Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 153
1.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Article En | MEDLINE | ID: mdl-38418917

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Alternative Splicing , Evolution, Molecular , Hominidae , T-Box Domain Proteins , Tail , Animals , Humans , Mice , Alternative Splicing/genetics , Alu Elements/genetics , Disease Models, Animal , Genome/genetics , Hominidae/anatomy & histology , Hominidae/genetics , Introns/genetics , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Phenotype , Protein Isoforms/deficiency , Protein Isoforms/genetics , Protein Isoforms/metabolism , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Tail/anatomy & histology , Tail/embryology , Exons/genetics
2.
Nat Commun ; 12(1): 5446, 2021 09 14.
Article En | MEDLINE | ID: mdl-34521844

EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.


Cell Cycle/genetics , Cell Lineage/genetics , Killer Cells, Natural/immunology , T-Box Domain Proteins/genetics , Animals , Base Sequence , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , CD11b Antigen/genetics , CD11b Antigen/immunology , Cell Cycle/drug effects , Cell Cycle/immunology , Cell Differentiation , Cell Lineage/drug effects , Cell Lineage/immunology , Epigenesis, Genetic/immunology , Interleukin-12/pharmacology , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic , Protein Binding , Spleen/cytology , Spleen/immunology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/immunology , Transcription, Genetic , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
3.
Allergol Int ; 70(4): 415-420, 2021 Oct.
Article En | MEDLINE | ID: mdl-34456137

Monogenic diseases of the immune system, also known as inborn errors of immunity (IEIs), are caused by single-gene mutations and result in immune deficiency and dysregulation. More than 400 monogenic diseases have been described to date, and this number is rapidly expanding. The increasing availability of next-generation sequencing is now facilitating the diagnosis of IEIs. It is known that IEIs can predispose a person to not only infectious diseases but also cancer and immune disorders, such as inflammatory, autoimmune, and atopic diseases. IEIs with eosinophilia and atopic diseases can occur in several disorders. IEIs with eosinophilia have provided insights into human immunity and the pathogenesis of allergic diseases. Eosinophilia is not a rare finding in clinical practice, and it often poses problems in terms of etiologic research and differential diagnoses. Secondary eosinophilia is the most common form. The main underlying conditions are infectious diseases such as parasitic infections, allergic disorders, drug reactions, and of course IEIs. In clinical settings, the recognition of IEIs in the context of an allergic phenotype with eosinophilia is critical for prompt diagnosis and appropriate treatment aimed at modulating pathophysiological mechanisms and improving clinical symptoms.


Eosinophilia/immunology , Genetic Diseases, Inborn/immunology , Immune System Diseases/immunology , Actins/immunology , Animals , Cytokines/immunology , Humans , Immune Tolerance , Receptors, Antigen, T-Cell/immunology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/immunology , T-Lymphocytes/immunology
4.
J Exp Med ; 218(8)2021 08 02.
Article En | MEDLINE | ID: mdl-34160550

We have described a child suffering from Mendelian susceptibility to mycobacterial disease (MSMD) due to autosomal recessive, complete T-bet deficiency, which impairs IFN-γ production by innate and innate-like adaptive, but not mycobacterial-reactive purely adaptive, lymphocytes. Here, we explore the persistent upper airway inflammation (UAI) and blood eosinophilia of this patient. Unlike wild-type (WT) T-bet, the mutant form of T-bet from this patient did not inhibit the production of Th2 cytokines, including IL-4, IL-5, IL-9, and IL-13, when overexpressed in T helper 2 (Th2) cells. Moreover, Herpesvirus saimiri-immortalized T cells from the patient produced abnormally large amounts of Th2 cytokines, and the patient had markedly high plasma IL-5 and IL-13 concentrations. Finally, the patient's CD4+ αß T cells produced most of the Th2 cytokines in response to chronic stimulation, regardless of their antigen specificities, a phenotype reversed by the expression of WT T-bet. T-bet deficiency thus underlies the excessive production of Th2 cytokines, particularly IL-5 and IL-13, by CD4+ αß T cells, causing blood eosinophilia and UAI. The MSMD of this patient results from defective IFN-γ production by innate and innate-like adaptive lymphocytes, whereas the UAI and eosinophilia result from excessive Th2 cytokine production by adaptive CD4+ αß T lymphocytes.


