Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
Aquat Toxicol ; 273: 107022, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032423

RESUMEN

Estrogen plays a pivotal role in the early stage of sex differentiation in teleost. However, the underlying mechanisms of estrogen-induced feminization process are still needed for further clarification. Here, the comparative analysis of whole-transcriptome RNA sequencing was conducted between 17beta-Estradiol induced feminized XY (E-XY) gonads and control gonads (C) in Takifugu rubripes. A total of 57 miRNAs, 65 lncRNAs, and 4 circRNAs were found to be expressed at lower levels in control-XY (C-XY) than that in control-XX (C-XX), and were up-regulated in XY during E2-induced feminization process. The expression levels of 24 miRNAs, and 55 lncRNAs were higher in C-XY than that in C-XX, and were down-regulated in E2-treated XY. Furthermore, a correlation analysis was performed between miRNA-seq and mRNA-seq data. In C-XX/C-XY, 114 differential expression (DE) miRNAs were predicted to target to 904 differential expression genes (DEGs), while in C-XY/E-XY, 226 DEmiRNAs were predicted to target to 2,048 DEGs. In C-XX/C-XY, and C-XY/E-XY, KEGG pathway enrichment analysis showed that those targeted genes were mainly enriched in MAPK signaling, calcium signaling, steroid hormone biosynthesis and ovarian steroidogenesis pathway. Additionally, the competitive endogenous RNA (ceRNA) regulatory network was constructed by 24 miRNAs, 21 lncRNAs, 4 circRNAs and 5 key sex-related genes. These findings suggested that the expression of critical genes in sex differentiation were altered in E2-treated XY T. rubripes may via the lncRNA-miRNA-mRNA regulation network to facilitate the differentiation and maintenance of ovaries. Our results provide a new insight into the comprehensive understanding of the effects of estrogen signaling pathways on sex differentiation in teleost gonads.


Asunto(s)
Estrógenos , Gónadas , MicroARNs , Takifugu , Animales , Takifugu/genética , Femenino , Masculino , Estrógenos/toxicidad , Gónadas/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Estradiol , Feminización/inducido químicamente , Feminización/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , Diferenciación Sexual/efectos de los fármacos , Diferenciación Sexual/genética , Transcriptoma/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
2.
Fish Shellfish Immunol ; 151: 109724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942251

RESUMEN

Takifugu rubripes is a highly valued cultured fish in Asia, while pathogen infections can result in severe diseases and lead to substantial economic losses. Toll-like receptors (TLRs), as pattern recognition receptors, play a crucial role on recognition pathogens and initiation innate immune response. However, the immunological properties of teleost-specific TLR23 remain largely unknown. In this study, we investigated the biological functions of TLR23 (TrTLR23) from T. rubripes, found that TrTLR23 existed in various organs. Following bacterial pathogen challenge, the expression levels of TrTLR23 were significantly increased in immune related organs. TrTLR23 located on the cellular membrane and specifically recognized pathogenic microorganism. Co-immunoprecipitation and antibody blocking analysis revealed that TrTLR23 recruited myeloid differentiation primary response protein (MyD88), thereby mediating the activation of the ERK signaling pathway. Furthermore, in vivo showed that, when TrTLR23 is overexpressed in T. rubripes, bacterial replication in fish tissues is significantly inhibited. Consistently, when TrTLR23 expression in T. rubripes is knocked down, bacterial replication is significantly enhanced. In conclusion, these findings suggested that TrTLR23 played a critical role on mediation TLR23-MyD88-ERK axis against bacterial infection. This study revealed that TLR23 involved in the innate immune mechanism, and provided the foundation for development disease control strategies in teleost.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Factor 88 de Diferenciación Mieloide , Takifugu , Receptores Toll-Like , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Takifugu/inmunología , Takifugu/genética , Enfermedades de los Peces/inmunología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/inmunología , Inmunidad Innata/genética , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Regulación de la Expresión Génica/inmunología , Edwardsiella/fisiología , Edwardsiella/inmunología , Vibrio/fisiología
3.
Int J Biol Macromol ; 269(Pt 2): 132167, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729479

