Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.809
1.
BMC Vet Res ; 20(1): 179, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715123

Salmonella infections pose a significant threat to animal and human health. Phytochemicals present a potential alternative treatment. Galla chinensis tannic acid (GCTA), a hydrolyzable polyphenolic compound, inhibits bacterial growth and demonstrates potential as an alternative or supplement to antibiotics to prevent Salmonella infections. However, little is known about the antimicrobial mechanism of GCTA against Salmonella. Here, we revealed 456 differentially expressed proteins upon GCTA treatment, impacting pathways related to DNA replication, repair, genomic stability, cell wall biogenesis, and lipid metabolism using TMT-labeled proteomic analysis. TEM analysis suggested altered bacterial morphology and structure post-treatment. A Salmonella-infected-mouse model indicated that GCTA administration improved inflammatory markers, alleviated intestinal histopathological alterations, and reduced Salmonella enterica serovar Enteritidis (S. Enteritidis) colonization in the liver and spleen of Salmonella-infected mice. The LD50 of GCTA was 4100 mg/kg with an oral single dose, vastly exceeding the therapeutic dose. Thus, GCTA exhibited antibacterial and anti-infective activity against S. Enteritidis. Our results provided insight into the molecular mechanisms of these antibacterial effects, and highlights the potential of GCTA as an alternative to antibiotics.


Proteomics , Salmonella Infections, Animal , Salmonella enteritidis , Tannins , Animals , Salmonella enteritidis/drug effects , Mice , Tannins/pharmacology , Tannins/therapeutic use , Salmonella Infections, Animal/drug therapy , Salmonella Infections, Animal/microbiology , Female , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Mice, Inbred BALB C , Drugs, Chinese Herbal , Polyphenols
2.
PLoS One ; 19(5): e0302717, 2024.
Article En | MEDLINE | ID: mdl-38718045

Bacterial pathogens have remained a major public health concern for several decades. This study investigated the antibacterial activities of Miang extracts (at non-neutral and neutral pH) against Bacillus cereus TISTR 747, Escherichia coli ATCC 22595, Salmonella enterica serovar Typhimurium TISTR 292 and Streptococcus mutans DMST 18777. The potential of Polyvinylpolypyrrolidone (PVPP)-precipitated tannin-free Miang extracts in growth-inhibition of the cariogenic Streptococcus mutans DMST 18777 and its biofilms was also evaluated. The tannin-rich fermented extracts had the best bacterial growth inhibition against S. mutans DMST 18777 with an MIC of 0.29 and 0.72 mg/mL for nonfilamentous fungi (NFP) Miang and filamentous-fungi-processed (FFP) Miang respectively. This observed anti-streptococcal activity still remained after PVPP-mediated precipitation of bioactive tannins especially, in NFP and FFP Miang. Characterization of the PVPP-treated extracts using High performance liquid chromatography quadrupole-time of flight-mass spectrometry (HPLC-QToF-MS) analysis, also offered an insight into probable compound classes responsible for the activities. In addition, Crystal violet-staining also showed better IC50 values for NFP Miang (4.30 ± 0.66 mg/mL) and FFP Miang (12.73 ± 0.11 mg/mL) against S. mutans DMST 18777 biofilms in vitro. Homology modeling and molecular docking analysis using HPLC-MS identified ligands in tannin-free Miang supernatants, was performed against modelled S. mutans DMST 18777 sortase A enzyme. The in silico analysis suggested that the inhibition by NFP and FFP Miang might be attributed to the presence of ellagic acid, flavonoid aglycones, and glycosides. Thus, these Miang extracts could be optimized and explored as natural active pharmaceutical ingredients (NAPIs) for applications in oral hygienic products.


Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Molecular Docking Simulation , Plant Extracts , Streptococcus mutans , Tannins , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tannins/pharmacology , Tannins/chemistry , Biofilms/drug effects , Biofilms/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Bacterial Proteins/metabolism
3.
ACS Nano ; 18(20): 12917-12932, 2024 May 21.
Article En | MEDLINE | ID: mdl-38720520

