Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 149
1.
Bioorg Chem ; 147: 107417, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701596

Marine natural products play an important role in biopesticides. Seven new secondary metabolites with different structural classes, including two cycloheptapeptides, scortide A (1) and scortide B (2), two 19-nor-diterpenoids, talascortene H (3) and talascortene I (4), two diterpenoid acids, talascortene J (5) and talascortene K (6), and one triterpenoid, talascortene L (7) were isolated and identified from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. Their structures were comprehensively assigned by spectroscopic data analysis, single-crystal X-ray diffraction, tandem mass spectrometry, and electronic circular dichroism (ECD) calculations. The result of the antimicrobial assay demonstrated that compounds 1 - 6 have inhibitory activity against several human, aquatic, and plant pathogens with minimum inhibitory concentration (MIC) values ranging from 1 to 64 µg/mL. Specially, compounds 2 and 4 showed significant activities against the pathogenic fungus Curvularia spicifera with the MIC value of 1 µg/mL, providing an experimental basis of 2 and 4 with the potential as lead compounds to be developed into biopesticides.


Microbial Sensitivity Tests , Talaromyces , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Dose-Response Relationship, Drug , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/isolation & purification , Molecular Structure , Structure-Activity Relationship , Talaromyces/chemistry , Talaromyces/metabolism , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology
2.
Mar Drugs ; 22(5)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38786595

Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 µg/mL.


Anti-Bacterial Agents , Polyketides , Talaromyces , Talaromyces/chemistry , Talaromyces/metabolism , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Molecular Structure
3.
Phytochemistry ; 223: 114119, 2024 Jul.
Article En | MEDLINE | ID: mdl-38705266

Six previously undescribed prenylated indole diketopiperazine alkaloids, talaromyines A-F (1-6), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic data including NMR, HR-ESI-MS, and electronic circular dichroism calculations, together with chemical analysis of hydrolysates. Compounds 1-5 represent the first example of spirocyclic indole diketopiperazines biosynthesized from the condensation of L-tryptophan and L-alanine. Compounds 2 and 4-5 showed selective inhibitory activities against phosphatases TCPTP and MEG2 with IC50 value of 17.9-29.7 µM, respectively. Compounds 4-5 exhibited mild cytotoxic activities against two human cancer cell lines H1975 and HepG-2.


Diketopiperazines , Talaromyces , Talaromyces/chemistry , Diketopiperazines/chemistry , Diketopiperazines/pharmacology , Diketopiperazines/isolation & purification , Humans , Molecular Structure , Prenylation , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Indole Alkaloids/isolation & purification , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Hep G2 Cells , Cell Proliferation/drug effects , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , Cell Line, Tumor
4.
Int J Biol Macromol ; 269(Pt 2): 132173, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729461

This study aimed to encapsulate Talaromyces amestolkiae colorants in maltodextrin and chitosan microparticles using the spraydrying technique and to evaluate the biopolymers' capacities to protect the fungal colorant against temperature (65 °C) and extreme pH (2.0 and 13.0). The compact microparticles exhibited smooth or indented surfaces with internal diameters ranging between 2.58-4.69 µm and ζ ~ -26 mV. The encapsulation efficiencies were 86 % and 56 % for chitosan and maltodextrin microparticles, respectively. The shifted endothermic peaks of the free colorants indicated their physical stabilization into microparticles. The encapsulated colorants retained most of their absorbance (compared to the 0 h) even after 25 days at 65 °C. Contrary, the free colorant presented almost no absorbance after 1 day under the same conditions. Colorants in chitosan and maltodextrin matrices also partially maintained their colorimetric and fluorometric properties at acidic pH. However, only maltodextrin improved the resistance of the red colorant to alkaline environments. For the first time, the potential of polysaccharide-based microparticles to preserve polyketide colorants was demonstrated using 3D fluorescence. Therefore, this study demonstrated an alternative in developing functional products with natural color additives.


