Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 359
1.
Cells ; 13(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38667330

BACKGROUND: Gaucher disease (GD) is caused by glucocerebrosidase (GCase) enzyme deficiency, leading to glycosylceramide (Gb-1) and glucosylsphingosine (Lyso-Gb-1) accumulation. The pathological hallmark for GD is an accumulation of large macrophages called Gaucher cells (GCs) in the liver, spleen, and bone marrow, which are associated with chronic organ enlargement, bone manifestations, and inflammation. Tartrate-resistant acid phosphatase type 5 (TRAP5 protein, ACP5 gene) has long been a nonspecific biomarker of macrophage/GCs activation; however, the discovery of two isoforms of TRAP5 has expanded its significance. The discovery of TRAP5's two isoforms revealed that it is more than just a biomarker of macrophage activity. While TRAP5a is highly expressed in macrophages, TRAP5b is secreted by osteoclasts. Recently, we have shown that the elevation of TRAP5b in plasma is associated with osteoporosis in GD. However, the role of TRAP isoforms in GD and how the accumulation of Gb-1 and Lyso-Gb-1 affects TRAP expression is unknown. METHODS: 39 patients with GD were categorized into cohorts based on bone mineral density (BMD). TRAP5a and TRAP5b plasma levels were quantified by ELISA. ACP5 mRNA was estimated using RT-PCR. RESULTS: An increase in TRAP5b was associated with reduced BMD and correlated with Lyso-Gb-1 and immune activator chemokine ligand 18 (CCL18). In contrast, the elevation of TRAP5a correlated with chitotriosidase activity in GD. Lyso-Gb-1 and plasma seemed to influence the expression of ACP5 in macrophages. CONCLUSIONS: As an early indicator of BMD alteration, measurement of circulating TRAP5b is a valuable tool for assessing osteopenia-osteoporosis in GD, while TRAP5a serves as a biomarker of macrophage activation in GD. Understanding the distinct expression pattern of TRAP5 isoforms offers valuable insight into both bone disease and the broader implications for immune system activation in GD.


Gaucher Disease , Protein Isoforms , Tartrate-Resistant Acid Phosphatase , Gaucher Disease/metabolism , Gaucher Disease/genetics , Humans , Tartrate-Resistant Acid Phosphatase/metabolism , Protein Isoforms/metabolism , Protein Isoforms/genetics , Female , Male , Middle Aged , Adult , Bone Density , Macrophages/metabolism , Biomarkers/metabolism , Biomarkers/blood , Isoenzymes/metabolism , Isoenzymes/genetics
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 95-101, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650149

Osteoporosis is a common chronic bone disorder in postmenopausal women. Ginsenosides are primary active components in ginseng and the effects of various ginsenoside variants in osteoporosis treatment have been widely revealed. We planned to explore the impact of ginsenoside Rc on bone resorption in an osteoporosis rat model. We used ovariectomized rats to assess the potential impact of ginsenoside Rc on osteoporosis. µ-CT was implemented for analyzing the microstructure of the distal left femur in rats. H&E staining together with Masson staining were applied for bone histomorphometry evaluation. ELISA kits were implemented to detect serum concentrations of TRACP-5b, OCN, CTX, as well as PINP. Ginsenoside Rc treatment lessened the serum levels of TRACP-5b as well as CTX, while increasing serum levels of OCN, and PINP of OVX rats. Moreover, we found that ginsenoside Rc contributed to the synthesis of type I collagen via increasing Col1a1 and Col1a2 levels in femur tissues of ovariectomized rats. Our findings also revealed that ginsenoside Rc activated the TGF-ß/Smad pathway by increasing TGF-ß as well as phosphorylated Smad2/3 protein levels. Ginsenoside Rc alleviates osteoporosis in rats through promoting the TGF-ß/Smad pathway.