Inflammatory bowel diseases (IBDs) refer to multifaceted disorders in the intestinal microenvironment and microbiota homeostasis. In view of the broad bioactivity and high compatibility of polyphenols, there is considerable interest in developing a polyphenol-based collaborative platform to remodel the IBD microenvironment and regulate microbiota. Here, we demonstrated the coordination assembly of nanostructured polyphenols to modify probiotics and simultaneously deliver drugs for IBD treatment. Inspired by the distinctive structure of tannic acid (TA), we fabricated nanostructured pBDT-TA by using a self-polymerizable aromatic dithiol (BDT) and TA, which exhibited excellent antioxidant and anti-inflammatory capability in vitro. We thus coated pBDT-TA and sodium alginate (SA) to the surface of Escherichia coli Nissle 1917 layer by layer to construct the collaborative platform EcN@SA-pBDT-TA. The modified probiotics showed improved resistance to oxidative and inflammatory stress, which resulted in superior colon accumulation and retention in IBD model mice. Further, EcN@SA-pBDT-TA could alleviate dextran sulfate sodium (DSS)-induced colitis by controlling the inflammatory response, repairing intestinal barriers, and modulating gut microbiota. Importantly, EcN@SA-pBDT-TA-mediated IBD drug delivery could achieve an improved therapeutic effect in DSS model mice. Given the availability and functionality of polyphenol and prebiotics, we expected that nanostructured polyphenol-modified probiotics provided a solution to develop a collaborative platform for IBD treatment.


Inflammatory Bowel Diseases , Nanoparticles , Polyphenols , Probiotics , Tannins , Animals , Probiotics/pharmacology , Probiotics/chemistry , Probiotics/administration & dosage , Polyphenols/chemistry , Polyphenols/pharmacology , Mice , Nanoparticles/chemistry , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/therapy , Tannins/chemistry , Tannins/pharmacology , Mice, Inbred C57BL , Escherichia coli/drug effects , Dextran Sulfate/chemistry , Alginates/chemistry , Alginates/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology
4.
Microb Pathog ; 190: 106635, 2024 May.
Article En | MEDLINE | ID: mdl-38579934

The plant Erythrina indica comes under Fabaceae family, mainly used for used in traditional medicine as nervine sedative, antiepileptic, antiasthmatic, collyrium in opthalmia, antiseptic. Current study focused synthesize of silver nanoparticles (AgNPs) by E. indica leaf ethanol extract. The green-synthesized AgNPs underwent characterization using multiple analytical techniques, including UV-visible, FTIR, DLS, SEM, TEM, XRD, and EDX, and estimation of their antioxidant activity and antimicrobial activity. Phytochemical analysis identified alkaloids, tannins, saponins, flavonoids, and phenols as secondary metabolites. The Total Phenol Content (TPC) was determined to be 237.35 ± 2.02 mg GAE-1, indicating a substantial presence of phenolic compounds. The presence of AgNPs was verified through UV-Visible analysis at 420 nm, and FT-IR revealed characteristic phenolic functional groups. DLS analysis indicated a narrow size distribution (polydispersity index - PDI: 3.47%), with SEM revealing spherical AgNPs of approximately 20 nm. TEM showed homogeneous, highly polycrystalline AgNPs with lattice spacing at 0.297. XRD analysis demonstrated crystallinity and purity, with distinct reflection peaks corresponding to miller indices of JCPDS card no. 01 087 1473. In vitro, AgNPs exhibited robust antioxidant activity like; DPPH, ABTS, and H2O2, surpassing E. indica-assisted synthesis. ABTS assay indicated higher antioxidant activity (81.94 ± 0.05%) for AgNPs at 734 nm, while E. indica extraction showed 39.67 ± 0.07%. At 532 nm, both E. indica extraction (57.71 ± 0.11%) and AgNPs (37.41 ± 0.17%) exhibited H2O2 scavenging. Furthermore, AgNPs displayed significant antimicrobial properties, inhibiting Staphylococcus aureus (15.7 ± 0.12 mm) and Candida albicans (10.7 ± 0.17 mm) byfor the concentration of 80 µg/mL. Through the characterizations underscore of the potential of Erythrina indica-synthesized AgNPs, rich in polyphenolic compounds, for pharmacological, medical, biological applications and antipyretic properties.


Anti-Infective Agents , Antioxidants , Erythrina , Metal Nanoparticles , Microbial Sensitivity Tests , Phytochemicals , Plant Extracts , Plant Leaves , Silver , Silver/chemistry , Silver/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Erythrina/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Leaves/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Spectroscopy, Fourier Transform Infrared , Phenols/chemistry , Phenols/pharmacology , X-Ray Diffraction , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Green Chemistry Technology , Candida albicans/drug effects , Tannins/pharmacology , Tannins/chemistry
5.
J Mater Chem B ; 12(19): 4708-4716, 2024 May 15.
Article En | MEDLINE | ID: mdl-38654609