RESUMEN

The Japanese puffer, Takifugu rubripes, is a commercially important fish species in China that is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic losses. We previously found that interleukin-1ß (IL-1ß), an important cytokine with a potential role in resistance against pathogens, was one of the most significantly differentially up-regulated proteins in the gills and spleen of T. rubripes infected by the protozoan parasite Cryptocaryon irritans. In this study, we assessed the potential function of T. rubripes IL-1ß (TrIL-1ß) in fish infected with C. irritans. Phylogenetic analysis indicated that the TrIL-1ß protein sequence was most closely related to that of Atlantic salmon (Salmo salar) (67.2 %). The incubation experiments revealed that TrIL-1ß may reduce trophont activity by destroying membranes. Immunofluorescence experiments showed that recombinant TrIL-1ß promoted the expression of endogenous IL-1ß, which penetrated and disrupted the cell membranes of trophonts. Transmission electron microscopy showed that the IL-1ß group had less tissue damage compared with control groups of fish. IL-1ß-small interfering RNA and IL-1ß overexpression experiments were performed in head kidney primary cells, and challenge experiments were performed in vitro. Quantitative RT-PCR results showed that TrIL-1ß regulated and activated MyD88/NF-κB and MyD88/MAPK/p38 signaling pathways during C. irritans infection. TrIL-1ß also promoted the differential expression of IgM, showing that it was involved in humoral immunity of T. rubripes. The cumulative mortality experiment show that TrIL-1ß could protect fish against C. irritans infection. These results enrich current knowledge about the molecular structure of TrIL-1ß. They also suggested that recombinant TrIL-1ß could be used as an adjuvant in a subunit vaccine against C. irritans infection, which is of profound importance for the prevention and control of parasitic diseases in T. rubripes.


Asunto(s)
Infecciones por Cilióforos , Enfermedades de los Peces , Interleucina-1beta , Takifugu , Animales , Takifugu/parasitología , Takifugu/metabolismo , Takifugu/genética , Infecciones por Cilióforos/parasitología , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/veterinaria , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/inmunología , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Cilióforos/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Filogenia
4.
Artículo en Inglés | MEDLINE | ID: mdl-38735624

RESUMEN

During the development of teleost fish, the sole nutrient source is the egg yolk. The yolk consists mostly of proteins and lipids, with only trace amounts of carbohydrates such as glycogen and glucose. However, past evidence in some fishes showed transient increase in glucose during development, which may have supported the development of the embryos. Recently, we found in zebrafish that the yolk syncytial layer (YSL), an extraembryonic tissue surrounding the yolk, undergoes gluconeogenesis. However, in other teleost species, the knowledge on such gluconeogenic functions during early development is lacking. In this study, we used a marine fish, the grass puffer (Takifugu niphobles) and assessed possible gluconeogenic functions of their YSL, to understand the difference or shared features of gluconeogenesis between these species. A liquid chromatography (LC) / mass spectrometry (MS) analysis revealed that glucose and glycogen content significantly increased in the grass puffer during development. Subsequent real-time PCR results showed that most of the genes involved in gluconeogenesis increased in segmentation stages and/or during hatching. Among these genes, many were expressed in the YSL and liver, as shown by in situ hybridization analysis. In addition, glycogen immunostaining revealed that this carbohydrate source was accumulated in many tissues at segmentation stage but exclusively in the liver in hatched individuals. Taken together, these results suggest that developing grass puffer undergoes gluconeogenesis and glycogen synthesis during development, and that gluconeogenic activity is shared in YSL of zebrafish and grass puffer.


Asunto(s)
Gluconeogénesis , Glucosa , Glucógeno , Takifugu , Animales , Takifugu/metabolismo , Takifugu/crecimiento & desarrollo , Takifugu/genética , Glucógeno/metabolismo , Glucosa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hígado/metabolismo , Embrión no Mamífero/metabolismo
5.
Mar Biotechnol (NY) ; 26(3): 500-510, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630353

RESUMEN

Tetrodotoxin (TTX), known as pufferfish toxin, is a potent neurotoxin blocking sodium channels in muscle and nerve tissues. TTX has been detected in various taxa other than pufferfish, including marine polyclad flatworms, suggesting that pufferfish toxin accumulates in fish bodies via food webs. The composition of TTX and its analogs in the flatworm Planocera multitentaculata was identical to those in wild grass puffer Takifugu alboplumbeus. Previously, Planocera sp. from Okinawa Island, Japan, were reported to possess high level of TTX, but no information was available on TTX analogs in this species. Here we identified TTX and analogs in the planocerid flatworm using high-resolution liquid chromatography-mass spectrometry, and compared the composition of TTX and analogs with those of another toxic and non-toxic planocerid species. We show that the composition of TTX and several analogs, such as 5,6,11-trideoxyTTX, dideoxyTTXs, deoxyTTXs, and 11-norTTX-6(S)-ol, of Planocera sp. was identical to those of toxic species, but not to its non-toxic counterpart. The difference in the toxin composition was reflected in the phylogenetic relationship based on the mitochondrial genome sequence. A toxification experiment using predatory fish and egg plates of P. multitentaculata demonstrated that the composition of TTX and analogs in wild T. alboplumbeus juveniles was reproduced in artificially toxified pufferfish. Additionally, feeding on the flatworm egg plates enhanced the signal intensities of all TTX compounds in Chelonodon patoca and that of deoxyTTXs in Yongeichthys criniger.