Cytokines/metabolism , Pneumonia/immunology , T-Box Domain Proteins/deficiency , Th2 Cells/immunology , Animals , Cytokines/blood , Epigenesis, Genetic , Epitopes/immunology , Female , Humans , Immunologic Memory , Male , Mice, Inbred C57BL , Mutation/genetics , Pedigree , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Respiratory Hypersensitivity/blood , Respiratory Hypersensitivity/immunology , Sequence Analysis, RNA , Single-Cell Analysis , T-Box Domain Proteins/genetics
5.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article En | MEDLINE | ID: mdl-33526653

Exacerbated immune responses and loss of self-tolerance lead to the development of autoimmunity and immunopathology. Novel therapies to target autoreactive T cells are still needed. Here, we report that Th2-polarized T cells lacking the transcription factor T-bet harbor strong immunomodulatory potential and suppress antigen-specific CD8+ T cells via IL-10. Tbx21-/- Th2 cells protected mice against virus-induced type 1 diabetes development and suppressed not only naive but also memory CD8+ T cell responses. IL-10-producing, but not IL-10-deficient Tbx21-/- Th2 cells down-regulated costimulatory molecules on dendritic cells and reduced their IL-12 production after lymphocytic choriomeningitis virus infection. Impaired dendritic cell activation hindered effector and cytotoxic CD8+ T cell development after infection. These findings indicate that Tbx21-/- Th2 cells strongly suppress proinflammatory responses of naive and memory T cells via IL-10. Thus, in vivo IL-10-secreting Th2 cells could harbor a therapeutic potential for the treatment of T cell-mediated inflammatory disorders.


Immunologic Memory , Interleukin-10/metabolism , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/metabolism , Th2 Cells/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/prevention & control , Down-Regulation , Epitopes/immunology , Lymphocyte Activation/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Mice, Inbred C57BL , Mice, Knockout
6.
PLoS One ; 16(2): e0247232, 2021.
Article En | MEDLINE | ID: mdl-33600503

The appropriate regulation of T lymphocyte functions is key to achieve protective immune responses, while at the same time limiting the risks of tissue damage and chronic inflammation. Deciphering the mechanisms underpinning T cell responses in humans may therefore be beneficial for a range of infectious and chronic diseases. Recently, the development of methods based on CRISPR-Cas9 gene-editing has greatly expanded the available tool-box for the mechanistic studies of primary human T cell responses. While the deletion of a surface protein has become a relatively straightforward task, as long as an antibody for detection is available, the identification and selection of cells lacking an intracellular protein, a non-coding RNA or a protein for which no antibody is available, remain more problematic. Here, we discuss the options currently available to scientists interested in performing gene-editing in primary human T lymphocytes and we describe the optimization of a workflow for the screening and analysis of lymphocytes following gene-editing with CRISPR-Cas9 based on T cell cloning and T7 endonuclease I cleavage assay.


CRISPR-Cas Systems/genetics , Gene Editing/methods , Membrane Proteins/genetics , Transcription Factors/genetics , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cells, Cultured , Endoribonucleases/deficiency , Endoribonucleases/genetics , Humans , Membrane Proteins/deficiency , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Receptors, Antigen, T-Cell, alpha-beta/deficiency , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Transcription Factors/deficiency
7.
Am J Med Genet A ; 185(3): 923-929, 2021 03.
Article En | MEDLINE | ID: mdl-33369127

Long QT syndrome (LQTS) is a genetic disease resulting in a prolonged QT interval on a resting electrocardiogram, predisposing affected individuals to polymorphic ventricular tachycardia and sudden death. Although a number of genes have been implicated in this disease, nearly one in four individuals exhibiting the LQTS phenotype are genotype-negative. Whole-exome sequencing identified a missense T223M variant in TBX5 that cosegregates with prolonged QT interval in a family with otherwise genotype-negative LQTS and sudden death. The TBX5-T223M variant was absent among large ostensibly healthy populations (gnomAD) and predicted to be pathogenic by in silico modeling based on Panther, PolyPhen-2, Provean, SIFT, SNAP2, and PredictSNP prediction tools. The variant was located in a highly conserved region of TBX5 predicted to be part of the DNA-binding interface. A luciferase assay identified a 57.5% reduction in the ability of TBX5-T223M to drive expression at the atrial natriuretic factor promotor compared to wildtype TBX5 in vitro. We conclude that the variant is pathogenic in this family, and we put TBX5 forward as a disease susceptibility allele for genotype-negative LQTS. The identification of this familial variant may serve as a basis for the identification of previously unknown mechanisms of LQTS with broader implications for cardiac electrophysiology.