Atherosclerosis (AS) is a significant contributor to cardiovascular events. Advanced AS is particularly concerning, as it leads to the formation of high-risk vulnerable plaques. Current treatments for AS focus on antithrombotic and lipid-lowering interventions, which are effective in treating early-stage AS. Recent studies have shown that macrophage polarization plays a crucial role in the development of AS. This study presents a new biomedical application of natural tannic acid as an anti-inflammatory nanoplatform for advanced AS. Tannic acid-poloxamer nanoparticles (TPNP) are fabricated through self-assembly of tannic acid (TA) and poloxamer. TPNP has the potential to provide effective treatment for advanced AS. According to in vitro studies, TPNP has been found to suppress the inflammatory response in lipopolysaccharide-stimulated macrophages by scavenging reactive oxygen species (ROS), downregulating the expression levels of inflammatory cytokines (such as interleukin-10 and tumor necrosis factor-α) and regulating polarization of macrophages. In vivo studies further reveal that TPNP can retard the development of advanced atherosclerotic plaques by reducing ROS production and promoting M2 macrophage polarization in the aorta of ApoE-/- mice. Overall, these findings suggest that TPNP could be used to develop natural multifunctional nanoplatforms for molecular therapy of AS and other inflammation-related diseases.


Atherosclerosis , Macrophages , Nanoparticles , Poloxamer , Tannins , Tannins/chemistry , Tannins/pharmacology , Animals , Mice , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Nanoparticles/chemistry , Poloxamer/chemistry , Poloxamer/pharmacology , Macrophages/drug effects , Macrophages/metabolism , RAW 264.7 Cells , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Particle Size , Surface Properties , Male
6.
J Mater Chem B ; 12(19): 4613-4628, 2024 May 15.
Article En | MEDLINE | ID: mdl-38655586

The clinical treatment of chronic diabetic wounds is a long-standing thorny issue. Strategies targeting the diabetic micro-environment have been developed to promote wound healing. However, it remains challenging to reverse the adverse conditions and re-activate tissue regeneration and angiogenesis. In this work, we develop injectable hydrogels that are responsive to acidic conditions, reactive oxygen species (ROS), and high glucose levels in a diabetic wound micro-environment to sustainably deliver tannic acid (TA) to augment antibacterial, anti-inflammatory, and anti-oxidative activities. This triple-responsive mechanism is designed by introducing dynamic acylhydrazone and phenylboronic ester bonds to crosslink modified hyaluronic acid (HA) chains. At a diabetic wound, the acylhydrazone bonds may be hydrolyzed at low pH. Meanwhile, glucose may compete with TA, and ROS may oxidize the C-B bond to release TA. Thus, sustained release of TA is triggered by the diabetic micro-environment. The released TA effectively scavenges ROS and kills bacteria. In vivo experiments on diabetic mice demonstrate that the hydrogel dressing highly promotes angiogenesis and extracellular matrix (ECM) deposition, leading to eventual full healing of diabetic skin wounds. This micro-environment-triggered triple-responsive drug release provides a promising method for chronic diabetic wound healing.


Anti-Bacterial Agents , Diabetes Mellitus, Experimental , Hyaluronic Acid , Hydrogels , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Diabetes Mellitus, Experimental/drug therapy , Neovascularization, Physiologic/drug effects , Collagen/chemistry , Bandages , Tannins/chemistry , Tannins/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Male , Reactive Oxygen Species/metabolism , Humans , Angiogenesis
7.
Biomacromolecules ; 25(5): 3098-3111, 2024 May 13.
Article En | MEDLINE | ID: mdl-38606583

Biodegradable stents are the most promising alternatives for the treatment of cardiovascular disease nowadays, and the strategy of preparing functional coatings on the surface is highly anticipated for addressing adverse effects such as in-stent restenosis and stent thrombosis. Yet, inadequate mechanical stability and biomultifunctionality limit their clinical application. In this study, we developed a multicross-linking hydrogel on the polylactic acid substrates by dip coating that boasts impressive antithrombotic ability, antibacterial capability, mechanical stability, and self-healing ability. Gelatin methacryloyl, carboxymethyl chitosan, and oxidized sodium alginate construct a double-cross-linking hydrogel through the dynamic Schiff base chemical and in situ blue initiation reaction. Inspired by the adhesion mechanism employed by mussels, a triple-cross-linked hydrogel is formed with the addition of tannic acid to increase the adhesion and antibiofouling properties. The strength and hydrophilicity of hydrogel coating are regulated by changing the composition ratio and cross-linking degree. It has been demonstrated in tests in vitro that the hydrogel coating significantly reduces the adhesion of proteins, MC3T3-E1 cells, platelets, and bacteria by 85% and minimizes the formation of blood clots. The hydrogel coating also exhibits excellent antimicrobial in vitro and antiinflammatory properties in vivo, indicating its potential value in vascular intervention and other biomedical fields.