Chitosan , Polysaccharides , Chitosan/chemistry , Polysaccharides/chemistry , Hydrogen-Ion Concentration , Coloring Agents/chemistry , Talaromyces/chemistry , Particle Size , Temperature , Microspheres
5.
J Nat Prod ; 87(4): 1230-1234, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38626456

Three new cyclic heptapeptides, talaromides A-C (1-3), were isolated from cultures produced by the fungus Talaromyces siglerae (Ascomycota), isolated from an unidentified sponge. The structures, featuring an unusual proline-anthranilic moiety, were elucidated by analysis of spectroscopic data and chemical transformations, including the advanced Marfey's method and GITC derivatization. Talaromides A and B inhibited migration activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.


Peptides, Cyclic , Porifera , Talaromyces , Talaromyces/chemistry , Animals , Porifera/microbiology , Humans , Molecular Structure , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Drug Screening Assays, Antitumor , Marine Biology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
6.
Mar Drugs ; 22(4)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38667803

Three novel meroterpenoids, taladrimanins B-D (1-3), were isolated from the marine-derived fungus Talaromyces sp. M27416, alongside three biogenetically related compounds (4-6). We delineated taladrimanin B's (1) structure using HRESIMS and NMR, confirmed its configuration via quantum chemical NMR analysis and DP4+ methodology, and verified it through X-ray crystallography. ECD calculations determined the absolute configuration of compound 1, while comparative NMR and ECD analyses elucidated the absolute configurations of 2 and 3. These compounds are drimane-type meroterpenoids with a C10 polyketide unit (8R-configuration). We proposed a biosynthetic pathway and noted that compound 1 showed cytotoxic activity against MKN-45 and 5637 cell lines and selective antibacterial effects against Staphylococcus aureus CICC 10384.


Anti-Bacterial Agents , Staphylococcus aureus , Talaromyces , Terpenes , Talaromyces/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Humans , Cell Line, Tumor , Staphylococcus aureus/drug effects , Terpenes/pharmacology , Terpenes/chemistry , Terpenes/isolation & purification , Crystallography, X-Ray , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Microbial Sensitivity Tests , Aquatic Organisms , Molecular Structure , Magnetic Resonance Spectroscopy
7.
J Nat Prod ; 87(5): 1407-1415, 2024 May 24.
Article En | MEDLINE | ID: mdl-38662578

Alkaloids with a phenylhydrazone architecture are rarely found in nature. Four unusual phenylhydrazone alkaloids named talarohydrazones A-D (1-4) were isolated from the deep-sea cold seep derived fungus Talaromyces amestolkiae HDN21-0307 using the one strain-many compounds (OSMAC) approach and MS/MS-based molecular networking (MN) combined with network annotation propagation (NAP) and the unsupervised substructure annotation method MS2LDA. Their structures were elucidated by spectroscopic data analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Talarohydrazone A (1) possessed an unusual skeleton combining 2,4-pyridinedione and phenylhydrazone. Talarohydrazone B (2) represents the first natural phenylhydrazone-bearing azadophilone. Bioactivity evaluation revealed that compound 1 exhibited cytotoxic activity against NCI-H446 cells with an IC50 value of 4.1 µM. In addition, compound 1 displayed weak antibacterial activity toward Staphylococcus aureus with an MIC value of 32 µg/mL.


Alkaloids , Hydrazones , Microbial Sensitivity Tests , Staphylococcus aureus , Talaromyces , Talaromyces/chemistry , Hydrazones/pharmacology , Hydrazones/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Staphylococcus aureus/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Drug Screening Assays, Antitumor , Crystallography, X-Ray
8.
J Asian Nat Prod Res ; 26(5): 555-561, 2024 May.
Article En | MEDLINE | ID: mdl-38563409

A newly discovered trihydroxynaphthalenone derivative, epoxynaphthalenone (1) involving the condensation of ortho-hydroxyl groups into an epoxy structure, and a novel pyrone metabolite characterized as pyroneaceacid (2), were extracted from Talaromyces purpurpgenus, an endophytic fungus residing in Rhododendron molle. The structures of these compounds were elucidated through a comprehensive analysis of their NMR and HRESIMS data. The determination of absolute configurations was accomplished using electronic circular dichroism (ECD) calculations and CD spectra. Notably, these recently identified metabolites exhibited a moderate inhibitory activity against xanthine oxidase (XOD).