Asunto(s)
Tetrodotoxina , Animales , Tetrodotoxina/análisis , Tetrodotoxina/metabolismo , Japón , Platelmintos/genética , Platelmintos/metabolismo , Tetraodontiformes , Takifugu/metabolismo , Takifugu/genética , Cromatografía Liquida , Espectrometría de Masas , Islas , Pueblos del Este de Asia
6.
Mar Biotechnol (NY) ; 26(2): 288-305, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38446292

RESUMEN

Takifugu rubripes (T. rubripes) is a valuable commercial fish, and Cryptocaryon irritans (C. irritans) has a significant impact on its aquaculture productivity. DNA methylation is one of the earliest discovered ways of gene epigenetic modification and also an important form of modification, as well as an essential type of alteration that regulates gene expression, including immune response. To further explore the anti-infection mechanism of T. rubripes in inhibiting this disease, we determined genome-wide DNA methylation profiles in the gill of T. rubripes using whole-genome bisulfite sequencing (WGBS) and combined with RNA sequence (RNA-seq). A total of 4659 differentially methylated genes (DMGs) in the gene body and 1546 DMGs in the promoter between the infection and control group were identified. And we identified 2501 differentially expressed genes (DEGs), including 1100 upregulated and 1401 downregulated genes. After enrichment analysis, we identified DMGs and DEGs of immune-related pathways including MAPK, Wnt, ErbB, and VEGF signaling pathways, as well as node genes prkcb, myca, tp53, and map2k2a. Based on the RNA-Seq results, we plotted a network graph to demonstrate the relationship between immune pathways and functional related genes, in addition to gene methylation and expression levels. At the same time, we predicted the CpG island and transcription factor of four immune-related key genes prkcb and mapped the gene structure. These unique discoveries could be helpful in the understanding of C. irritans pathogenesis, and the candidate genes screened may serve as optimum methylation-based biomarkers that can be utilized for the correct diagnosis and therapy T. rubripes in the development of the ability to resist C. irritans infection.


Asunto(s)
Cilióforos , Metilación de ADN , Enfermedades de los Peces , Takifugu , Takifugu/genética , Takifugu/parasitología , Takifugu/metabolismo , Animales , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/genética , Infecciones por Cilióforos/veterinaria , Infecciones por Cilióforos/genética , Infecciones por Cilióforos/parasitología , Infecciones por Cilióforos/inmunología , Branquias/metabolismo , Branquias/parasitología , Epigénesis Genética , Regulación de la Expresión Génica , Secuenciación Completa del Genoma , Perfilación de la Expresión Génica
7.
J Fish Dis ; 47(2): e13877, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37876121

RESUMEN

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a vital molecule of inflammatory signaling pathways in innate immune response against pathogens. To elucidate its role in defense against Edwardsiella tarda infection in teleost fish, TRAF6 homologue was identified from obscure puffer (Takifugu obscurus) and functionally analyzed in this study. The obscure puffer TRAF6 (ToTRAF6) is a protein of 565 amino acids containing conserved RING domain, zinc finger-TRAF and MATH_TRAF6 domain. ToTRAF6 mRNA distributed in various healthy tissues of obscure puffer and was upregulated in the immune related tissues after E. tarda infection. ToTRAF6 protein was localized in the cytoplasm and aggregate as dots around the nuclei in FHM cells. The overexpression of ToTRAF6 in FHM cells decreased the quantity of E. tarda and induced the significant upregulation of downstream MAPK signaling pathway genes. These data suggest that ToTRAF6 is a key molecule of MAPK signaling pathway in defense against E. tarda infection.