Death, Sudden, Cardiac/etiology , Long QT Syndrome/genetics , Mutation, Missense , Point Mutation , T-Box Domain Proteins/genetics , Adult , Amino Acid Sequence , Amino Acid Substitution , Atrial Natriuretic Factor/genetics , Child , Child, Preschool , Electrocardiography , Female , Humans , Male , Middle Aged , Models, Molecular , Pedigree , Promoter Regions, Genetic , Protein Conformation , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , T-Box Domain Proteins/deficiency , Exome Sequencing
8.
Cell ; 183(7): 1826-1847.e31, 2020 12 23.
Article En | MEDLINE | ID: mdl-33296702

Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αß T and non-classic CD4+ αß TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αß T, and CD4+ αß TH1∗ cells unable to compensate for this deficit.


Adaptive Immunity , Immunity, Innate , Interferon-gamma/immunology , Mycobacterium/immunology , T-Box Domain Proteins/metabolism , Amino Acid Sequence , Base Sequence , Cell Lineage , Child, Preschool , Chromatin/metabolism , CpG Islands/genetics , DNA Methylation/genetics , Dendritic Cells/metabolism , Epigenesis, Genetic , Female , Homozygote , Humans , INDEL Mutation/genetics , Infant , Interferon-gamma/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Loss of Function Mutation/genetics , Male , Mycobacterium Infections/genetics , Mycobacterium Infections/immunology , Mycobacterium Infections/microbiology , Pedigree , T-Box Domain Proteins/chemistry , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Lymphocytes, Helper-Inducer/immunology , Transcriptome/genetics
9.
Front Immunol ; 11: 2125, 2020.
Article En | MEDLINE | ID: mdl-32983171

Although CD4+ T cell memory is a critical component of adaptive immunity, antigen-specific CD4+ T cell recall responses to secondary infection have been inadequately studied. Here we examine the kinetics of the secondary response in an important immunological model, infection with attenuated Listeria monocytogenes (Lm). We identify CD4+ T cell subsets that preferentially expand during a secondary response and highlight the importance of prime-boost strategies in expanding and maintaining antigen-specific, tissue-resident memory CD4+ T cells. Following intravenous infection with an attenuated strain of Lm, we found that total antigen-specific CD4+ T cells responded more robustly in secondary compared with primary infection, reaching near-peak levels in secondary lymphoid organs (SLOs) and the liver by three days post-infection. During the secondary response, CD4+ T cells also contracted more quickly. Primary Lm infection generated two main classes of effector cells: Th1 cells that assist macrophages and T follicular helper (Tfh) cells that aid B cells in antibody production. We found that during the secondary response, a population of Ly6C+ Tfh cells emerged in SLOs and was the basis for the skewing of this response to a Tfh phenotype. Deletion of T-bet in T cells precluded development of Ly6C+ Tfh cells, but did not alter anti-Lm antibody responses. Moreover, during recall responses, CD49a+ Th1 cells preferentially expanded and accumulated in the liver, achieving a new set point. Parabiosis experiments indicated that, in contrast to Tfh cells and most splenic Th1 cells, the majority of CD49a+ Th1 cells in the liver were tissue resident. Overall, these data demonstrate a robust secondary CD4+ T cell response that differs in kinetics and composition from the primary response and provide insight into targets to enhance both peripheral and tissue-resident CD4+ T cell responses.