Anti-Inflammatory Agents , Anticoagulants , Bivalvia , Polyesters , Stents , Animals , Bivalvia/chemistry , Mice , Polyesters/chemistry , Polyesters/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Stents/adverse effects , Anticoagulants/chemistry , Anticoagulants/pharmacology , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Alginates/chemistry , Alginates/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tannins/chemistry , Tannins/pharmacology , Humans , Methacrylates
8.
ACS Biomater Sci Eng ; 10(5): 3057-3068, 2024 May 13.
Article En | MEDLINE | ID: mdl-38641433

Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.


Catheters , Coated Materials, Biocompatible , Heparin , Polyphenols , Tannins , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Catheters/microbiology , Polyphenols/chemistry , Polyphenols/pharmacology , Heparin/chemistry , Heparin/pharmacology , Tannins/chemistry , Tannins/pharmacology , Silanes/chemistry , Silanes/pharmacology , Anticoagulants/chemistry , Anticoagulants/pharmacology , Propylamines/chemistry , Amines/chemistry , Amines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polylysine/chemistry , Polylysine/pharmacology , Surface Properties , Hydrophobic and Hydrophilic Interactions , Human Umbilical Vein Endothelial Cells/drug effects , Silicone Elastomers/chemistry , Adsorption , Escherichia coli/drug effects
9.
Biomater Sci ; 12(10): 2730-2742, 2024 May 14.
Article En | MEDLINE | ID: mdl-38639196

Polypropylene (PP) mesh is widely used in hernioplasty, but it is prone to contamination by pathogenic bacteria. Here, we present an infection microenvironment-responsive metal-phenolic network (MPN) coating, which is made up of Cu2+ and tannic acid (TA) (referred to as CT coating), and is fabricated on PP meshes by layer-by-layer (LbL) assembly. The CT coating provided a robust protection for the PP mesh from pathogenic bacterial infection in a pH-responsive manner due to the pH-responsive disassembly kinetics of MPN complexes. Moreover, the PP meshes with ten CT coating cycles (PP-CT(10)) exhibited excellent stability in a physiological environment, with the killing ratio against "superbug" methicillin-resistant Staphylococcus aureus (MRSA) at pH 5.5 exceeding 99% even after 28 days of PBS (pH 7.4) immersion. In addition, the PP-CT(10) exhibited excellent in vivo anti-infective ability in a rodent subcutaneous implant MRSA infection model, and the results of histological and immunohistochemical analyses demonstrated that the reduced bacterial number alleviated the inflammatory response at implant sites. This study revealed that MPN coating is a promising strategy, which could provide a self-defensive ability for various implants to combat post-surgical infections in a pH-responsive manner.


Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Polypropylenes , Surgical Mesh , Tannins , Hydrogen-Ion Concentration , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Polypropylenes/chemistry , Tannins/chemistry , Tannins/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Staphylococcal Infections/drug therapy , Herniorrhaphy , Copper/chemistry , Copper/pharmacology , Mice
10.
Int J Pharm ; 656: 124085, 2024 May 10.
Article En | MEDLINE | ID: mdl-38580073

Chrysin is a flavonoid drug with numerous therapeutic activities. It suffers from low intestinal absorption owing to its hydrophobicity. Therefore, the aim of this study is to exploit the efficient technique of nanosuspension (NSP) to formulate chrysin-NSP coated with tannic acid (TA) to improve the solubility and anti-schizophrenic activity of chrysin. A 23 full factorial design was constructed where the independent factors were type of polymer, surfactant concentration (0.5 or 1 %) and the aqueous phase volume (5 or 15 mL), while the dependent responses were the particle size (PS) of the obtained formulation as well as the % chrysin dissolved after 2 h (Q2h). The optimum formulation (NSP-4) composed of 1 % PEG 400 and 1 % Cremophor RH40 in 15 mL aqueous phase. It achieved a PS and Q2h values of 108.00 nm and 38.77 %, respectively. NSP-4 was then coated with TA (TA-coated NSP-4) for further enhancement of chrysin solubility. TA-coated NSP-4 revealed PS and zeta potential values of 150 ± 14 nm and -32.54 ± 2.45 mV, respectively. After 6 h, chrysin dissolved % were 53.97 and 80.22 for uncoated NSP-4 and TA-coated NSP-4, respectively, compared with only 9.47 for free chrysin. The developed formulations and free chrysin were assessed regarding their effect on schizophrenia induced in mice by cuprizone (CPZ). Treatment with the developed formulations and free chrysin ameliorated demyelination and behavioral deficit induced by CPZ via elevating MBP and PI3K/PKC activities as well as reducing GFAP expression levels. The developed formulations and free chrysin inhibited Galactin-3 and TGF-ß expressions and stimulated GST antioxidant enzyme. Furthermore, they maintained the balances in glutamatergic and dopaminergic neurotransmission via modulation on neuregulin-1 and alleviated nuclear pyknosis and degeneration in the neurons. The order of activity was: TA-coated NSP-4 > NSP-4 > free chrysin.