Asunto(s)
Enfermedades de los Peces , Takifugu , Animales , Takifugu/genética , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Edwardsiella tarda/fisiología , Inmunidad Innata/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-37976965

RESUMEN

Family selection is an important method in fish aquaculture because growth is the most important economic trait. Fast-and slow-growing families of tiger puffer fish (Takifugu rubripes) have been established through family selection. The development of teleost fish is primarily controlled by the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis that includes the hypothalamus-pituitary-liver. In this study, the molecular mechanisms underlying T. rubripes growth were analyzed by comparing transcriptomes from fast- and slow-growing families. The expressions of 214 lncRNAs were upregulated, and those of 226 were downregulated in the brain tissues of the fast-growing T. rubripes family compared to those of the slow-growing family. Differentially expressed lncRNAs centrally regulate mitogen-activated protein kinase (MAPK) and forkhead box O (FoxO) signaling pathways. Based on the results of lncRNA-gene network construction, we found that lncRNA3133.13, lncRNA23169.1, lncRNA23145.1, and lncRNA23141.3 regulated all four genes (igf1, mdm2, flt3, and cwf19l1). In addition, lncRNA7184.10 may be a negative regulator of rasgrp2 and a positive regulator of gadd45ga, foxo3b, and dusp5. These target genes are associated with the growth and development of organisms through the PI3K/AKT and MAPK/ERK pathways. Overall, transcriptomic analyses of fast- and slow-growing families of T. rubripes provided insights into the molecular mechanisms of teleost fish growth rates. Further, these analyses provide evidence for key genes related to growth regulation and the lncRNA expression regulatory network that will provide a framework for improving puffer fish germplasm resources.


Asunto(s)
ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , Takifugu/genética , Takifugu/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
9.
Fish Shellfish Immunol ; 144: 109283, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092094

RESUMEN

L-type lectins (LTLs) contain a carbohydrate recognition domain homologous to leguminous lectins, and have functions in selective protein trafficking, sorting and targeting in the secretory pathway of animals. In this study, a novel LTL, designated as ToERGIC-53, was cloned and identified from obscure puffer Takifugu obscurus. The open reading frame of ToERGIC-53 contained 1554 nucleotides encoding 517 amino acid residues. The deduced ToERGIC-53 protein consisted of a signal peptide, a leguminous lectin domain (LTLD), a coiled-coil region, and a transmembrane region. Quantitative real-time PCR showed that ToERGIC-53 was expressed in all examined tissues, with the highest expression level in the liver. The expression of ToERGIC-53 was significantly upregulated after infection with Vibrio harveyi and Staphylococcus aureus. Recombinant ToERGIC-53-LTLD (rToERGIC-53-LTLD) protein could not only agglutinate and bind to one Gram-positive bacterium (S. aureus) and three Gram-negative bacteria (V. harveyi, V. parahaemolyticus and Aeromonas hydrophila), but also bind to glycoconjugates on the surface of bacteria such as lipopolysaccharide, peptidoglycan, mannose and galactose. In addition, rToERGIC-53-LTLD inhibited the growth of bacteria in vitro. All these results suggested that ToERGIC-53 might be a pattern recognition receptor involved in antibacterial immune response of T. obscurus.


Asunto(s)
Infecciones Bacterianas , Lectinas , Animales , Lectinas/genética , Takifugu/genética , Takifugu/metabolismo , Staphylococcus aureus/metabolismo , Receptores de Reconocimiento de Patrones/genética , Filogenia , Inmunidad Innata/genética , Lectinas Tipo C/genética
10.
BMC Genomics ; 24(1): 645, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891474

RESUMEN

Takifugu fasciatus is an aquaculture species with high economic value. In recent years, problems such as environmental pollution and inbreeding have caused a serious decline in T. fasciatus germplasm resources. In this study, a high-density genetic linkage map was constructed by whole-genome resequencing. The map consists of 4891 bin markers distributed across 22 linkage groups (LGs), with a total genetic coverage of 2381.353 cM and a mean density of 0.535 cM. Quantitative trait locus (QTL) localization analysis showed that a total of 19 QTLs associated with growth traits of T. fasciatus in the genome-wide significance threshold range, distributed on 11 LGs. In addition, 11 QTLs associated with cold tolerance traits were identified, each scattered on a different LG. Furthermore, we used QTL localization analysis to screen out three candidate genes (IGF1, IGF2, ADGRB) related to growth in T. fasciatus. Meanwhile, we screened three candidate genes (HSP90, HSP70, and HMGB1) related to T. fasciatus cold tolerance. Our study can provide a theoretical basis for the selection and breeding of cold-tolerant or fast-growing T. fasciatus.