CD4-Positive T-Lymphocytes/immunology , Immunologic Memory , Listeriosis/immunology , T-Lymphocyte Subsets/immunology , Animals , Epitopes , Immunophenotyping , Kinetics , Listeria monocytogenes , Liver/immunology , Lymphocyte Activation , Lymphoid Tissue/immunology , Mice , Mice, Inbred C57BL , Parabiosis , Specific Pathogen-Free Organisms , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/physiology , Th1 Cells/immunology
10.
Cell Rep ; 31(9): 107720, 2020 06 02.
Article En | MEDLINE | ID: mdl-32492428

Natural killer (NK) cells are cytotoxic innate lymphoid cells (ILCs) that mediate antiviral and antitumor responses and require the transcriptional regulator Eomesodermin (Eomes) for early development. However, the role of Eomes and its molecular program in mature NK cell biology is unclear. To address this, we develop a tamoxifen-inducible, type-1-ILC-specific (Ncr1-targeted) cre mouse and combine this with Eomes-floxed mice. Eomes deletion after normal NK cell ontogeny results in a rapid loss of NK cells (but not ILC1s), with a particularly profound effect on penultimately mature stage III NK cells. Mechanisms responsible for stage III reduction include increased apoptosis and impaired maturation from stage II precursors. Induced Eomes deletion also decreases NK cell cytotoxicity and abrogates in vivo rejection of major histocompatibility complex (MHC)-class-I-deficient cells. However, other NK cell functional responses, and stage IV NK cells, are largely preserved. These data indicate that mature NK cells have distinct Eomes-dependent and -independent stages.


Killer Cells, Natural/immunology , T-Box Domain Proteins/metabolism , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Apoptosis , Cell Cycle Checkpoints , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Cytotoxicity Triggering Receptor 1/genetics , Natural Cytotoxicity Triggering Receptor 1/metabolism , Receptors, Interleukin-15/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , Spleen/cytology , Spleen/immunology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics
11.
J Immunol ; 205(3): 708-719, 2020 08 01.
Article En | MEDLINE | ID: mdl-32591391

Clearance of intracellular infections caused by Salmonella Typhimurium (STm) requires IFN-γ and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-γ-/- mice succumb rapidly to STm infections, T-bet-/- mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-γ-/- and T-bet-/- mice. In IFN-γ-/- mice, there is deficient granuloma formation and inducible NO synthase (iNOS) induction, increased dissemination of bacteria throughout the organs, and rapid death. The provision of a source of IFN-γ reverses this, coincident with subsequent granuloma formation and substantially extends survival when compared with mice deficient in all sources of IFN-γ. T-bet-/- mice induce significant levels of IFN-γ- after challenge. Moreover, T-bet-/- mice have augmented IL-17 and neutrophil numbers, and neutralizing IL-17 reduces the neutrophilia but does not affect numbers of bacteria detected. Surprisingly, T-bet-/- mice exhibit surprisingly wild-type-like immune cell organization postinfection, including extensive iNOS+ granuloma formation. In wild-type mice, most bacteria are within iNOS+ granulomas, but in T-bet-/- mice, most bacteria are outside these sites. Therefore, Th1 cells act to restrict bacteria within IFN-γ-dependent iNOS+ granulomas and prevent dissemination.


Granuloma/immunology , Nitric Oxide Synthase Type II/immunology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , T-Box Domain Proteins/deficiency , Th1 Cells/immunology , Animals , Granuloma/genetics , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Mice , Mice, Knockout , Nitric Oxide Synthase Type II/genetics , Salmonella Infections/genetics , Salmonella typhimurium/genetics , T-Box Domain Proteins/immunology
12.
Circ Res ; 127(3): e94-e106, 2020 07 17.
Article En | MEDLINE | ID: mdl-32290757

RATIONALE: The heartbeat is organized by the cardiac conduction system (CCS), a specialized network of cardiomyocytes. Patterning of the CCS into atrial node versus ventricular conduction system (VCS) components with distinct physiology is essential for the normal heartbeat. Distinct node versus VCS physiology has been recognized for more than a century, but the molecular basis of this regional patterning is not well understood. OBJECTIVE: To study the genetic and genomic mechanisms underlying node versus VCS distinction and investigate rhythm consequences of failed VCS patterning. METHODS AND RESULTS: Using mouse genetics, we found that the balance between T-box transcriptional activator, Tbx5, and T-box transcriptional repressor, Tbx3, determined the molecular and functional output of VCS myocytes. Adult VCS-specific removal of Tbx5 or overexpression of Tbx3 re-patterned the fast VCS into slow, nodal-like cells based on molecular and functional criteria. In these cases, gene expression profiling showed diminished expression of genes required for VCS-specific fast conduction but maintenance of expression of genes required for nodal slow conduction physiology. Action potentials of Tbx5-deficient VCS myocytes adopted nodal-specific characteristics, including increased action potential duration and cellular automaticity. Removal of Tbx5 in vivo precipitated inappropriate depolarizations in the atrioventricular (His)-bundle associated with lethal ventricular arrhythmias. TBX5 bound and directly activated cis-regulatory elements at fast conduction channel genes required for fast physiological characteristics of the VCS action potential, defining the identity of the adult VCS. CONCLUSIONS: The CCS is patterned entirely as a slow, nodal ground state, with a T-box dependent, physiologically dominant, fast conduction network driven specifically in the VCS. Disruption of the fast VCS gene regulatory network allowed nodal physiology to emerge, providing a plausible molecular mechanism for some lethal ventricular arrhythmias.