Flavonoids , Nanoparticles , Polyphenols , Schizophrenia , Solubility , Tannins , Animals , Flavonoids/administration & dosage , Flavonoids/pharmacology , Flavonoids/chemistry , Tannins/chemistry , Tannins/administration & dosage , Tannins/pharmacology , Mice , Male , Schizophrenia/drug therapy , Administration, Oral , Particle Size , Suspensions , Polyethylene Glycols/chemistry , Polyethylene Glycols/administration & dosage
11.
Int J Biol Macromol ; 266(Pt 2): 131357, 2024 May.
Article En | MEDLINE | ID: mdl-38580010

The microenvironment of bone defect site is vital for bone regeneration. Severe bone defect is often accompanied with severe inflammation and elevated generation of reactive oxygen species (ROS) during bone repair. In recent years, the unfriendly local microenvironment has been paid more and more attention. Some bioactive materials with the ability to regulate the microenvironment to promote bone regeneration urgently need to be developed. Here, we develop a multifunctional composite hydrogel composed of photo-responsive methacrylate silk fibroin (SFMA), laponite (LAP) nanocomposite and tannic acid (TA), aiming to endow hydrogel with antioxidant, anti-inflammatory and osteogenic induction ability. Characterization results confirmed that the SFMA-LAP@TA hydrogel could significantly improve the mechanical properties of hydrogel. The ROS-Scavenging ability of the hydrogel enabled bone marrow mesenchymal stem cells (BMSCs) to survive against H2O2-induced oxidative stress. In addition, the SFMA-LAP@TA hydrogel effectively decreased the expression of pro-inflammatory factors in RAW264.7. More importantly, the SFMA-LAP@TA hydrogel could enhance the expression of osteogenic markers of BMSCs under inflammatory condition and greatly promote new bone formation in a critical-sized cranial defect model. Above all, the multifunctional hydrogel could effectively promote bone regeneration in vitro and in vivo by scavenging ROS and reducing inflammation, providing a prospective strategy for bone regeneration.


Bone Regeneration , Fibroins , Hydrogels , Inflammation , Mesenchymal Stem Cells , Nanocomposites , Osteogenesis , Polyphenols , Reactive Oxygen Species , Tannins , Bone Regeneration/drug effects , Animals , Fibroins/chemistry , Fibroins/pharmacology , Reactive Oxygen Species/metabolism , Tannins/chemistry , Tannins/pharmacology , Mice , Inflammation/drug therapy , Nanocomposites/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , RAW 264.7 Cells , Osteogenesis/drug effects , Methacrylates/chemistry , Methacrylates/pharmacology , Rats , Oxidative Stress/drug effects , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry
12.
Int J Biol Macromol ; 267(Pt 1): 131433, 2024 May.
Article En | MEDLINE | ID: mdl-38583846

Tannic acid (TA) exhibits low bioavailability in the gastrointestinal tract, limiting its benefits due to small amounts reaching the CNS. Thus, the objective of this study was to develop zein capsules and fibers by electrospraying/electrospinning for encapsulation of TA. Polymeric solutions were evaluated by electrical conductivity, density, and viscosity. In zein capsules, up to 2 % TA was added, and in fibers, up to 1 % TA was added. Zein capsule and fiber with TA were evaluated by morphology, size distribution, encapsulation efficiency, thermal and thermogravimetric properties, and functional groups. Zein capsule with 1.5 % TA was evaluated in astrocyte culture for cytotoxicity and antioxidant activity. TA zein capsules and fibers exhibited high encapsulation efficiency and homogeneous morphology. TA encapsulated in zein presented higher thermal stability than free TA. TA zein capsule did not present toxicity and elicited antioxidant action in lipopolysaccharide-induced astrocyte culture. Capsules and fibers were successfully produced by electrospraying/electrospinning techniques.