Asunto(s)
Sitios de Carácter Cuantitativo , Takifugu , Animales , Takifugu/genética , Mapeo Cromosómico , Fenotipo , Ligamiento Genético , Polimorfismo de Nucleótido Simple
11.
Biosci Biotechnol Biochem ; 87(10): 1155-1168, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37458754

RESUMEN

Efficient enrichment of tetrodotoxin (TTX)-binding proteins from the plasma of cultured tiger pufferfish (Takifugu rubripes) was achieved by ammonium sulfate fractionation and wheat germ agglutinin (WGA) affinity chromatography. The enrichment efficiency was validated by ultrafiltration-LC/MS-based TTX-binding assay and proteomics. Major proteins in the WGA-bound fraction were identified as isoform X1 (125 kDa) and X2 variants (88 and 79 kDa) derived from pufferfish saxitoxin and tetrodotoxin-binding protein (PSTBP) 1-like gene (LOC101075943). The 125-kDa X1 protein was found to be a novel member of the lipocalin family, having three tandemly repeated domains. X2 variants, X2α and X2ß, were estimated to have two domains, and X2ß is structurally related to Takifugu pardalis PSTBP2 in their domain type and arrangement. Among 11 potential N-glycosylation sites in the X2 precursor, 5 N-glycosylated Asn residues (N55, N89, N244, N308, and N449) were empirically determined. Structural relationships among PSTBP homologs and complexity of their proteoforms are discussed.


Asunto(s)
Proteómica , Takifugu , Animales , Takifugu/genética , Tetrodotoxina/metabolismo , Cromatografía de Afinidad
12.
Gene ; 882: 147641, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37460000

RESUMEN

Estradiol-17ß (E2) and aromatase inhibitor (AI) exposure can change the phenotypic sex of fish gonads. To investigated whether alterations in DNA methylation is involved in this process, the level of genome-wide DNA methylation in Takifugu rubripes gonads was quantitatively analyzed during the E2-induced feminization and AI-induced masculinization processes in this study. The methylation levels of the total cytosine (C) in control-XX(C-XX), control-XY (C-XY), E2-treated-XY (E-XY) and AI-treated-XX (AI-XX) were 9.11%, 9.19%, 8.63% and 9.23%, respectively. In the C-XX vs C-XY comparison, 4,196 differentially methylated regions (DMRs) overlapped with the gene body of 2,497 genes and 608 DMRs overlapped with the promoter of 575 genes. In the E-XY vs C-XY comparison, 6,539 DMRs overlapped with the gene body of 3,416 genes and 856 DMRs overlapped with the promoter of 776 genes. In the AI-XX vs C-XX comparison, 2,843 DMRs overlapped with the gene body of 1,831 genes and 461 DMRs overlapped with the promoter of 421 genes. Gonadal genomic methylation mainly occurred at CG sites and the genes that overlapped with DMRs on CG context were most enriched in the signaling pathways related to gonad differentiation, such as the Wnt, TGF-ß, MAPK, CAM and GnRH pathways. The DNA methylation levels of steroid synthesis genes and estrogen receptor genes promoter or gene body were negative correlated with their expression. After bisulfite sequencing verification, the DNA methylation level of the amhr2 promoter in XY was increased after E2 treatment, which consistent with the data from the genome-wide DNA methylation sequencing. In C-XY group, the expression of amhr2 was significantly higher than that in E-XY (p < 0.05). Additionally, dnmt1, which is responsible for methylation maintenance, expressed at similar level in four groups (p > 0.05). dnmt3, tet2, and setd1b, which were responsible for methylation modification, expressed at significantly higher levels in E-XY compared to the C-XY (p < 0.05). Dnmt3 and tet2 were expressed at significantly higher levels in AI-XX than that in C-XX (p < 0.05). These results indicated that E2 and AI treatment lead to the aberrant genome-wide DNA methylation level and expression level of dnmt3, tet2, and setd1b in T. rubripes gonad.


Asunto(s)
Inhibidores de la Aromatasa , Metilación de ADN , Animales , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/metabolismo , Takifugu/genética , Diferenciación Sexual/genética , Gónadas/metabolismo
13.
J Fish Dis ; 46(10): 1049-1064, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357462