Arrhythmias, Cardiac/metabolism , Atrioventricular Node/metabolism , Heart Ventricles/metabolism , T-Box Domain Proteins/metabolism , Transcription, Genetic , Action Potentials , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Atrioventricular Node/physiopathology , Body Patterning , Female , Gene Expression Regulation, Developmental , HEK293 Cells , Heart Rate , Heart Ventricles/physiopathology , Humans , Male , Mice, Knockout , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , Time Factors
13.
Neuron ; 103(4): 642-657.e7, 2019 08 21.
Article En | MEDLINE | ID: mdl-31255486

Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.


Nerve Regeneration/physiology , Retinal Ganglion Cells/physiology , Thrombospondin 1/physiology , Animals , Apoptosis , Axons/metabolism , Cell Line , Female , Gene Expression Profiling , Genes, Reporter , Insulin-Like Growth Factor I/deficiency , Insulin-Like Growth Factor I/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nerve Crush , Optic Nerve Injuries/genetics , Optic Nerve Injuries/physiopathology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Rod Opsins/deficiency , Rod Opsins/physiology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/physiology , Thrombospondin 1/biosynthesis , Thrombospondin 1/genetics , Transcription, Genetic
14.
Mol Metab ; 28: 48-57, 2019 10.
Article En | MEDLINE | ID: mdl-31352005

OBJECTIVE: The T-box gene Tbx15 is abundantly expressed in adipose tissues, especially subcutaneous and brown fat. Although its expression is correlated with obesity, its precise biological role in adipose tissue is poorly understood in vivo. Here we investigated the function of Tbx15 in brown adipose thermogenesis and white adipose browning in vivo. METHODS: In the present study, we generated adipose-specific Tbx15 knockout (AKO) mice by crossing Tbx15 floxed mice with adiponectin-Cre mice to delineate Tbx15 function in adipose tissues. We systematically investigated the influence of Tbx15 on brown adipose thermogenesis and white adipose browning in mice, as well as the possible underlying molecular mechanism. RESULTS: Upon cold exposure, adipocyte browning in inguinal adipose tissue was significantly impaired in Tbx15 AKO mice. Furthermore, ablation of Tbx15 blocked adipocyte browning induced by ß3 adrenergic agonist CL 316243, which did not appear to alter the expression of Tbx15. Analysis of DNA binding sites using chromatin-immunoprecipitation (ChIP) revealed that TBX15 bound directly to a key region in the Prdm16 promoter, indicating it regulates transcription of Prdm16, the master gene for adipocyte thermogenesis and browning. Compared to control mice, Tbx15 AKO mice displayed increased body weight gain and decreased whole body energy expenditure in response to high fat diets. CONCLUSION: Taken together, these findings suggest that Tbx15 regulates adipocyte browning and might be a potential target for the treatment of obesity.


Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Receptors, Adrenergic, beta-3/metabolism , Signal Transduction , T-Box Domain Proteins/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics
15.
Front Immunol ; 10: 1199, 2019.
Article En | MEDLINE | ID: mdl-31231373

Gout is sterile joint inflammation triggered by the damaging effects of monosodium urate (MSU) crystals accumulation. Previous studies suggest transcription factor T-bet plays an important role in inflammatory arthritis. Notably, mice lacking T-bet markedly reduced joint inflammation of rheumatoid arthritis models, however, the involvement of T-bet in gouty inflammation has yet to be clarified. Here, we took advantage of T-bet knockout (KO) mice to investigate the role of T-bet in the pathogenesis of MSU-induced gout inflammation. T-bet KO and wild type (WT) mice were used for models of acute inflammation induced with MSU crystals, including footpad, air pouch and peritonitis models. Inflammatory cytokines and phagocytosis were detected in bone-marrow-derived macrophages (BMDMs) from T-bet KO and WT mice treated with MSU crystals in vitro. In addition, T-bet expression in peripheral blood mononuclear cells (PBMCs) from gout patients was measured, as well as plasma inflammatory cytokines. We found that the levels of interleukin (IL)-17, IL-23, and interferon-γ were reduced, but tumor necrosis factor-α was not, in BMDMs from T-bet KO compared with WT mice after MSU challenge in vitro, as well as MSU phagocytosis. In comparison with WT mice in vivo, the swelling index of T-bet KO mice was significantly decreased in the footpad model. T-bet deficiency also dramatically relieved MSU-induced inflammatory cell infiltration in peritonitis and air pouch models in vivo, and as well as the IL-1ß levels of air pouch lavage fluid (APLF). In addition, plasma IL-17 and IL-23 levels were elevated in acute gout, whereas protein levels of T-bet were downregulated in PBMCs from acute gout patients and intercritical gout treated with MSU crystals in vitro as well. Transcription factor T-bet deficiency protects against MSU-induced gouty inflammation, suggesting that downregulation of T-bet could be a protective strategy and contribute to spontaneous remission of inflammation in acute gout.


Gout/prevention & control , T-Box Domain Proteins/deficiency , Adult , Animals , Body Fluids/chemistry , Cytokines/biosynthesis , Disease Models, Animal , Down-Regulation , Edema/chemically induced , Edema/prevention & control , Female , Foot , Gout/chemically induced , Gout/genetics , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Peritonitis/chemically induced , Peritonitis/prevention & control , Phagocytosis/drug effects , Specific Pathogen-Free Organisms , Subcutaneous Tissue , T-Box Domain Proteins/biosynthesis , T-Box Domain Proteins/genetics , T-Box Domain Proteins/physiology , Uric Acid/toxicity
16.
Commun Biol ; 2: 150, 2019.
Article En | MEDLINE | ID: mdl-31044175

Eomes regulates the differentiation of CD8+ T cells into effector and memory phases. However, its role in invariant (i)NKT cells remains unknown. Here, we show the impact of Eomes on iNKT cells in the thymus and peripheral tissue using conditional knockout (Eomes-cKO) mice. In the thymus, CD1d-tetramer+CD24+CD44-NK1.1-CD69+stage 0 iNKT cells express higher levels of Eomes than the other iNKT stages. We also found that Eomes regulates NKT1 cell differentiation predominantly. Interestingly, the expression of Eomes in the steady state is low, but can be upregulated after TCR stimulation. We also showed epigenetic changes in the Eomes locus after activation. In addition, vaccination of C57BL/6, but not Eomes-cKO mice with iNKT ligand-loaded dendritic cells generated KLRG1+iNKT cells in lung, characterized as effector memory phenotype by transcriptome profiling. Thus, Eomes regulates not only the differentiation of NKT1 cells in the thymus, but also their differentiation into memory-like KLRG1+iNKT cells in the periphery.


Gene Expression Regulation/immunology , Immunologic Memory/genetics , Natural Killer T-Cells/cytology , T-Box Domain Proteins/genetics , Transcriptome/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Lineage/genetics , Cell Lineage/immunology , Cell Proliferation , Dendritic Cells/cytology , Dendritic Cells/immunology , Gene Expression Profiling , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Lung/cytology , Lung/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Signal Transduction , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/immunology , Thymus Gland/cytology , Thymus Gland/immunology
17.
Am J Respir Cell Mol Biol ; 61(4): 525-536, 2019 10.
Article En | MEDLINE | ID: mdl-30965014