Antioxidants , Astrocytes , Lipopolysaccharides , Polyphenols , Tannins , Zein , Tannins/chemistry , Tannins/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Zein/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Lipopolysaccharides/pharmacology , Animals , Escherichia coli/drug effects , Rats , Cells, Cultured , Capsules
13.
Curr Microbiol ; 81(6): 156, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656548

Aspergillus fumigatus and Fusarium solani infections have become severe health threat; both pathogens are considered a priority due to the increasing emergence of antifungal-resistant strains and high mortality rates. Therefore, the discovery of new therapeutic strategies has become crucial. In this study, we evaluated the antifungal and antivirulence effects of vanillin and tannic acid against Aspergillus fumigatus and Fusarium solani. The minimum inhibitory concentrations of the compounds were determined by the microdilution method in RPMI broth in 96-well microplates according to CLSI. Conidial germination, protease production, biofilm formation, and in vivo therapeutic efficacy assays were performed. The results demonstrated that vanillin and tannic acid had antifungal activity against Aspergillus fumigatus, while tannic acid only exhibited antifungal activity against Fusarium solani. We found that vanillin and tannic acid inhibited conidial germination and secreted protease production and biofilm formation of the fungal pathogens using sub-inhibitory concentrations. Besides, vanillin and tannic acid altered the fungal membrane permeability, and both compounds showed therapeutic effect against aspergillosis and fusariosis in an infection model in Galleria mellonella larvae. Our results highlight the antivirulence effect of vanillin and tannic acid against priority pathogenic fungi as a possible therapeutic alternative for human fungal infections.


Antifungal Agents , Aspergillus fumigatus , Benzaldehydes , Biofilms , Fusarium , Microbial Sensitivity Tests , Polyphenols , Tannins , Benzaldehydes/pharmacology , Fusarium/drug effects , Tannins/pharmacology , Antifungal Agents/pharmacology , Biofilms/drug effects , Aspergillus fumigatus/drug effects , Animals , Aspergillosis/microbiology , Aspergillosis/drug therapy , Virulence/drug effects , Larva/microbiology , Larva/drug effects , Fusariosis/drug therapy , Fusariosis/microbiology , Spores, Fungal/drug effects , Moths/microbiology , Moths/drug effects
14.
Carbohydr Polym ; 336: 122111, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38670748

The development of a rapid hemostat through a facile method with co-existing antibacterial activity and minimum erythrocyte lysis property stands as a major requirement in the field of hemostasis. Herein, a series of novel microparticle hemostats were synthesized using chitosan, different hydrothermally-treated starches, and cross-linked with tannic acid (TA) simultaneously in an unoxidized environment via ionotropic gelation method. Hemostats' comparative functional properties, such as adjustable antibacterial and erythrocyte compatibility upon various starch additions were evaluated. The in vivo hemostatic study revealed that the developed hemostats for mouse liver laceration and rat tail amputation had clotting times (13 s and 38 s, respectively) and blood loss (51 mg and 62 mg, respectively) similar to those of Celox™. The erythrocyte adhesion test suggested that erythrocyte distortion can be lowered by modifying the antibacterial hemostats with different starches. The broad-spectrum antibacterial efficacy of the hemostats remained intact against S. aureus (>90 %), E. coli (>80 %), and P. mirabilis bacteria upon starch modification. They also demonstrated high hemocompatibility (<3 % hemolysis ratio), moderate cell viability (>81 %), in vivo biodegradation, and angiogenesis indicating adequate biocompatibility and wound healing. The developed hemostats hold significant promise to be employed as rapid hemostatic agents for preventing major bleeding and bacterial infection in emergencies.


Anti-Bacterial Agents , Chitosan , Hemostatics , Polyphenols , Staphylococcus aureus , Starch , Tannins , Tannins/chemistry , Tannins/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Starch/chemistry , Starch/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hemostatics/chemistry , Hemostatics/pharmacology , Mice , Rats , Staphylococcus aureus/drug effects , Hemostasis/drug effects , Escherichia coli/drug effects , Male , Hemolysis/drug effects , Humans , Erythrocytes/drug effects
15.
J Mater Chem B ; 12(16): 3917-3926, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38536012

The repair capacity of skeletal muscle is severely diminished in massive skeletal muscle injuries accompanied by inflammation, resulting in muscle function loss and scar tissue formation. In the current work, we developed a tannic acid (TA)- and silicate ion-functionalized tissue adhesive poly(vinyl alcohol) (PVA)-starch composite hydrogel, referred to as PSTS (PVA-starch-TA-SiO32-). It was formed based on the hydrogen bonding of TA to organic polymers, as well as silicate-TA ligand interaction. PSTS could be gelatinized in minutes at room temperature with crosslinked network formation, making it applicable for injection. Further investigations revealed that PSTS had skeletal muscle-comparable conductivity and modulus to act as a temporary platform for muscle repairing. Moreover, PSTS could release TA and silicate ions in situ to inhibit bacterial growth, induce vascularization, and reduce oxidation, paving the way to the possibility of creating a favorable microenvironment for skeletal muscle regeneration and tissue fibrosis control. The in vivo model confirmed that PSTS could enhance muscle fiber regeneration and myotube formation, as well as reduce infection and inflammation risk. These findings thereby implied the great potential of PSTS in the treatment of formidable skeletal muscle injuries.