Ginsenosides , Osteoporosis , Ovariectomy , Rats, Sprague-Dawley , Signal Transduction , Transforming Growth Factor beta , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Animals , Female , Osteoporosis/drug therapy , Osteoporosis/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Femur/drug effects , Femur/metabolism , Femur/pathology , Smad Proteins/metabolism , Rats , Collagen Type I/metabolism , X-Ray Microtomography , Tartrate-Resistant Acid Phosphatase/metabolism , Osteocalcin/metabolism , Osteocalcin/blood , Disease Models, Animal , Procollagen/metabolism , Procollagen/blood
3.
Tissue Eng Regen Med ; 21(4): 587-594, 2024 Jun.
Article En | MEDLINE | ID: mdl-38451425

BACKGROUND: Mesenchymal stem cells (MSCs) have been highlighted as a potent therapeutic option for conditions with excessive osteoclast activity such as systemic and local bone loss in rheumatic disease. In addition to their immunomodulatory functions, MSCs also directly suppress osteoclast differentiation and activation by secreting osteoprotegerin (OPG) and IL-10 but the underlying mechanisms are still to be clarified. Tumor necrosis factor-stimulated gene-6 (TSG-6) is a potent anti-inflammatory molecule that inhibits osteoclast activation and has been shown to mediate MSC's immunomodulatory functions. In this study, we aimed to determine whether adipose tissue-derived MSC (ADMSC) inhibits the differentiation from osteoclast precursors to mature osteoclasts through TSG-6. METHODS: Human ADMSCs were co-cultured with bone marrow-derived monocyte/macrophage (BMMs) from DBA/1J or B6 mouse in the presence of osteoclastogenic condition (M-CSF 10 ng/mL and RANKL 10 ng/mL). In some co-culture groups, ADMSCs were transfected with siRNA targeting TSG-6 or OPG to determine their role in osteoclastogenesis. Tartrate-resistant acid phosphatase (TRAP) activity in culture supernatant and mRNA expression of osteoclast markers were investigated. TRAP+ multinucleated cells and F-actin ring formation were counted. RESULTS: ADMSCs significantly inhibited osteoclast differentiation under osteoclastogenic conditions. Suppression of TSG-6 significantly reversed the inhibition of osteoclast differentiation in a degree similar to that of OPG based on TRAP activity, mRNA expression of osteoclast markers, and numbers of TRAP+ multinucleated cell and F-actin ring formation. CONCLUSION: This study demonstrated that ADMSCs inhibit osteoclast differentiation through TSG-6 under osteoclastogenic conditions.


Adipose Tissue , Cell Adhesion Molecules , Cell Differentiation , Mesenchymal Stem Cells , Osteoclasts , Osteoclasts/metabolism , Osteoclasts/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Differentiation/drug effects , Humans , Animals , Adipose Tissue/cytology , Adipose Tissue/metabolism , Mice , Cell Adhesion Molecules/metabolism , Osteoprotegerin/metabolism , Coculture Techniques , Mice, Inbred C57BL , Osteogenesis/drug effects , Tartrate-Resistant Acid Phosphatase/metabolism , Macrophages/metabolism , Macrophages/cytology
4.
J Bone Miner Res ; 39(4): 484-497, 2024 May 02.
Article En | MEDLINE | ID: mdl-38477789

Rebound bone loss following denosumab discontinuation is an important clinical challenge. Current treatment strategies to prevent this fail to suppress the rise and overshoot in osteoclast-mediated bone resorption. In this study, we use a murine model of denosumab treatment and discontinuation to show the temporal changes in osteoclast formation and activity during RANKL inhibition and withdrawal. We show that the cellular processes that drive the formation of osteoclasts and subsequent bone resorption following withdrawal of RANKL inhibition precede the rebound bone loss. Furthermore, a rise in serum TRAP and RANKL levels is detected before markers of bone turnover used in current clinical practice. These mechanistic advances may provide insight into a more defined window of opportunity to intervene with sequential therapy following denosumab discontinuation.


Stopping denosumab, a medication commonly used to improve bone mass by blocking formation of bone resorbing osteoclasts, leads to a rebound loss in the bone which was gained during treatment. Current strategies to prevent this bone loss fail in most cases as they are unable to prevent the rise and overshoot in bone resorption by osteoclasts. Thie stems from an incomplete understanding of how osteoclasts behave during denosumab treatment and after treatment is discontinued. We use a mouse model of this phenomenon to show how osteoclast formation and activity changes throughout this process. We show that increases in the processes that drive the formation of osteoclasts can be detected in the circulation before bone loss occurs. These findings could therefore provide insight into a targeted 'window of opportunity' to intervene and prevent the rebound bone loss following stopping denosumab in patients.