RESUMEN

Classical major histocompatibility complex (MHC) class II molecules play an essential role in immune system. In this study, MHC IIα (Pf-MHC IIα) and MHC IIß (Pf-MHC IIß) homology genes from pufferfish (Takifugu obscurus) were cloned and their functional characterization in response to bacterial challenge was identified. The nucleotide sequences of the open reading frames (ORFs) of pufferfish Pf-MHC IIα and Pf-MHC IIß were 708 bp and 750 bp, encoding 235 aa and 249 aa, respectively. The structure of Pf-MHC IIα or Pf-MHC IIß contained a signal peptide, an α1/ß1 domain, an α2/ß2 domain, a transmembrane region and a cytoplasmic region. Multiple sequence alignment and phylogenetic analysis showed that Pf-MHC IIα and Pf-MHC IIß molecules had the highest similarity with Fugu rubripes (Takifugu rubripes). Cellular localization analysis indicated that the distribution of Pf-MHC IIα and Pf-MHC IIß was in the lymphocyte membrane and cytoplasm. qRT-PCR results showed that Pf-MHC IIα and Pf-MHC IIß expressed relatively high in skin, gills and gut. In addition, after stimulation challenge in vitro (lipopolysaccharide, or polyinosinic: polycytidylic acid) and in vivo (A. hydrophila), the mRNA expressions of Pf-MHC IIα and Pf-MHC IIß were significantly up-regulated in lymphocytes and in tissues of skin, gills, gut and head kidney. Moreover, Pf-MHC IIα or Pf-MHC IIß neutralization reduced the ability of A. hydrophila to induce the expressions of lymphocyte cytokines (TNF-α, IL-1ß and IL-10). Overall, it is speculated that Pf-MHC IIα and Pf-MHC IIß may play an important role in the host response against A. hydrophila in pufferfish.


Asunto(s)
Enfermedades de los Peces , Takifugu , Animales , Takifugu/genética , Secuencia de Aminoácidos , Filogenia , Enfermedades de los Peces/microbiología , Complejo Mayor de Histocompatibilidad
14.
Mar Biotechnol (NY) ; 25(2): 291-313, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37039930

RESUMEN

Takifugu rubripes is important commercially fish species in China and it is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic losses. In this study, we used proteomics and phosphoproteomic analysis to identify differentially abundant proteins in the spleen of T. rubripes infected with the Cryptocaryon irritans. We identified 5,307 proteins and 6,644 phosphorylated sites on 2,815 phosphoproteins using high-throughput proteomics analysis of the spleen of T. rubripes based on 26,421 unique peptides and 5,013 modified peptides, respectively. The 5,307 quantified host proteins, 40 were upregulated and 43 were downregulated in the infection group compared to the control group. Among the 2815 phosphoproteins, 44/120 were upregulated/downregulated, and 62/151 were upregulated/downregulated in the 6644 quantified phosphosites. Using the combination of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, screening for significantly different phosphoproteins, motif analysis and protein-protein interaction analysis, we ultimately identified three phosphorylated proteins (G-protein-signaling modulator 1-like, zinc finger protein 850-like, and histone H1-like) and three phosphorylated protein kinases (serine/threonine-protein kinase homolog isoform X2, mitogen-activated protein kinase 5-like, and protein kinase C theta type) as potential biomarkers for T. rubripes immune responses. We then screened the phosphorylation sites of these biomarker proteins for further verification. Based on our results, we speculate that phosphorylation modification of the phosphorylation sites is involved in the immunity of T. rubripes against C. irritans.


Asunto(s)
Infecciones por Cilióforos , Enfermedades de los Peces , Animales , Takifugu/genética , Infecciones por Cilióforos/genética , Bazo , Proteómica , Fosfoproteínas/metabolismo , Enfermedades de los Peces/genética
15.
mSystems ; 8(2): e0118122, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36815841

RESUMEN

Microbial symbionts are of great importance for macroscopic life, including fish, and both collectively comprise an integrated biological entity known as the holobiont. Yet little is known as to how the normal balance within the fish holobiont is maintained and how it responds to biotic and/or abiotic influences. Here, through amplicon profiling, the genealogical relationship between artificial F1 hybrid pufferfish with growth heterosis, produced from crossing female Takifugu obscurus with male Takifugu rubripes and its maternal halfsibling purebred, was well recapitulated by their gut microbial community similarities, indicating an evident parallelism between host phylogeny (hybridity) and microbiota relationships therein. Interestingly, modest yet significant fish growth promotion and gut microbiota alteration mediated by hybrid-purebred cohabitation were observed, in comparison with their respective monoculture cohorts that share common genetic makeups, implying a certain degree of environmental influences. Moreover, the underlying assemblage patterns of gut microbial communities were found associated with a trade-off between variable selection and dispersal limitation, which are plausibly driven by the augmented social interactions between hybrid and purebred cohabitants differing in behaviors. Results from this study not only can enrich, from a microbial perspective, the sophisticated understanding of complex and dynamic assemblage of the fish holobiont, but will also provide deeper insights into the ecophysiological factors imposed on the diversity-function relationships thereof. Our findings emphasize the intimate associations of gut microbiota in host genetics-environmental interactions and would have deeper practical implications for microbial contributions to optimize performance prediction and to improve the production of farmed fishes. IMPORTANCE Microbial symbionts are of great importance for macroscopic life, including fish, and yet little is known as to how the normal balance within the fish holobiont is maintained and how it responds to the biotic and/or abiotic influences. Through gut microbiota profiling, we show that host intrageneric hybridization and cohabitation can impose a strong disturbance upon pufferfish gut microbiota. Moreover, marked alterations in the composition and function of gut microbiota in both hybrid and purebred pufferfish cohabitants were observed, which are potentially correlated with different metabolic priorities and behaviors between host genealogy. These results can enrich, from a microbial perspective, the sophisticated understanding of the complex and dynamic assemblage of the fish holobiont and would have deeper practical implications for microbial contributions to optimize performance prediction and to improve farmed fish production.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Femenino , Masculino , Microbioma Gastrointestinal/genética , Takifugu/genética , Peces , Hibridación Genética
16.
Sci Data ; 10(1): 22, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631464