Pyrones , Talaromyces , Xanthine Oxidase , Talaromyces/chemistry , Molecular Structure , Pyrones/chemistry , Pyrones/pharmacology , Pyrones/isolation & purification , Xanthine Oxidase/antagonists & inhibitors , Nuclear Magnetic Resonance, Biomolecular , Naphthalenes/chemistry , Naphthalenes/isolation & purification , Naphthalenes/pharmacology , Circular Dichroism
9.
J Nat Prod ; 87(4): 935-947, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38575516

We report on the use of nitric oxide-mediated transcriptional activation (NOMETA) as an innovative means to detect and access new classes of microbial natural products encoded within silent biosynthetic gene clusters. A small library of termite nest- and mangrove-derived fungi and actinomyces was subjected to cultivation profiling using a miniaturized 24-well format approach (MATRIX) in the presence and absence of nitric oxide, with the resulting metabolomes subjected to comparative chemical analysis using UPLC-DAD and GNPS molecular networking. This strategy prompted study of Talaromyces sp. CMB-TN6F and Coccidiodes sp. CMB-TN39F, leading to discovery of the triterpene glycoside pullenvalenes A-D (1-4), featuring an unprecedented triterpene carbon skeleton and rare 6-O-methyl-N-acetyl-d-glucosaminyl glycoside residues. Structure elucidation of 1-4 was achieved by a combination of detailed spectroscopic analysis, chemical degradation, derivatization and synthesis, and biosynthetic considerations.


Aminoglycosides , Isoptera , Nitric Oxide , Triterpenes , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Isoptera/microbiology , Aminoglycosides/pharmacology , Australia , Transcriptional Activation/drug effects , Fungi/metabolism , Talaromyces/chemistry , Talaromyces/metabolism , Actinomyces/metabolism , Actinomyces/drug effects
10.
Bioorg Chem ; 146: 107280, 2024 May.
Article En | MEDLINE | ID: mdl-38479131

Ten new compounds, including three pairs of diarylcyclopentenone enantiomers (±) talaromycesins A-C (1-3) and four biphenyl derivatives talaromycesins D-G (4-7), along with four known compounds (8-11), were isolated from the fungus Talaromyces adpressus. Their structures were determined by analyses of extensive NMR spectroscopic and HRESIMS data, and their absolute configurations were elucidated by the dimolybdenum tetraacetate [Mo2(AcO)4]-induced ECD spectra, X-ray crystallographic studies, and ECD calculations. These new compounds were evaluated for their immunosuppressive activities for the first time, and compound 7 probably exerted liver-protective and anti-inflammatory effects on Con A-induced AIH by decreasing the levels of inflammatory cytokines, modulating immune homeostasis, and decreasing hepatocyte apoptosis, which may become a potential drug for the treatment of autoimmune diseases.


Talaromyces , Magnetic Resonance Spectroscopy , Talaromyces/chemistry , Biphenyl Compounds , Molecular Structure
11.
Eur J Med Chem ; 269: 116314, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38527379

OSMAC strategy is a useful tool for discovering series of metabolites from microorganism. Five new sambutoxin derivatives (1-2, 4, 8-9), together with seven known compounds (3, 5-7, 10-12), were isolated from Talaromyces sp. CY-3 under OSMAC strategy and guidance of molecular networking. Their planar structures and absolute configurations were determined by NMR, HRESIMS, ECD spectra and common biosynthetic pathway. In bioassay, compounds 1-12 showed cytotoxicity to tumor cell lines with IC50 values in the range of 1.76-49.13 µM. The antitumor molecular mechanism of 10 was also explored. In vitro compound 10 significantly inhibited the growth and proliferation of two lung cancer cell lines (A549 and H1703). Furthermore, colony formation, EdU analysis, flow cytometry and Western blot analysis showed that 10 could induce cell cycle arrest in G0/G1 phase by promoting the expression of p53 and p21. The molecular mechanism of its antitumor effects in vitro is that 10 arrests the cell cycle by activating the p21/CyclinD1/Rb signaling pathway and the p53 pathway. Our results identified a lead small molecule compound with efficient antitumor growth and proliferation activity.


Antineoplastic Agents , Pyridines , Talaromyces , Talaromyces/chemistry , Antineoplastic Agents/chemistry , Tumor Suppressor Protein p53 , Cell Line, Tumor , Molecular Structure
12.
J Nat Prod ; 87(5): 1338-1346, 2024 May 24.
Article En | MEDLINE | ID: mdl-38447084

Oxabornyl polyenes represent a unique group of polyketides characterized by a central polyene core flanked by a conserved oxabornyl moiety and a structurally diverse oxygen heterocyclic ring. They are widely distributed in fungi and possess a variety of biological activities. Due to the significant spatial separation between the two stereogenic ring systems, it is difficult to establish their overall relative configurations. Here, we isolated three oxabornyl polyenes, prugosenes A1-A3 (1-3), from Talaromyces sp. JNU18266-01. Although these compounds were first reported from Penicillium rugulosum, their overall relative and absolute configurations remained unassigned. By employing ozonolysis in combination with ECD calculations, we were able to establish their absolute configurations, and additionally obtained seven new chemical derivatives (4-10). Notably, through NMR data analysis and quantum chemical calculations, we achieved the structural revision of prugosene A2. Furthermore, prugosenes A1-A3 exhibited potent antiviral activity against the respiratory syncytial virus, with compound 1 displaying an IC50 value of 6.3 µM. Our study thus provides a valuable reference for absolute configuration assignment of oxabornyl polyene compounds.


Polyenes , Polyenes/chemistry , Polyenes/pharmacology , Molecular Structure , Talaromyces/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Respiratory Syncytial Viruses/drug effects , Humans
13.
Phytochemistry ; 218: 113931, 2024 Feb.
Article En | MEDLINE | ID: mdl-38029950

Five pairs of undescribed enantiomeric α-pyrone derivatives (±)-adprepyrones A-E (±1-±5), together with an unreported congener adprepyrone F (6), and 6-[(E)-3-Hydroxyprop-1-enyl]-4-methoxy-5-methyl-2-pyrone (7), recently reported as synthetic compound, were isolated from the fungus Talaromyces adpressus. Their structures with absolute configurations were elucidated by HRESIMS, 1D and 2D NMR, electronic circular dichroism calculations, and single-crystal X-ray diffraction analyses. (±)-Adprepyrone A (±1) possesses an unreported carbon skeleton formed by the fusion of an α-pyrone derivative with nicotinamide. Compounds (+)-2, (±)-4, (±)-5, and 7 showed moderate inhibitory activity against concanavalin A (ConA)-induced T lymphocyte proliferation with IC50 values ranging from 8.9 to 19.8 µM.


Pyrones , Talaromyces , Molecular Structure , Pyrones/pharmacology , Pyrones/chemistry , Magnetic Resonance Spectroscopy , Talaromyces/chemistry
14.
J Antibiot (Tokyo) ; 77(3): 147-155, 2024 03.
Article En | MEDLINE | ID: mdl-38110564

Talcarpones A (1) and B (2) are rare bisnaphthazarin derivatives produced by Talaromyces johnpittii (ex-type strain MST-FP2594), a newly discovered Australian fungus, which is formally described and named herein. The talcarpones were isolated along with the previously reported monomeric naphthoquinone, aureoquinone (3), suggesting a biosynthetic link between these metabolites. Talcarpone A is a lower homologue of hybocarpone (4), which was first isolated from a mycobiont of the lichen Lecanora hybocarpa. The structures of 1 and 2 were elucidated by detailed spectroscopic analysis, molecular modelling and comparison with literature data. Talcarpones 1 and 2 exhibited moderate antifungal activity (MIC 0.78-3.1 µg ml-1) and weak activity against Gram-positive bacteria (MIC 13-25 µg ml-1). The talcarpones also demonstrated noteworthy chemical reactivities, with 2 converting rapidly to 1, which in turn converted slowly to the highly coloured 3. These post-biosynthetic reactions point to a potential ecological role for the talcarpones in providing ongoing (slow-release) physicochemical protection for T. johnpittii against solar irradiation.


Talaromyces , Talaromyces/chemistry , Australia , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Molecular Structure
15.
Molecules ; 28(23)2023 Nov 29.
Article En | MEDLINE | ID: mdl-38067576

Two new dipyrroloquinones, namely talaroterreusinones A (1) and B (2), together with four known secondary metabolites, terreusinone A (3), penicillixanthone A (4), isorhodoptilometrin (5), and chrysomutanin (6), were isolated from the solid culture of the endophytic fungus Talaromyces sp. by integrating mass spectrometry-based metabolic profiling and a bioassay-guided method. Their planar structures and stereochemistry were elucidated by comprehensive spectroscopic analysis including NMR and MS. The absolute configuration at C-1″ of terreusinone A (1) was established by applying the modified Mosher's method. Compounds 1-6 were evaluated for anti-inflammatory activity and cytotoxicity. As a result, 1-3 inhibited the LPS-stimulated NO production in macrophage RAW264.7 cells, with IC50 values of 20.3, 30.7, and 20.6 µM, respectively. Penicillixanthone A (4) exhibited potent cytotoxic activity against Hep G2 and A549 cell lines, with IC50 values of 117 nM and 212 nM, respectively, and displayed significant antitumour effects in A549 cells by inhibiting the PI3K-Akt-mTOR signalling pathway.


Polyketides , Talaromyces , Molecular Structure , Talaromyces/chemistry , Phosphatidylinositol 3-Kinases
16.
Molecules ; 28(22)2023 Nov 18.
Article En | MEDLINE | ID: mdl-38005373

In this study, we report the isolation of two new meroterpenoids, miniolutelide D (1) and miniolutelide E (13-epi-miniolutelide C) (2), along with two meroterpenoidal analogues (3 and 4) and two phenolic compounds (5 and 6) from the endophytic fungus Talaromyces purpureogenus derived from Punica granatum fruits. Their structures were elucidated using extensive MS, 1D, and 2D NMR spectroscopic analyses as well as by comparing with data in the literature. The absolute configurations of 1 and 2 were determined using TDDFT-ECD calculations. Antimicrobial activity was evaluated. Compound 5 displayed significant activity against methicillin-resistant Staphylococcus aureus strain ATCC 700699 and moderate activity against S. aureus strain ATCC 29213.


Methicillin-Resistant Staphylococcus aureus , Pomegranate , Talaromyces , Molecular Structure , Staphylococcus aureus , Fruit , Talaromyces/chemistry
17.
J Antibiot (Tokyo) ; 76(12): 699-705, 2023 12.
Article En | MEDLINE | ID: mdl-37848580

Two new nonadride derivatives, namely, talarodrides G and H (1 and 2), and one new depsidone derivative, botryorhodine K (3), together with a known nonadride analogue (4), were characterized from the Magellan Seamount-derived fungus Talaromyces scorteus AS-242. Their structures were established by detailed interpretation of NMR spectroscopic and mass spectrometry data analysis. X-ray crystallographic analysis of compounds 1 and 3 confirmed their structures and absolute configurations, representing the first characterized crystal structure of a nonadride-type polyketide. The isolated compounds exhibited potent antimicrobial activities against the pathogenic bacterium MRSA and V. parahaemolyticus and pathogenic fungi C. gloeosporioides, F. oxysporum, and F. proliferatum, with MIC values ranging from 1 to 64 µg ml-1.


Anti-Infective Agents , Polyketides , Talaromyces , Polyketides/chemistry , Anti-Infective Agents/chemistry , Talaromyces/chemistry , Magnetic Resonance Spectroscopy/methods , Molecular Structure
18.
Chem Biol Drug Des ; 102(5): 1308-1326, 2023 11.
Article En | MEDLINE | ID: mdl-37246452

In recent years, there has been a lot of buzz about the possibilities of marine microflora as a source of new therapeutic drugs. The strong anti-tumor potency of compounds found in marine resources reflects the ocean's enormous potential as a source of anticancer therapeutics. In this present investigation, an ambuic acid derivative anticancer compound was isolated from Talaromyces flavus, and its cytotoxicity and apoptosis induction potential were analyzed. T. flavus was identified through morphological and molecular analysis. The various organic solvent extracts of T. flavus grown on different growth mediums were evaluated for cytotoxicity on different cancer cell lines. The potent cytotoxicity was shown in the ethyl acetate extract of a fungal culture grown in the M1-D medium for 21 days. Furthermore, the anticancer compound was identified using preparative thin layer chromatography, followed by its purification in significant proportions using column chromatography. The spectroscopic and chromatographic analysis revealed that the structure of the purified molecules was an ambuic acid derivative. The ambuic acid derivative compound showed potent cytotoxicity on MDA-MB-231 (breast cancer cells) with an IC50 value of 26 µM and induced apoptosis in the MDA-MB-231 cells in a time-dependent and reactive oxygen species-independent manner.


