Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 872
1.
Virulence ; 15(1): 2350892, 2024 12.
Article En | MEDLINE | ID: mdl-38745370

The evasive tactics of Treponema pallidum pose a major challenge in combating and eradicating syphilis. Natural killer (NK) cells mediate important effector functions in the control of pathogenic infection, preferentially eliminating targets with low or no expression of major histocompatibility complex (MHC) class I. To clarify T. pallidum's mechanisms in evading NK-mediated immunosurveillance, experiments were performed to explore the cross-talk relations among T. pallidum, NK cells, and platelets. T. pallidum adhered to, activated, and promoted particle secretion of platelets. After preincubation with T. pallidum, platelets expressed and secreted high levels of MHC class I, subsequently transferring them to the surface of T. pallidum, potentially inducing an immune phenotype characterized by the "pseudo-expression" of MHC class I on the surface of T. pallidum (hereafter referred to a "pseudo-expression" of MHC class I). The polA mRNA assay showed that platelet-preincubated T. pallidum group exhibited a significantly higher copy number of polA transcript than the T. pallidum group. The survival rate of T. pallidum mirrored that of polA mRNA, indicating that preincubation of T. pallidum with platelets attenuated NK cell lethality. Platelets pseudo-expressed the MHC class I ligand on the T. pallidum surface, facilitating binding to killer cell immunoglobulin-like receptors with two immunoglobulin domains and long cytoplasmic tail 3 (KIR2DL3) on NK cells and initiating dephosphorylation of Vav1 and phosphorylation of Crk, ultimately attenuating NK cell lethality. Our findings elucidate the mechanism by which platelets transfer MHC class I to the T. pallidum surface to evade NK cell immune clearance.


Blood Platelets , Histocompatibility Antigens Class I , Killer Cells, Natural , Syphilis , Treponema pallidum , Killer Cells, Natural/immunology , Treponema pallidum/immunology , Treponema pallidum/genetics , Humans , Blood Platelets/immunology , Blood Platelets/microbiology , Histocompatibility Antigens Class I/immunology , Syphilis/immunology , Syphilis/microbiology , Immune Evasion
2.
PLoS One ; 19(5): e0304033, 2024.
Article En | MEDLINE | ID: mdl-38787868

In this work, we determined that Treponema pallidum subsp. pallidum (TPA) DAL-1 (belonging to Nichols-like group of TPA strains) grew 1.53 (± 0.08) times faster compared to TPA Philadelphia 1 (SS14-like group) during in vitro cultivations. In longitudinal individual propagation in rabbit testes (n = 12, each TPA strain), infection with DAL-1 manifested clinical symptoms (induration, swelling, and erythema of testes) sooner than Philadelphia 1 infection, which resulted in a significantly shorter period of the experimental passages for DAL-1 (median = 15.0 and 23.5 days, respectively; p < 0.01). To minimize the confounding conditions during rabbit experiments, the growth characteristics of DAL-1 and Philadelphia 1 strains were determined during TPA co-infection of rabbit testes (n = 20, including controls). During two weeks of intratesticular co-infection, DAL-1 overgrew Philadelphia 1 in all twelve testes, regardless of inoculation ratio and dose (median of relative excess DAL-1 multiplication = 84.85×). Moreover, higher DAL-1 to Philadelphia 1 inoculum ratios appeared to increase differences in growth rates, suggesting direct competition between strains for available nutrients during co-infection. These experiments indicate important physiological differences between the two TPA strains and suggest growth differences between Nichols-like and SS14-like strains that are potentially linked to their virulence and pathogenicity.


Treponema pallidum , Animals , Rabbits , Male , Testis/microbiology , Testis/metabolism , Syphilis/microbiology , Syphilis/pathology
3.
Diagn Microbiol Infect Dis ; 109(3): 116333, 2024 Jul.
Article En | MEDLINE | ID: mdl-38703532

Syphilis remains a public health concern in Brazil, and the data on the characterization and resistance of Treponema pallidum in Brazil is limited. The present study aimed to detect Treponema DNA in the lesions and blood samples obtained from individuals diagnosed with syphilis. The Brazilian isolates were submitted to the Enhanced Centers for Disease Control and Prevention (ECDC) scheme and also analyzed for resistance gene. Treponemal DNA from 18 lesions and 18 blood specimens were submitted for amplification using Polymerase Chain Reaction (PCR) and Polymerase Chain Reaction in Real Time (RT-PCR). Eight samples from lesions and eight from blood were positive in the RT-PCR analysis. Eight lesions and three blood samples were positive using PCR. Two samples exhibited azithromycin resistance. The Brazilian isolate types 14d/g, 14 d/c, 15d/c, and 15d/e were identified using the ECDC scheme. The three subtypes 14d/c, 15d/c, and 15d/e have been identified in Brazil for the first time.


DNA, Bacterial , Syphilis , Treponema pallidum , Humans , Treponema pallidum/genetics , Treponema pallidum/isolation & purification , Treponema pallidum/classification , Brazil , Syphilis/microbiology , Syphilis/diagnosis , DNA, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Male , Genotype , Female , Adult , Polymerase Chain Reaction , Middle Aged , Azithromycin/pharmacology , Real-Time Polymerase Chain Reaction
4.
PLoS One ; 19(5): e0303477, 2024.
Article En | MEDLINE | ID: mdl-38809884

Rapid syphilis testing plays a crucial role in global health strategies, addressing the urgent need for prompt and accurate diagnostics, especially in settings with limited resources. Despite their practical utility, these tests often lack thorough validation, leading to concerns about their efficacy and reliability. This study aims to evaluate two prototypes of the Onsite Syphilis Ab Combo Rapid Test (Fd and Ff) and compare their performance with the established chemiluminescent microparticle immunoassay (CMIA) method. Employing a reverse algorithm approach, the study analyzed 450 serum samples, including those from syphilis patients, healthy individuals, and cases with potential cross-reactions. Results of the rapid test kit were then correlated with CMIA findings, RPR, and TPPA titers. The results showed that prototype Fd exhibited a sensitivity of 100.0%, specificity of 98.8%, positive predictive value (PPV) of 8.4%, negative predictive value (NPV) of 100.00% and accuracy of 98.8%. Similarly, prototype Ff exhibited sensitivity of 100.0%, but with a slightly higher specificity of 99.6%, PPV of 21.5%, NPV of 100.0% and accuracy of 99.6%. Moreover, both prototypes Fd and Ff of the Onsite Syphilis Ab Combo Rapid Test demonstrated significant efficacy diagnostic tool, offering clear and straightforward interpretation for clinicians in varied CMIA, RPR and TPPA titer scenarios. The Onsite Syphilis Ab Combo Rapid Test prototypes, Fd and Ff, demonstrated high sensitivity and specificity, comparable to CMIA methods. The effectiveness highlights their suitability for syphilis screening, particularly in non-laboratory settings or situations requiring immediate results. The validation of these prototypes supports their integration into current syphilis diagnostic algorithms, potentially contributing to improved public health outcomes.


Antibodies, Bacterial , Reagent Kits, Diagnostic , Sensitivity and Specificity , Syphilis Serodiagnosis , Syphilis , Treponema pallidum , Humans , Treponema pallidum/immunology , Syphilis/diagnosis , Syphilis/blood , Syphilis/microbiology , Reagent Kits, Diagnostic/standards , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Syphilis Serodiagnosis/methods , Male , Female , Adult , Middle Aged , Immunoassay/methods , Reproducibility of Results , Rapid Diagnostic Tests
6.
PLoS One ; 19(5): e0295088, 2024.
Article En | MEDLINE | ID: mdl-38776332

Yaws affects children in tropical regions, while syphilis primarily affects sexually active adults worldwide. Despite various campaigns towards the eradication of yaws and elimination of syphilis, these two diseases are still present in Ghana. The aetiological agents of both diseases, two Treponema pallidum subspecies, are genetically similar. This study aimed to assess the prevalence of these treponematoses and the occurrence of pathogens causing similar skin lesions in the Ashanti region of Ghana. A point-of-care test was used to determine the seroprevalence of the treponematoses. Both yaws and syphilis were identified in the Ashanti region of Ghana. Multiplex PCR was used to identify treponemes and other pathogens that cause similar skin lesions. The results indicated that the seroprevalences of T. pallidum in individuals with yaws-like and syphilis-like lesions were 17.2% and 10.8%, respectively. Multiplex PCR results showed that 9.1%, 1.8% and 0.9% of yaws-like lesions were positive for Haemophilus ducreyi, herpes simplex virus-1 (HSV-1) and T. pallidum respectively. Among syphilis-like lesions, 28.3% were positive for herpes simplex virus -2 (HSV-2) by PCR. To our knowledge, this is the first time HSV-I and HSV-2 have been reported from yaws-like and syphilis-like lesions, respectively, in Ghana. The presence of other organisms apart from T. pallidum in yaws-like and syphilis-like lesions could impede the total healing of these lesions and the full recovery of patients. This may complicate efforts to achieve yaws eradication by 2030 and the elimination of syphilis and warrants updated empirical treatment guidelines for skin ulcer diseases.


Haemophilus ducreyi , Syphilis , Treponema pallidum , Yaws , Humans , Ghana/epidemiology , Yaws/epidemiology , Yaws/microbiology , Syphilis/epidemiology , Syphilis/microbiology , Female , Adult , Male , Haemophilus ducreyi/isolation & purification , Haemophilus ducreyi/genetics , Adolescent , Prevalence , Treponema pallidum/genetics , Treponema pallidum/isolation & purification , Child , Young Adult , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , Middle Aged , Seroepidemiologic Studies , Skin/microbiology , Skin/pathology , Skin/virology , Child, Preschool , Treponemal Infections/epidemiology , Treponemal Infections/microbiology
7.
Diagn Microbiol Infect Dis ; 109(3): 116341, 2024 Jul.
Article En | MEDLINE | ID: mdl-38728874

We studied the detection of Treponema pallidum (TP)-IgM antibodies in the serum of 69 patients treated for syphilis. The persistence of TP-IgM antibodies in serum for more than 3 years was the only clue to suspect an active infection and, therefore, to investigate a central nervous system involvement.


Antibodies, Bacterial , Immunoglobulin M , Syphilis , Treponema pallidum , Humans , Treponema pallidum/immunology , Immunoglobulin M/blood , Antibodies, Bacterial/blood , Syphilis/blood , Syphilis/immunology , Syphilis/diagnosis , Syphilis/microbiology , Male , Female , Adult , Middle Aged , Aged , Time Factors
8.
J Proteome Res ; 23(5): 1725-1743, 2024 May 03.
Article En | MEDLINE | ID: mdl-38636938

Previous mass spectrometry (MS)-based global proteomics studies have detected a combined total of 86% of all Treponema pallidum proteins under infection conditions (in vivo-grown T. pallidum). Recently, a method was developed for the long-term culture of T. pallidum under in vitro conditions (in vitro-cultured T. pallidum). Herein, we used our previously reported optimized MS-based proteomics approach to characterize the T. pallidum global protein expression profile under in vitro culture conditions. These analyses provided a proteome coverage of 94%, which extends the combined T. pallidum proteome coverage from the previously reported 86% to a new combined total of 95%. This study provides a more complete understanding of the protein repertoire of T. pallidum. Further, comparison of the in vitro-expressed proteome with the previously determined in vivo-expressed proteome identifies only a few proteomic changes between the two growth conditions, reinforcing the suitability of in vitro-cultured T. pallidum as an alternative to rabbit-based treponemal growth. The MS proteomics data have been deposited in the MassIVE repository with the data set identifier MSV000093603 (ProteomeXchange identifier PXD047625).


Bacterial Proteins , Proteome , Proteomics , Treponema pallidum , Treponema pallidum/metabolism , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mass Spectrometry , Syphilis/microbiology , Syphilis/metabolism
9.
Emerg Microbes Infect ; 13(1): 2348525, 2024 Dec.
Article En | MEDLINE | ID: mdl-38661428

To assess the clinical applicability of a semi-quantitative luciferase immunosorbent assay (LISA) for detecting antibodies against Treponema pallidum antigens TP0171 (TP15), TP0435 (TP17), and TP0574 (TP47) in diagnosing and monitoring syphilis. LISA for detection of anti-TP15, TP17, and TP47 antibodies were developed and evaluated for syphilis diagnosis using 261 serum samples (161 syphilis, 100 non-syphilis). Ninety serial serum samples from 6 syphilis rabbit models (3 treated, 3 untreated) and 110 paired serum samples from 55 syphilis patients were used to assess treatment effects by utilizing TRUST as a reference. Compared to TPPA, LISA-TP15, LISA-TP17, and LISA-TP47 showed a sensitivity of 91.9%, 96.9%, and 98.8%, specificity of 99%, 99%, and 98%, and AUC of 0.971, 0.992, and 0.995, respectively, in diagnosing syphilis. Strong correlations (rs = 0.89-0.93) with TPPA were observed. In serial serum samples from rabbit models, significant differences in the relative light unit (RLU) were observed between the treatment and control group for LISA-TP17 (days 31-51) and LISA-TP47 (day 41). In paired serum samples from syphilis patients, TRUST titres and the RLU of LISA-TP15, LISA-TP17, and LISA-TP47 decreased post-treatment (P < .001). When TRUST titres decreased by 0, 2, 4, or ≥8-folds, the RLU decreased by 17.53%, 31.34%, 48.62%, and 72.79% for LISA-TP15; 8.84%, 17.00%, 28.37%, and 50.57% for LISA-TP17; 22.25%, 29.79%, 51.75%, and 70.28% for LISA-TP47, respectively. Semi-quantitative LISA performs well for syphilis diagnosis while LISA-TP17 is more effective for monitoring syphilis treatment in rabbit models and clinical patients.


Antibodies, Bacterial , Antigens, Bacterial , Sensitivity and Specificity , Syphilis , Treponema pallidum , Syphilis/diagnosis , Syphilis/microbiology , Syphilis/blood , Treponema pallidum/immunology , Animals , Humans , Rabbits , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Male , Female , Adult , Luciferases/genetics , Syphilis Serodiagnosis/methods , Middle Aged , Disease Models, Animal , Young Adult
10.
J Eur Acad Dermatol Venereol ; 38(6): 1179-1190, 2024 Jun.
Article En | MEDLINE | ID: mdl-38376245

BACKGROUND: Primary syphilis is characterized by painless ulcerative lesions in the genitalia, the aetiology of painless remains elusive. OBJECTIVES: To investigate the role of Treponema pallidum in painless ulcer of primary syphilis, and the mechanisms underlying painless ulcers caused by T. pallidum. METHODS: An experimental rabbit model of primary syphilis was established to investigate its effects on peripheral nerve tissues. Human skin fibroblasts were used to examine the role of T. pallidum in modulating neurotransmitters associated with pain and to explore the signalling pathways related to neurotransmitter secretion by T. pallidum in vitro. RESULTS: Treponema pallidum infection did not directly lead to neuronal damage or interfere with the neuronal resting potential. Instead, it facilitated the secretion of prostaglandin E2 (PGE2) through endoplasmic reticulum stress in both rabbit and human skin fibroblasts, and upregulation of PGE2 induced the hyperpolarization of neurones. Moreover, the IRE1α/COX-2 signalling pathway was identified as the underlying mechanism by which T. pallidum induced the production of PGE2 in human skin fibroblasts. CONCLUSION: Treponema pallidum promotes PGE2 secretion in skin fibroblasts, leading to the excitation of neuronal hyperpolarization and potentially contributing to the pathogenesis of painless ulcers in syphilis.


Dinoprostone , Fibroblasts , Neurons , Syphilis , Treponema pallidum , Dinoprostone/metabolism , Fibroblasts/metabolism , Humans , Rabbits , Animals , Neurons/metabolism , Syphilis/microbiology , Skin/microbiology , Skin/pathology , Skin/metabolism , Male , Skin Ulcer/microbiology , Skin Ulcer/metabolism , Skin Ulcer/pathology , Cells, Cultured , Endoplasmic Reticulum Stress
11.
Nature ; 627(8002): 182-188, 2024 Mar.
Article En | MEDLINE | ID: mdl-38267579

The origins of treponemal diseases have long remained unknown, especially considering the sudden onset of the first syphilis epidemic in the late 15th century in Europe and its hypothesized arrival from the Americas with Columbus' expeditions1,2. Recently, ancient DNA evidence has revealed various treponemal infections circulating in early modern Europe and colonial-era Mexico3-6. However, there has been to our knowledge no genomic evidence of treponematosis recovered from either the Americas or the Old World that can be reliably dated to the time before the first trans-Atlantic contacts. Here, we present treponemal genomes from nearly 2,000-year-old human remains from Brazil. We reconstruct four ancient genomes of a prehistoric treponemal pathogen, most closely related to the bejel-causing agent Treponema pallidum endemicum. Contradicting the modern day geographical niche of bejel in the arid regions of the world, the results call into question the previous palaeopathological characterization of treponeme subspecies and showcase their adaptive potential. A high-coverage genome is used to improve molecular clock date estimations, placing the divergence of modern T. pallidum subspecies firmly in pre-Columbian times. Overall, our study demonstrates the opportunities within archaeogenetics to uncover key events in pathogen evolution and emergence, paving the way to new hypotheses on the origin and spread of treponematoses.


Evolution, Molecular , Genome, Bacterial , Treponema pallidum , Treponemal Infections , Humans , Brazil/epidemiology , Brazil/ethnology , Europe/epidemiology , Genome, Bacterial/genetics , History, 15th Century , History, Ancient , Syphilis/epidemiology , Syphilis/history , Syphilis/microbiology , Syphilis/transmission , Treponema pallidum/classification , Treponema pallidum/genetics , Treponema pallidum/isolation & purification , Treponemal Infections/epidemiology , Treponemal Infections/history , Treponemal Infections/microbiology , Treponemal Infections/transmission
12.
Microbiol Spectr ; 12(1): e0177423, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38095473

IMPORTANCE: Syphilis is an ancient disease of humans and lagomorphs caused by two distinct but genetically closely related bacteria (>98% sequence identity based on the whole genome) of the genus Treponema. While human syphilis is well studied, little is known about the disease in the lagomorph host. Yet, comparative studies are needed to understand mechanisms in host-pathogen coevolution in treponematoses. Importantly, Treponema paraluisleporidarum-infected hare populations provide ample opportunity to study the syphilis-causing pathogen in a naturally infected model population without antibiotic treatment, data that cannot be obtained from syphilis infection in humans. We provide data on genetic diversity and are able to highlight various types of repetitions in one of the two hypervariable regions at the tp0548 locus that have not been described in the human syphilis-causing sister bacterium Treponema pallidum subsp. pallidum.


Lagomorpha , Syphilis , Animals , Humans , Syphilis/epidemiology , Syphilis/microbiology , Treponema pallidum , Prevalence , Treponema/genetics , Genetic Variation
13.
N Engl J Med ; 389(25): 2331-2340, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38118022

BACKGROUND: Doxycycline postexposure prophylaxis (PEP) has been shown to prevent sexually transmitted infections (STIs) among cisgender men and transgender women, but data from trials involving cisgender women are lacking. METHODS: We conducted a randomized, open-label trial comparing doxycycline PEP (doxycycline hyclate, 200 mg taken within 72 hours after condomless sex) with standard care among Kenyan women 18 to 30 years of age who were receiving preexposure prophylaxis against human immunodeficiency virus (HIV). The primary end point was any incident infection with Chlamydia trachomatis, Neisseria gonorrhoeae, or Treponema pallidum. Hair samples were collected quarterly for objective assessment of doxycycline use. RESULTS: A total of 449 participants underwent randomization; 224 were assigned to the doxycycline-PEP group and 225 to the standard-care group. Participants were followed quarterly over 12 months. A total of 109 incident STIs occurred (50 in the doxycycline-PEP group [25.1 per 100 person-years] and 59 in the standard-care group [29.0 per 100 person-years]), with no significant between-group difference in incidence (relative risk, 0.88; 95% confidence interval [CI], 0.60 to 1.29; P = 0.51). Among the 109 incident STIs, chlamydia accounted for 85 (78.0%) (35 in the doxycycline-PEP group and 50 in the standard-care group; relative risk, 0.73; 95% CI, 0.47 to 1.13). No serious adverse events were considered by the trial investigators to be related to doxycycline, and there were no incident HIV infections. Among 50 randomly selected participants in the doxycycline-PEP group, doxycycline was detected in 58 of 200 hair samples (29.0%). All N. gonorrhoeae-positive isolates were resistant to doxycycline. CONCLUSIONS: Among cisgender women, the incidence of STIs was not significantly lower with doxycycline PEP than with standard care. According to hair-sample analysis, the use of doxycycline PEP among those assigned to receive it was low. (Funded by the National Institutes of Health; dPEP ClinicalTrials.gov number, NCT04050540.).


Anti-Infective Agents , Chlamydia Infections , Doxycycline , Gonorrhea , Pre-Exposure Prophylaxis , Syphilis , Female , Humans , Chlamydia Infections/microbiology , Chlamydia Infections/prevention & control , Chlamydia trachomatis , Doxycycline/administration & dosage , Doxycycline/adverse effects , Doxycycline/analysis , Doxycycline/therapeutic use , HIV Infections/prevention & control , Kenya/epidemiology , Neisseria gonorrhoeae , Pre-Exposure Prophylaxis/methods , Sexually Transmitted Diseases/prevention & control , Unsafe Sex , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Anti-Infective Agents/analysis , Anti-Infective Agents/therapeutic use , Adolescent , Young Adult , Adult , Gonorrhea/microbiology , Gonorrhea/prevention & control , Treponema pallidum , Syphilis/microbiology , Syphilis/prevention & control , Drug Monitoring/methods , Hair/chemistry
14.
Sci Rep ; 13(1): 18259, 2023 10 25.
Article En | MEDLINE | ID: mdl-37880309

Comprehensive proteome-wide analysis of the syphilis spirochete, Treponema pallidum ssp. pallidum, is technically challenging due to high sample complexity, difficulties with obtaining sufficient quantities of bacteria for analysis, and the inherent fragility of the T. pallidum cell envelope which further complicates proteomic identification of rare T. pallidum outer membrane proteins (OMPs). The main aim of the present study was to gain a deeper understanding of the T. pallidum global proteome expression profile under infection conditions. This will corroborate and extend genome annotations, identify protein modifications that are unable to be predicted at the genomic or transcriptomic levels, and provide a foundational knowledge of the T. pallidum protein expression repertoire. Here we describe the optimization of a T. pallidum-specific sample preparation workflow and mass spectrometry-based proteomics pipeline which allowed for the detection of 77% of the T. pallidum protein repertoire under infection conditions. When combined with prior studies, this brings the overall coverage of the T. pallidum proteome to almost 90%. These investigations identified 27 known/predicted OMPs, including potential vaccine candidates, and detected expression of 11 potential OMPs under infection conditions for the first time. The optimized pipeline provides a robust and reproducible workflow for investigating T. pallidum protein expression during infection. Importantly, the combined results provide the deepest coverage of the T. pallidum proteome to date.


Syphilis , Treponema pallidum , Humans , Treponema pallidum/genetics , Proteome/metabolism , Bacterial Proteins/metabolism , Proteomics , Syphilis/microbiology
15.
Lancet Microbe ; 4(12): e994-e1004, 2023 12.
Article En | MEDLINE | ID: mdl-37827185

BACKGROUND: The increasing incidence of syphilis and the limitations of first-line treatment with penicillin, particularly in neurosyphilis, neonatal syphilis, and pregnancy, highlight the need to expand the therapeutic repertoire for effective management of this disease. We assessed the in-vitro efficacy of 18 antibiotics from several classes on Treponema pallidum subspecies pallidum (T pallidum), the syphilis bacteria. METHODS: Using the in-vitro culture system for T pallidum, we exposed the pathogen to a concentration range of each tested antibiotic. After a 7-day incubation, the treponemal burden was evaluated by quantitative PCR targeting the T pallidum tp0574 gene. The primary outcome was the minimum inhibitory concentration (MIC) at which the quantitative PCR values were not significantly higher than the inoculum wells. We also investigated the susceptibility of macrolide-resistant strains to high concentrations of azithromycin, and the possibility of developing resistance to linezolid, a proposed candidate for syphilis treatment. FINDINGS: Amoxicillin, ceftriaxone, several oral cephalosporins, tedizolid, and dalbavancin exhibited anti-treponemal activity at concentrations achievable in human plasma following regular dosing regimens. The experiments revealed a MIC for amoxicillin at 0·02 mg/L, ceftriaxone at 0·0025 mg/L, cephalexin at 0·25 mg/L, cefetamet and cefixime at 0·0313 mg/L, cefuroxime at 0·0156 mg/L, tedizolid at 0·0625 mg/L, spectinomycin at 0·1 mg/L, and dalbavancin at 0·125 mg/L. The MIC for zoliflodacin and balofloxacin was 2 mg/L. Ertapenem, isoniazid, pyrazinamide, and metronidazole had either a poor or no effect. Azithromycin concentrations up to 2 mg/L (64 times the MIC) were ineffective against strains carrying mutations associated to macrolide resistance. Exposure to subtherapeutic doses of linezolid for 10 weeks did not induce phenotypic or genotypic resistance. INTERPRETATION: Cephalosporins and oxazolidinones are potential candidates for expanding the current therapeutic repertoire for syphilis. Our findings warrant testing efficacy in animal models and, if successful, clinical assessment of efficacy. FUNDING: European Research Council.


Syphilis , Treponema pallidum , Animals , Infant, Newborn , Humans , Treponema pallidum/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Syphilis/drug therapy , Syphilis/epidemiology , Syphilis/microbiology , Macrolides/pharmacology , Macrolides/therapeutic use , Linezolid/pharmacology , Linezolid/therapeutic use , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Globus Pallidus , Drug Resistance, Bacterial/genetics , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Treponema
16.
Mol Microbiol ; 120(5): 684-701, 2023 11.
Article En | MEDLINE | ID: mdl-37718557

Syphilis is a persistent sexually transmitted disease caused by infiltration of the elusive pathogen Treponema pallidum. Despite the prevalence of human polymorphonuclear neutrophils (hPMNs) within cutaneous lesions, which are characteristic of incipient syphilis, their role in T. pallidum infection remains unclear. Tp92 is the only T. pallidum helical outer membrane protein that exhibits structural features similar to those of outer membrane proteins in other gram-negative bacteria. However, the functional mechanism of this protein in immune cells remains unclear. Neutrophils are short-lived cells that undergo innate apoptosis in response to external stimuli that typically influence this process. In this study, we determined that Tp92 impedes the activation of procaspase-3 via the ERK MAPK, PI3K/Akt, and NF-κB signaling pathways, consequently suppressing caspase-3 activity within hPMNs, and thereby preventing hPMNs apoptosis. Furthermore, Tp92 could also modulate hPMNs apoptosis by enhancing the expression of the anti-apoptotic protein Mcl-1, stimulating IL-8 secretion, and preserving the mitochondrial membrane potential. These findings provide valuable insights into the molecular mechanisms underlying T. pallidum infection and suggest potential therapeutic targets for syphilis treatment.


NF-kappa B , Syphilis , Humans , NF-kappa B/metabolism , Treponema pallidum/genetics , Treponema pallidum/metabolism , Syphilis/metabolism , Syphilis/microbiology , Syphilis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Membrane Proteins/metabolism , Neutrophils , Apoptosis
17.
Clin Infect Dis ; 77(12): 1717-1722, 2023 12 15.
Article En | MEDLINE | ID: mdl-37536265

BACKGROUND: Syphilis is a complex, multistage, sexually transmitted infection (STI) caused by the bacterium Treponema pallidum subspecies pallidum (TP). New diagnostic tools are needed to minimize transmission. In this study, we aimed to assess the additional value of an investigational transcription-mediated amplification test for TP (TP-TMA) for routine diagnostics. METHODS: Between September 2021 and August 2022, visits by all participants of the national preexposure prophylaxis (PrEP) program at the sexual health center (SHC) in Amsterdam were included. Anal, pharyngeal, vaginal, and urine samples collected for Chlamydia trachomatis and Neisseria gonorrhoeae screening were additionally tested with the TP-TMA assay based on detection of 23S rRNA of TP. RESULTS: In total, 9974 SHC visits by 3283 participants were included. There were 191 infectious syphilis cases diagnosed: 26 (14%) primary syphilis, 54 (29%) secondary syphilis, and 111 (58%) early latent syphilis. In 79 of the 191 (41%) syphilis cases, at least 1 sample was TP-TMA-positive. For 16 participants, the positive TP-TMA result was not concordant with routine diagnostics. Of those, 2 participants were treated for syphilis within a week before the visit. Eight participants were treated for a syphilis notification at the visit or for another STI. Five participants were diagnosed with syphilis at the following visit, and 1 participant was lost to follow-up. CONCLUSIONS: By adding the TP-TMA assay to routine diagnostics, we identified 14 of 191 (7%) additional syphilis infections among participants of the national PrEP program. The TP-TMA assay is a useful diagnostic tool to increase syphilis case finding and thus limit the transmission of syphilis.


Sexually Transmitted Diseases , Syphilis , Female , Humans , Treponema pallidum/genetics , Syphilis/diagnosis , Syphilis/epidemiology , Syphilis/microbiology , Neisseria gonorrhoeae , Chlamydia trachomatis
18.
PLoS One ; 18(5): e0283952, 2023.
Article En | MEDLINE | ID: mdl-37200262

The mechanisms of energy generation and carbon-source utilization in the syphilis spirochete Treponema pallidum have remained enigmatic despite complete genomic sequence information. Whereas the bacterium harbors enzymes for glycolysis, the apparatus for more efficient use of glucose catabolites, namely the citric-acid cycle, is apparently not present. Yet, the organism's energy needs likely exceed the modest output from glycolysis alone. Recently, building on our structure-function studies of T. pallidum lipoproteins, we proposed a "flavin-centric" metabolic lifestyle for the organism that partially resolves this conundrum. As a part of the hypothesis, we have proposed that T. pallidum contains an acetogenic energy-conservation pathway that catabolizes D-lactate, yielding acetate, reducing equivalents for the generation and maintenance of chemiosmotic potential, and ATP. We already have confirmed the D-lactate dehydrogenase activity in T. pallidum necessary for this pathway to operate. In the current study, we focused on another enzyme ostensibly involved in treponemal acetogenesis, phosphotransacetylase (Pta). This enzyme is putatively identified as TP0094 and, in this study, we determined a high-resolution (1.95 Å) X-ray crystal structure of the protein, finding that its fold comports with other known Pta enzymes. Further studies on its solution behavior and enzyme activity confirmed that it has the properties of a Pta. These results are consistent with the proposed acetogenesis pathway in T. pallidum, and we propose that the protein be referred to henceforth as TpPta.


Syphilis , Treponema pallidum , Humans , Treponema pallidum/genetics , Phosphate Acetyltransferase/metabolism , Bacterial Proteins/metabolism , Syphilis/microbiology , Treponema/genetics
19.
J Clin Microbiol ; 61(6): e0011223, 2023 06 20.
Article En | MEDLINE | ID: mdl-37222630

Treponema pallidum subsp. pallidum is a fastidious spirochete and the etiologic agent of syphilis, a sexually transmitted infection (STI). Syphilis diagnoses and disease staging are based on clinical findings and serologic testing. Moreover, according to most international guidelines, PCR analysis of swab samples from genital ulcers is included in the screening algorithm where possible. It has been suggested that PCR might be omitted from the screening algorithm due to low added value. As an alternative to PCR, IgM serology might be used. In this study, we wanted to establish the added value of PCR and IgM serology for diagnosing primary syphilis. Added value was defined as finding more cases of syphilis, preventing overtreatment, or limiting the extent of partner notification to more recent partners. We found that both PCR and IgM immunoblotting could aid the timely diagnosis of early syphilis in ~24% to 27% of patients. PCR has the greatest sensitivity and can be applied to cases with an ulcer with suspected reinfection or primary infection. In the absence of lesions, the IgM immunoblot could be used. However, the IgM immunoblot has better performance in cases with suspected primary infection than in reinfections. The target population, testing algorithm, time pressures, and costs should determine whether either test provides sufficient value to be implemented in clinical practice.


Diagnostic Tests, Routine , Immunoglobulin M , Syphilis , Humans , Immunoblotting/standards , Immunoglobulin M/analysis , Polymerase Chain Reaction/standards , Syphilis/diagnosis , Syphilis/immunology , Syphilis/microbiology , Treponema pallidum/genetics , Serologic Tests/standards , Diagnostic Tests, Routine/economics , Diagnostic Tests, Routine/methods , Diagnostic Tests, Routine/standards , Sensitivity and Specificity
20.
Microbiol Spectr ; 11(3): e0493122, 2023 06 15.
Article En | MEDLINE | ID: mdl-37036342

TprK antigenic variation is acknowledged as an important strategy developed by Treponema pallidum to achieve immune evasion. Previous studies applied short-read sequencing to explore tprK gene sequence diversity in clinical samples; however, due to the limitations of short-read sequencing, it was difficult to determine the linkage between the seven V regions, and crucial information about full-length tprK variants was lost. Although two recent studies explored complete tprK gene profiles in natural human syphilis infection, there are still too few profiled full-length tprK variants among clinical T. pallidum isolates to fully understand the characteristics of TprK coding diversity. Here, Pacific Biosciences (PacBio) long-read sequencing was applied to examine the diversity of full-length tprK variants in 21 clinical T. pallidum isolates from 11 patients with primary syphilis and 10 patients with secondary syphilis. A total of 398 high-confidence full-length sequences, which presented remarkable sequence heterogeneity, were found. However, these full-length tprK variants exhibited limited variation in length and GC content, showing 24 length types and average GC content of 51.5 ± 0.42% and 51.6 ± 0.26% for primary and secondary syphilis samples, respectively. Additionally, the combined patterns of mutated V regions generating new tprK variants were obviously different in primary and secondary syphilis samples. The diversity of tprK gene sequences in primary syphilis samples may represent the underlying variability of the bacterium; conversely, the variability of the tprK gene in secondary syphilis samples may more accurately reflect how T. pallidum escapes host immune clearance. These data highlight the tprK gene as an important coding gene that shows conflicting genetic characteristics but underlies the persistence of spirochete infection. IMPORTANCE The resurgence of syphilis in both low- and high-income countries has attracted attention, and persistent infection by the pathogen has long been a research focus. The tprK gene, encoding the hypervariable outer membrane protein, is thought to be responsible for pathogen immune evasion and persistent infection. Here, PacBio long-read sequencing was applied to examine the diversity of full-length tprK variants in 21 clinical T. pallidum isolates from 11 patients with primary syphilis and 10 patients with secondary syphilis. The results showed that the sequences of the tprK gene were remarkably heterogeneous; however, the sequences presented limited variation in length and GC content. The investigation of the combined patterns of the V regions allowed us to gain insight into the features of the tprK gene generating new variants at different clinical stages. The findings of this study will be helpful for further exploration of the pathogenesis of syphilis.


Syphilis , Humans , Syphilis/microbiology , Persistent Infection , Treponema pallidum/genetics
...