RESUMEN

Takifugu species serve as a model system for evolutionary studies due to their compact genomes and diverse phenotypes. The ocellated puffer (Takifugu ocellatus), characterized by special colouration, is a scarce anadromous species in the genus Takifugu. As an ornamental and tasty fish species, T. ocellatus has moderate economic value. However, the available genomic resources for this pufferfish are still limited. Here, a chromosome-level reference genome, as well as two haploid genomes, was constructed by PacBio HiFi long sequencing and Hi-C technologies. The total length of the reference genome was 375.62 Mb with a contig N50 of 11.55 Mb. The assembled sequences were anchored to 22 chromosomes with an integration efficiency of 93.78%. Furthermore, 28,808 protein-coding genes were predicted. The haplotype-resolved reference genome of T. ocellatus provides a crucial resource for investigating the explosive speciation of the Takifugu genus, such as elucidating evolutionary histories, determining the genetic basis of trait evolution, and supporting future conservation efforts.


Asunto(s)
Cromosomas , Genoma , Takifugu , Animales , Cromosomas/genética , Haplotipos , Anotación de Secuencia Molecular , Filogenia , Takifugu/genética
17.
Gene ; 849: 146910, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36167181

RESUMEN

Takifugu genus has been brought to the fore in scientific and practical research due to its compact genome, explosive speciation progress and economic value. Here we updated the chromosome-level genome of Takifugu bimaculatus by an ultra-high-density linkage map, a classic and accurate way of chromosome assembly. The map constituted a robust assembly frame, with 92.2% (372.77 Mb) of the draft genome cumulatively placed. With intraspecies and interspecies comparative genomic analysis, we developed a criterion to quantify the differences between assemblies and established a novel way to integrate information from multiple assemblies. The integrated assembly rectified potential mis-assemblies, greatly improving the genome contiguity and correctness. Our results rendered profound information on the genetic recombination of T. bimaculatus and provided new insights into effective genome assembly. The consolidated assembly will be a contributory tool of T. bimaculatus and broadly across the Takifugu by providing a convincing reference for genomic research.


Asunto(s)
Genoma , Takifugu , Animales , Takifugu/genética , Mapeo Cromosómico , Genoma/genética , Genómica , Recombinación Genética , Ligamiento Genético
18.
Artículo en Inglés | MEDLINE | ID: mdl-36470397

RESUMEN

Takifugu bimaculatus is a marine fish with high nutritional value. Its ovary contains tetrodotoxin (TTX) which is a severe neurotoxin that limits its edible value of it. To understand the mechanism of oogenesis and production of TTX in T. bimaculatus, an ovarian cell line named TBO from an adolescent ovary was established. TBO was composed of fibroblast-like cells that expressed the ovarian follicle cells marker gene Foxl2 and highly expressed TTX binding protein 2 (PSTBP2) but did not express the germ cells marker gene Vasa. Therefore, TBO seems to be mainly composed of follicle cells and possibly a small percentage of oocytes. Electroporation was used to successfully transfect the pEGFP-N1 and pNanog-N1 vectors into the TBO cell line with a high transfection efficiency. The morphological changes and survival rates of the exposed cells proved that this cell line was effective for exposure to conotoxins (CTXs), another group of toxins related to food safety. Furthermore, PSTBP2 was knocked out in TBO using CRISPR/Cas9 technology, showing that sgRNA2 could mutate PSTBP2. The results suggested that TBO will be more convenient, efficient, and rapid for reproduction and toxicology investigation, and gene editing. This study laid the groundwork for future research into the fish gonadal cell culture and food-related marine toxins. In conclusion, a cell line has been generated from T. bimaculatus, which might represent a valuable model for fish studies in the fields of toxicology and gene editing.