Hydrogels , Muscle, Skeletal , Polyphenols , Polyvinyl Alcohol , Silicates , Starch , Tannins , Tannins/chemistry , Tannins/pharmacology , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Muscle, Skeletal/drug effects , Animals , Starch/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Silicates/chemistry , Silicates/pharmacology , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
16.
Adv Sci (Weinh) ; 11(18): e2307269, 2024 May.
Article En | MEDLINE | ID: mdl-38445899

Surface modification is an important approach to improve osseointegration of the endosseous implants, however it is still desirable to develop a facile yet efficient coating strategy. Herein, a metal-phenolic network (MPN) is proposed as a multifunctional nanocoating on titanium (Ti) implants for enhanced osseointegration through early immunomodulation. With tannic acid (TA) and Sr2+ self-assembled on Ti substrates, the MPN coatings provided a bioactive interface, which can facilitate the initial adhesion and recruitment of bone marrow mesenchymal stem cells (BMSCs) and polarize macrophage toward M2 phenotype. Furthermore, the TA-Sr coatings accelerated the osteogenic differentiation of BMSCs. In vivo evaluations further confirmed the enhanced osseointegration of TA-Sr modified implants via generating a favorable osteoimmune microenvironment. In general, these results suggest that TA-Sr MPN nanocoating is a promising strategy for achieving better and faster osseointegration of bone implants, which can be easily utilized in future clinical applications.


Immunomodulation , Mesenchymal Stem Cells , Osseointegration , Titanium , Osseointegration/drug effects , Animals , Titanium/chemistry , Immunomodulation/drug effects , Tannins/pharmacology , Tannins/chemistry , Surface Properties , Prostheses and Implants , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Osteogenesis/drug effects , Cell Differentiation/drug effects , Mice , Strontium/chemistry , Strontium/pharmacology , Models, Animal , Rats
17.
J Nat Med ; 78(3): 784-791, 2024 Jun.
Article En | MEDLINE | ID: mdl-38512650

Papain-like protease (PLpro) enzyme plays a vital role in viral replication as it breaks down polyproteins and disrupts the host's immune response. There are few reports on Kampo formulas that focus on PLpro activity. In this study, we evaluated the inhibitory effects of senkyuchachosan, a traditional Japanese medicine, on PLpro of SARS-CoV-2, the virus responsible for causing COVID-19. We purified the PLpro enzyme and conducted in vitro enzymatic assays using specific substrates. Among the nine crude drugs present in senkyuchachosan, four (Cyperi Rhizoma, Schizonepetae Spica, Menthae Herba, and Camelliae sinensis Folium [CsF]) strongly inhibited PLpro activity. CsF, derived from Camellia sinensis (green tea), contains polyphenols, including catechins and tannins. To confirm that the PLpro inhibitory effects of senkyuchachosan predominantly stem from tannins, the tannins were removed from the decoction using polyvinylpolypyrrolidone (PVPP). The inhibitory effect of senkyuchachosan on PLpro activity was reduced by the removal of PVPP. In addition, the tannin fraction obtained from the CsF extracts showed significant PLpro inhibitory effects. These findings lay the groundwork for the potential development of therapeutic agents that target SARS-CoV-2 infection by intervening in proteolytic cleavage of the virus.


SARS-CoV-2 , SARS-CoV-2/drug effects , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/metabolism , COVID-19 Drug Treatment , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Tannins/pharmacology , Medicine, Kampo
18.
Int J Biol Macromol ; 266(Pt 2): 131231, 2024 May.
Article En | MEDLINE | ID: mdl-38554918

The enormous potential of multifunctional bilayer wound dressings in various medical interventions for wound healing has led to decades of exploration into this field of medicine. However, it is usually difficult to synthesize a single hydrogel with all the required capabilities simultaneously. This paper proposes a bilayer model with an outer layer intended for hydrogel wound treatment. By adding gelatin methacrylate (GelMA) and tannic acid (TA) to the hydrogel composition and using polyvinyl alcohol-carboxymethyl chitosan (PVA-CMCs) foam layer as supports, a photocrosslinkable hydrogel with an optimal formulation was created. The hydrogels were then examined using a range of analytical procedures, including mechanical testing, rheology, chemical characterization, and in vitro and in vivo tests. The resulting bilayer wound dressing has many desirable properties, namely uniform adhesion and quick crosslinking by UV light. When used against Gram-positive and Gram-negative bacterial strains, bilayer wound dressings demonstrated broad antibacterial efficacy. In bilayer wound dressings with GelMA and TA, better wound healing was observed. Those without these elements showed less effectiveness in healing wounds. Additionally, encouraging collagen production and reducing wound infection has a major therapeutic impact on wounds. The results of this study could have a significant impact on the development of better-performing wound dressings.