Neoplasms , Talaromyces , Cell Line, Tumor , Talaromyces/chemistry , Apoptosis
19.
Mar Drugs ; 21(3)2023 Mar 21.
Article En | MEDLINE | ID: mdl-36976243

An undescribed hybrid phenalenone dimer, talaropinophilone (3), an unreported azaphilone, 7-epi-pinazaphilone B (4), an unreported phthalide dimer, talaropinophilide (6), and an undescribed 9R,15S-dihydroxy-ergosta-4,6,8 (14)-tetraen-3-one (7) were isolated together with the previously reported bacillisporins A (1) and B (2), an azaphilone derivative, Sch 1385568 (5), 1-deoxyrubralactone (8), acetylquestinol (9), piniterpenoid D (10) and 3,5-dihydroxy-4-methylphthalaldehydic acid (11) from the ethyl acetate extract of the culture of a marine sponge-derived fungus, Talaromyces pinophilus KUFA 1767. The structures of the undescribed compounds were elucidated by 1D and 2D NMR as well as high-resolution mass spectral analyses. The absolute configuration of C-9' of 1 and 2 was revised to be 9'S using the coupling constant value between C-8' and C-9' and was confirmed by ROESY correlations in the case of 2. The absolute configurations of the stereogenic carbons in 7 and 8 were established by X-ray crystallographic analysis. Compounds 1,2, 4-8, 10 and 11 were tested for antibacterial activity against four reference strains, viz. two Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and two Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), as well as three multidrug-resistant strains, viz. an extended-spectrum ß-lactamase (ESBL)-producing E. coli, a methicillin-resistant S. aureus (MRSA) and a vancomycin-resistant E. faecalis (VRE). However, only 1 and 2 exhibited significant antibacterial activity against both S. aureus ATCC 29213 and MRSA. Moreover, 1 and 2 also significantly inhibited biofilm formation in S. aureus ATCC 29213 at both MIC and 2xMIC concentrations.


Methicillin-Resistant Staphylococcus aureus , Porifera , Talaromyces , Animals , Staphylococcus aureus , Escherichia coli , Porifera/chemistry , Talaromyces/chemistry , Anti-Bacterial Agents/chemistry , Steroids , Microbial Sensitivity Tests
20.
J Nat Prod ; 86(3): 517-525, 2023 03 24.
Article En | MEDLINE | ID: mdl-36800268

Chemical analysis of cultures of a Queensland mud dauber wasp nest-derived fungus, Talaromyces sp. CMB-MW102, yielded the known dimeric oxaphenalenone duclauxin (1) along with a family of new 1-deoxy-d-glucosamine adducts, glyclauxins A-E (2-6). Despite 1D NMR spectra of 2-6 being compromised by broadening of selected resonances, structures inclusive of absolute configuration were assigned on the basis of detailed spectroscopic analysis and biogenetic considerations, as well as biomimetic semisynthesis and chemical interconversion. For example, exposure of duclauxin (1) to synthetic 1-deoxy-d-glucosamine yielded glyclauxin B (3), while on handling and storage, glyclauxins C (4) and D (5) (bearing a 7-OMe moiety) proved chemically labile and underwent quantitative transformation to glyclauxins B (3) and A (2), respectively. These latter observations on chemical reactivity and stability informed a proposed biogenetic relationship linking all known members of the extended duclauxin family. Notwithstanding their potential status as artifacts, the detection of glyclauxins B (3) and A (2) in a fresh CMB-MW102 culture extract confirmed their natural product status.


Talaromyces , Wasps , Animals , Aminoglycosides , Talaromyces/chemistry , Wasps/microbiology , Australia , Anti-Bacterial Agents/chemistry , Molecular Structure
...