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by peripheral airways inflammation and emphysema. Emerging evidence indicates a contribution of both innate and adaptive immune cells to the development of COPD. Transcription factor T-bet modulates the function of immune cells and therefore might be involved in the pathogenesis of COPD. To elucidate the role for T-bet in elastase-induced emphysema, pathological phenotypes were compared between wild-type and T-bet-/- mice. T-bet-/- mice demonstrated enhanced emphysema development on histological analyses, with higher values of mean linear intercept and dynamic compliance relative to wild-type mice. The number of neutrophils in BAL fluids, lung IL-6 and IL-17 expression, and the proportion of CD4+ T cells positive for IL-17 or retinoic acid receptor-related orphan receptor-γt were higher in T-bet-/- mice than in wild-type mice. Although T-bet downregulates cytokine expression in bone marrow-derived macrophages and MH-S cells, a murine alveolar cell line, depending on the surrounding environment, IL-6 expression in alveolar macrophages isolated from elastase-treated mice was not dependent on T-bet. Coculture of bone marrow-derived macrophages and CD4+ T cells revealed that T-bet regulation of IL-17 expression was dependent on CD4+ T cells. Neutralizing antibodies against IL-6R or IL-17 ameliorated the development of emphysema in T-bet-/- mice. In conclusion, we demonstrate that T-bet ameliorates elastase-induced emphysema formation by modulating the host immune response in the lungs.


Pulmonary Emphysema/immunology , T-Box Domain Proteins/physiology , Adaptive Immunity , Animals , Bronchoalveolar Lavage Fluid/cytology , CD4-Positive T-Lymphocytes/chemistry , CD4-Positive T-Lymphocytes/immunology , Chemotaxis, Leukocyte , Cytokines/metabolism , Female , Immunity, Innate , Lung/immunology , Lung/metabolism , Lymphocyte Subsets , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Neutrophils/physiology , Nuclear Receptor Subfamily 1, Group F, Member 1/analysis , Pancreatic Elastase/toxicity , Phenotype , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics
18.
Elife ; 82019 03 21.
Article En | MEDLINE | ID: mdl-30896405

Risk for Atrial Fibrillation (AF), the most common human arrhythmia, has a major genetic component. The T-box transcription factor TBX5 influences human AF risk, and adult-specific Tbx5-mutant mice demonstrate spontaneous AF. We report that TBX5 is critical for cellular Ca2+ homeostasis, providing a molecular mechanism underlying the genetic implication of TBX5 in AF. We show that cardiomyocyte action potential (AP) abnormalities in Tbx5-deficient atrial cardiomyocytes are caused by a decreased sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2)-mediated SR calcium uptake which was balanced by enhanced trans-sarcolemmal calcium fluxes (calcium current and sodium/calcium exchanger), providing mechanisms for triggered activity. The AP defects, cardiomyocyte ectopy, and AF caused by TBX5 deficiency were rescued by phospholamban removal, which normalized SERCA function. These results directly link transcriptional control of SERCA2 activity, depressed SR Ca2+ sequestration, enhanced trans-sarcolemmal calcium fluxes, and AF, establishing a mechanism underlying the genetic basis for a Ca2+-dependent pathway for AF risk.


Atrial Fibrillation/physiopathology , Calcium/metabolism , Mutant Proteins/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , T-Box Domain Proteins/metabolism , Animals , Cations, Divalent/metabolism , Cells, Cultured , Disease Models, Animal , Mice , Myocytes, Cardiac/pathology , Myocytes, Cardiac/physiology , T-Box Domain Proteins/deficiency
19.
PLoS One ; 13(11): e0207251, 2018.
Article En | MEDLINE | ID: mdl-30408103

The CXCL12-CXCR4 pathway has crucial roles in stem cell homing and maintenance, neuronal guidance, cancer progression, inflammation, remote-conditioning, cell migration and development. Recently, work in chick suggested that signalling via CXCR4 in neural crest cells (NCCs) has a role in the 22q11.2 deletion syndrome (22q11.2DS), a disorder where haploinsufficiency of the transcription factor TBX1 is responsible for the major structural defects. We tested this idea in mouse models. Our analysis of genes with altered expression in Tbx1 mutant mouse models showed down-regulation of Cxcl12 in pharyngeal surface ectoderm and rostral mesoderm, both tissues with the potential to signal to migrating NCCs. Conditional mutagenesis of Tbx1 in the pharyngeal surface ectoderm is associated with hypo/aplasia of the 4th pharyngeal arch artery (PAA) and interruption of the aortic arch type B (IAA-B), the cardiovascular defect most typical of 22q11.2DS. We therefore analysed constitutive mouse mutants of the ligand (CXCL12) and receptor (CXCR4) components of the pathway, in addition to ectodermal conditionals of Cxcl12 and NCC conditionals of Cxcr4. However, none of these typical 22q11.2DS features were detected in constitutively or conditionally mutant embryos. Instead, duplicated carotid arteries were observed, a phenotype recapitulated in Tie-2Cre (endothelial) conditional knock outs of Cxcr4. Previous studies have demonstrated genetic interaction between signalling pathways and Tbx1 haploinsufficiency e.g. FGF, WNT, SMAD-dependent. We therefore tested for possible epistasis between Tbx1 and the CXCL12 signalling axis by examining Tbx1 and Cxcl12 double heterozygotes as well as Tbx1/Cxcl12/Cxcr4 triple heterozygotes, but failed to identify any exacerbation of the Tbx1 haploinsufficient arch artery phenotype. We conclude that CXCL12 signalling via NCC/CXCR4 has no major role in the genesis of the Tbx1 loss of function phenotype. Instead, the pathway has a distinct effect on remodelling of head vessels and interventricular septation mediated via CXCL12 signalling from the pharyngeal surface ectoderm and second heart field to endothelial cells.


Cardiovascular System/growth & development , Cardiovascular System/metabolism , Chemokine CXCL12/deficiency , Receptors, CXCR4/deficiency , T-Box Domain Proteins/deficiency , Animals , Aorta, Thoracic/abnormalities , Aorta, Thoracic/embryology , Aorta, Thoracic/metabolism , Cardiovascular Abnormalities/embryology , Cardiovascular Abnormalities/genetics , Cardiovascular Abnormalities/metabolism , Cardiovascular System/embryology , Chemokine CXCL12/genetics , DiGeorge Syndrome/enzymology , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Disease Models, Animal , Epistasis, Genetic , Female , Haploinsufficiency , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neural Crest/metabolism , Pregnancy , Receptors, CXCR4/genetics , Signal Transduction/genetics , T-Box Domain Proteins/genetics
20.
Transplant Proc ; 50(5): 1566-1574, 2018 Jun.
Article En | MEDLINE | ID: mdl-29880387

BACKGROUND: Cellular and molecular mechanisms of acute and chronic lung allograft rejection have yet to be clearly defined, and obliterative bronchiolitis (OB) remains the primary limitation to survival in lung transplant recipients (LTRs). We have previously shown that T-bet-deficient recipients of full major histocompatibility complex (MHC)-mismatched, orthotopic left lung transplants develop accelerated obliterative airway disease (OAD) in the setting of acute cellular rejection characterized by robust alloimmune CD8+ interleukin (IL)-17 and interferon (IFN)-γ responses that are attenuated with neutralization of IL-17. Azithromycin has been shown to be beneficial in some LTRs with bronchiolitis obliterans syndrome/OB. Here, we evaluated the effects of azithromycin on rejection pathology and T-cell effector responses in T-bet-/- recipients of lung transplants. METHODS: Orthotopic left lung transplantation was performed in BALB/c → B6 wild type or BALB/c → B6 T-bet-/- strain combinations as previously described. Mice treated with azithromycin received 10 mg/kg or 50 mg/kg subcutaneously daily. Lung allograft histopathology was analyzed at day 10 or day 21 post-transplantation, and neutrophil staining for quantification was performed using anti-myeloperoxidase. Allograft mononuclear cells were isolated at day 10 for T-cell effector cytokine response assessment using flow cytometry. RESULTS: We show that while azithromycin significantly decreases lung allograft neutrophilia and CXCL1 levels and attenuates allospecific CD8+ IL-17 responses early post-transplantation, OAD persists in T-bet-deficient mice. CONCLUSIONS: Our results indicate that lung allograft neutrophilia is not essential for the development of OAD in this model and suggest allospecific T-cell responses that remain despite marked attenuation of CD8+ IL-17 are sufficient for obliterative airway inflammation and fibrosis.


Azithromycin/pharmacology , Bronchiolitis Obliterans/immunology , Graft Rejection/immunology , Lung Transplantation , Allografts/immunology , Animals , Lung/drug effects , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , T-Box Domain Proteins/deficiency , Transplantation, Homologous
...