Bandages , Chitosan , Gelatin , Hydrogels , Methacrylates , Polyvinyl Alcohol , Wound Healing , Polyvinyl Alcohol/chemistry , Gelatin/chemistry , Gelatin/pharmacology , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Methacrylates/chemistry , Methacrylates/pharmacology , Skin/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tannins/chemistry , Tannins/pharmacology , Cross-Linking Reagents/chemistry , Regeneration/drug effects , Mice , Rats
19.
Adv Healthc Mater ; 13(13): e2304365, 2024 May.
Article En | MEDLINE | ID: mdl-38316147

Diabetic wound healing remains a significant clinical challenge due to the complex microenvironment and attenuated endogenous electric field. Herein, a novel all-in-one self-powered microneedle device (termed TZ@mMN-TENG) is developed by combining the multifunctional microneedle carried tannin@ZnO microparticles (TZ@mMN) with the self-powered triboelectric nanogenerator (TENG). In addition to the delivery of tannin and Zn2+, TZ@mMN also effectively conducts electrical stimulation (ES) to infected diabetic wounds. As a self-powered device, the TENG can convert biomechanical motion into exogenous ES to accelerate the infected diabetic wound healing. In vitro experiment demonstrated that TZ@mMN shows excellent conductive, high antioxidant ability, and effective antibacterial properties against both Staphylococcus aureus and Escherichia coli (>99% antibacterial rates). Besides, the TZ@mMN-TENG can effectively promote cell proliferation and migration. In the diabetic rat full-thickness skin wound model infected with Staphylococcus aureus, the TZ@mMN-TENG can eliminate bacteria, accelerate epidermal growth (regenerative epidermis: ≈303.3 ± 19.1 µm), enhance collagen deposition, inhibit inflammation (lower TNF-α and IL-6 expression), and promote angiogenesis (higher CD31 and VEGF expression) to accelerate infected wound repair. Overall, the TZ@mMN-TENG provides a promising strategy for clinical application in diabetic wound repair.


Anti-Bacterial Agents , Diabetes Mellitus, Experimental , Needles , Staphylococcus aureus , Wound Healing , Animals , Wound Healing/drug effects , Rats , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Rats, Sprague-Dawley , Tannins/chemistry , Tannins/pharmacology , Zinc Oxide/chemistry , Escherichia coli/drug effects , Male , Staphylococcal Infections/drug therapy , Humans
20.
Adv Healthc Mater ; 13(13): e2304587, 2024 May.
Article En | MEDLINE | ID: mdl-38334308

Medical adhesives are emerging as an important clinical tool as adjuvants for sutures and staples in wound closure and healing and in the achievement of hemostasis. However, clinical adhesives combining cytocompatibility, as well as strong and stable adhesion in physiological conditions, are still in demand. Herein, a mussel-inspired strategy is explored to produce adhesive coacervates using tannic acid (TA) and methacrylate pullulan (PUL-MA). TA|PUL-MA coacervates mainly comprise van der Waals forces and hydrophobic interactions. The methacrylic groups in the PUL backbone increase the number of interactions in the adhesives matrix, resulting in enhanced cohesion and adhesion strength (72.7 Jm-2), compared to the non-methacrylated coacervate. The adhesive properties are kept in physiologic-mimetic solutions (72.8 Jm-2) for 72 h. The photopolymerization of TA|PUL-MA enables the on-demand detachment of the adhesive. The poor cytocompatibility associated with the use of phenolic groups is here circumvented by mixing reactive oxygen species-degrading enzyme in the adhesive coacervate. This addition does not hamper the adhesive character of the materials, nor their anti-microbial or hemostatic properties. This affordable and straightforward methodology, together with the tailorable adhesivity even in wet environments, high cytocompatibility, and anti-bacterial activity, enables foresee TA|PUL-MA as a promising ready-to-use bioadhesive for biomedical applications.


Anti-Bacterial Agents , Tannins , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Tannins/chemistry , Tannins/pharmacology , Animals , Polyphenols/chemistry , Polyphenols/pharmacology , Adhesives/chemistry , Adhesives/pharmacology , Glucans/chemistry , Glucans/pharmacology , Humans , Mice , Escherichia coli/drug effects , Methacrylates/chemistry , Polymers/chemistry , Polymers/pharmacology , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology
...