Asunto(s)
Edición Génica , Takifugu , Animales , Femenino , Takifugu/genética , Takifugu/metabolismo , Ovario/metabolismo , Tetrodotoxina/análisis , Tetrodotoxina/metabolismo , Línea Celular
19.
Fish Physiol Biochem ; 48(6): 1475-1494, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36445491

RESUMEN

The establishment of fish cell lines can provide an important in vitro model for developmental biology, pathology, and genetics and also an effective tool to investigate the interactions and related functions of genes. Two-spot puffer Takifugu bimaculatus is a high economic and nutritional value marine fish in Fujian in recent years. Nevertheless, dmrt1 plays a key role in the male differentiation from invertebrates to vertebrates. To understand the molecular regulatory mechanisms of dmrt1 in T. bimaculatus, a testis cell line called TBTc from a juvenile testis of this organism was established with modified Leibovitz's L-15 medium supplemented with 20% FBS, fish serum, embryo extract, and other growth factors. The TBTc with a stable karyotype can be passaged continuously, which was composed of fibroblast-like cells and expressed the marker genes of male-special cells, dmrt1, and amh, and the absence of vasa expression may rule out the possibility of the presence of germ cells. Therefore, TBTc appeared to consist of the mixture of the Sertoli cell and germ cell of the testis. The dmrt1 was significantly expressed in the testes and slightly expressed in the late embryonic development, illustrating that the dmrt1 may participate in the molecular regulation of gonads development and sex differentiation. With the high transfection efficiency of TBTc by electroporation, the cell lines could be used effectively in the study for the expression of exogenous and endogenous genes. Meanwhile, after the knockdown of dmrt1, the morphological changes and survival rates of cells proved that dmrt1 could affect the growth of testicular cells. Furthermore, with the loss of dmrt1, the expression of male-bias genes amh, sox9, and cyp11a was significantly decreased, and the expression of female-bias genes foxl2, sox3, and cyp19a was increased, which suggested that dmrt1 upregulates amh, sox9, and cyp11a and downregulates foxl2, sox3, and cyp19a to participate in the testis development. As a first fish gonadal cell lines of T. bimaculatus, which can be a more convenient, efficient, and rapid model for the investigation of the expression and function of genes, the results will lay a foundation for the next study of the molecular regulation mechanism in gonadal development and sex determination of fish in the future.


Asunto(s)
Takifugu , Testículo , Masculino , Femenino , Animales , Testículo/metabolismo , Takifugu/genética , Gónadas , Diferenciación Sexual/genética , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica
20.
Curr Biol ; 32(22): 4881-4889.e5, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36306789

RESUMEN

Many organisms living along the coastlines synchronize their reproduction with the lunar cycle. At the time of spring tide, thousands of grass puffers (Takifugu alboplumbeus) aggregate and vigorously tremble their bodies at the water's edge to spawn. To understand the mechanisms underlying this spectacular semilunar beach spawning, we collected the hypothalamus and pituitary from male grass puffers every week for 2 months. RNA sequencing (RNA-seq) analysis identified 125 semilunar genes, including genes crucial for reproduction (e.g., gonadotropin-releasing hormone 1 [gnrh1], luteinizing hormone ß subunit [lhb]) and receptors for pheromone prostaglandin E (PGE). PGE2 is secreted into the seawater during the spawning, and its administration activates olfactory sensory neurons and triggers trembling behavior of surrounding individuals. These results suggest that PGE2 synchronizes lunar-regulated beach-spawning behavior in grass puffers. To further explore the mechanism that regulates the lunar-synchronized transcription of semilunar genes, we searched for semilunar transcription factors. Spatial transcriptomics and multiplex fluorescent in situ hybridization showed co-localization of the semilunar transcription factor CCAAT/enhancer-binding protein δ (cebpd) and gnrh1, and cebpd induced the promoter activity of gnrh1. Taken together, our study demonstrates semilunar genes that mediate lunar-synchronized beach-spawning behavior. VIDEO ABSTRACT.


Asunto(s)
Luna , Takifugu , Humanos , Animales , Masculino , Takifugu/genética , Takifugu/metabolismo , Hibridación Fluorescente in Situ , Reproducción/fisiología , Prostaglandinas E/metabolismo , Prostaglandinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA