increased phase angle, and the addition of Nar reversed these changes. The characteristic frequency was markedly increased with AßO exposure, which was also reversed by Nar. The AßOs decreased intranuclear and cytoplasmic resistance and increased nucleus resistance and extracellular capacitance. Overall, the innovative construction of the eight-element CPE-equivalent circuit model further reflects that the pseudo-capacitance of the cell membrane and cell nucleus was increased in the AßO-induced group. This study conclusively revealed that AßOs induce cytotoxic effects by disrupting the resistance characteristics of unit membranes. The results further support that EIS is an effective technique for evaluating AßO-induced neuronal damage and microscopic electrical distinctions in the sub-microscopic structure of reactive cells.


Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/chemistry , Electric Impedance , Alzheimer Disease/pathology , Neurons/metabolism , Synapses/metabolism , Synapses/pathology
17.
Acta Neuropathol Commun ; 12(1): 32, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38395965

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are clinically linked major neurodegenerative diseases. Notably, TAR DNA-binding protein-43 (TDP43) accumulations are hallmark pathologies of FTD/ALS and mutations in the gene encoding TDP43 cause familial FTD/ALS. There are no cures for FTD/ALS. FTD/ALS display damage to a broad range of physiological functions, many of which are regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by the VAPB-PTPIP51 tethering proteins that serve to recruit regions of ER to the mitochondrial surface so as to facilitate inter-organelle communications. Several studies have now shown that disrupted ER-mitochondria signaling including breaking of the VAPB-PTPIP51 tethers are features of FTD/ALS and that for TDP43 and other familial genetic FTD/ALS insults, this involves activation of glycogen kinase-3ß (GSK3ß). Such findings have prompted suggestions that correcting damage to ER-mitochondria signaling and the VAPB-PTPIP51 interaction may be broadly therapeutic. Here we provide evidence to support this notion. We show that overexpression of VAPB or PTPIP51 to enhance ER-mitochondria signaling corrects mutant TDP43 induced damage to inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ to mitochondria which is a primary function of the VAPB-PTPIP51 tethers, and to synaptic function. Moreover, we show that ursodeoxycholic acid (UDCA), an FDA approved drug linked to FTD/ALS and other neurodegenerative diseases therapy and whose precise therapeutic target is unclear, corrects TDP43 linked damage to the VAPB-PTPIP51 interaction. We also show that this effect involves inhibition of TDP43 mediated activation of GSK3ß. Thus, correcting damage to the VAPB-PTPIP51 tethers may have therapeutic value for FTD/ALS and other age-related neurodegenerative diseases.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Neurodegenerative Diseases , Vesicular Transport Proteins , Humans , Amyotrophic Lateral Sclerosis/pathology , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Protein Tyrosine Phosphatases/metabolism , Synapses/pathology , TDP-43 Proteinopathies/metabolism , Vesicular Transport Proteins/genetics
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167097, 2024 Jun.
Article En | MEDLINE | ID: mdl-38408544

Zika virus (ZIKV) infection was first associated with Central Nervous System (CNS) infections in Brazil in 2015, correlated with an increased number of newborns with microcephaly, which ended up characterizing the Congenital Zika Syndrome (CZS). Here, we investigated the impact of ZIKV infection on the functionality of iPSC-derived astrocytes. Besides, we extrapolated our findings to a Brazilian cohort of 136 CZS children and validated our results using a mouse model. Interestingly, ZIKV infection in neuroprogenitor cells compromises cell migration and causes apoptosis but does not interfere in astrocyte generation. Moreover, infected astrocytes lost their ability to uptake glutamate while expressing more glutamate transporters and secreted higher levels of IL-6. Besides, infected astrocytes secreted factors that impaired neuronal synaptogenesis. Since these biological endophenotypes were already related to Autism Spectrum Disorder (ASD), we extrapolated these results to a cohort of children, now 6-7 years old, and found seven children with ASD diagnosis (5.14 %). Additionally, mice infected by ZIKV revealed autistic-like behaviors, with a significant increase of IL-6 mRNA levels in the brain. Considering these evidence, we inferred that ZIKV infection during pregnancy might lead to synaptogenesis impairment and neuroinflammation, which could increase the risk for ASD.


Astrocytes , Autism Spectrum Disorder , Neuroinflammatory Diseases , Synapses , Zika Virus Infection , Zika Virus , Zika Virus Infection/pathology , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Zika Virus Infection/complications , Autism Spectrum Disorder/virology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/pathology , Humans , Animals , Mice , Zika Virus/physiology , Female , Child , Synapses/metabolism , Synapses/pathology , Neuroinflammatory Diseases/virology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/etiology , Astrocytes/virology , Astrocytes/metabolism , Astrocytes/pathology , Male , Interleukin-6/metabolism , Interleukin-6/genetics , Pregnancy , Risk Factors , Induced Pluripotent Stem Cells/virology , Induced Pluripotent Stem Cells/metabolism , Brazil/epidemiology , Disease Models, Animal , Neurogenesis
19.
Article En | MEDLINE | ID: mdl-37863171

Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.


Autism Spectrum Disorder , Depressive Disorder, Major , Animals , Humans , Dendritic Spines/pathology , Autism Spectrum Disorder/pathology , Depressive Disorder, Major/pathology , Brain/pathology , Synaptic Transmission , Neuronal Plasticity/physiology , Synapses/pathology
20.
Hear Res ; 442: 108935, 2024 Feb.
Article En | MEDLINE | ID: mdl-38113793

Sound information is transduced from mechanical vibration to electrical signals in the cochlea, conveyed to and further processed in the brain to form auditory perception. During the process, spiral ganglion neurons (SGNs) are the key cells that connect the peripheral and central auditory systems by receiving information from hair cells in the cochlea and transmitting it to neurons of the cochlear nucleus (CN). Decades of research in the cochlea greatly improved our understanding of SGN function under normal and pathological conditions, especially about the roles of different subtypes of SGNs and their peripheral synapses. However, it remains less clear how SGN central terminals or auditory nerve (AN) synapses connect to CN neurons, and ultimately how peripheral pathology links to structural alterations and functional deficits in the central auditory nervous system. This review discusses recent progress about the morphological and physiological properties of different subtypes of AN synapses and associated postsynaptic CN neurons, their changes during aging, and the potential mechanisms underlying age-related hearing loss.


Cochlear Nucleus , Hearing Loss , Humans , Cochlear Nucleus/pathology , Cochlear Nerve , Neurons/pathology , Synapses/pathology , Spiral Ganglion/pathology , Cochlea/physiology
...