Bone Resorption , Denosumab , Osteoclasts , RANK Ligand , Animals , Osteoclasts/metabolism , Osteoclasts/drug effects , RANK Ligand/antagonists & inhibitors , RANK Ligand/metabolism , Denosumab/pharmacology , Mice , Bone Resorption/pathology , Bone Resorption/drug therapy , Bone Resorption/blood , Time Factors , Tartrate-Resistant Acid Phosphatase/metabolism , Female , Mice, Inbred C57BL , Biomarkers/metabolism , Biomarkers/blood
5.
J Oral Sci ; 66(2): 102-106, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38417878

PURPOSE: Alveolar osteitis (dry sockets) is a painful condition characterized by a limited immune response. It is typically caused by the removal of blood clots from extracted tooth sockets, which leads to the fermentation of trapped food remnants by oral bacteria in the cavities, producing high concentrations of short-chain fatty acids (SCFAs). This study examined the effects of SCFAs on immunity and bone metabolism. METHODS: Mouse macrophage Raw264.7 cells were treated with oral bacteria supernatants or SCFA mixtures, and inducible nitric oxide synthase (iNOS) levels were determined by western blot. The same cells were treated with SCFA mixtures in the presence of receptor activator of nuclear factor-kappa B ligand (RANKL), and osteoclast-like cells were counted. MC3T3-E1 cells were treated with SCFA mixtures and stained with alizarin red S. RESULTS: Raw264.7 cells treated with oral bacterial culture supernatants of Porphyromonas gingivalis and Fusobacterium nucleatum inhibited lipopolysaccharide (LPS)-induced iNOS production, likely due to SCFA content. SCFA mixtures mimicking these supernatants inhibited the number of RANKL-induced tartrate-resistant acid phosphatase (TRAP)-positive cells and MC3T3-E1 cell mineralization. CONCLUSION: These data suggest that SCFAs produced by P. gingivalis and F. nucleatum may reduce the inflammatory response and mildly induce mineralization of the alveolar walls. These results may contribute to the understanding of alveolar osteitis.


Dry Socket , Mice , Animals , Dry Socket/metabolism , Osteoclasts , Porphyromonas gingivalis , Tartrate-Resistant Acid Phosphatase/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology
6.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article En | MEDLINE | ID: mdl-38396794

Rosavin, a phenylpropanoid in Rhodiola rosea's rhizome, and an adaptogen, is known for enhancing the body's response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin ring formation, and reduces the expression of osteoclastogenesis-related genes such as cathepsin K, calcitonin receptor (CTR), tumor necrosis factor receptor-associated factor 6 (TRAF6), tartrate-resistant acid phosphatase (TRAP), and matrix metallopeptidase 9 (MMP-9). It also impedes the nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), c-Fos, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways and blocks phosphorylation processes crucial for bone resorption. Moreover, rosavin promotes osteogenesis and osteoblast differentiation and increases mouse runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) expression. In vivo studies show its effectiveness in enhancing bone mineral density (BMD) in postmenopausal osteoporosis (PMOP) mice, restraining osteoclast maturation, and increasing the active osteoblast percentage in bone tissue. It modulates mRNA expressions by increasing eukaryotic translation elongation factor 2 (EEF2) and decreasing histone deacetylase 1 (HDAC1), thereby activating osteoprotective epigenetic mechanisms, and alters many serum markers, including decreasing cross-linked C-telopeptide of type I collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRACP5b), receptor activator for nuclear factor κ B ligand (RANKL), macrophage-colony-stimulating factor (M-CSF), and TRAP, while increasing alkaline phosphatase (ALP) and OCN. Additionally, when combined with zinc and probiotics, it reduces pro-osteoporotic matrix metallopeptidase 3 (MMP-3), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α), and enhances anti-osteoporotic interleukin 10 (IL-10) and tissue inhibitor of metalloproteinase 3 (TIMP3) expressions. This paper aims to systematically review rosavin's impact on bone tissue metabolism, exploring its potential in osteoporosis prevention and treatment, and suggesting future research directions.


Bone Resorption , Disaccharides , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism , Osteogenesis , Bone Resorption/metabolism , Cell Differentiation , NF-kappa B/metabolism , Metalloproteases/metabolism , RANK Ligand/metabolism , NFATC Transcription Factors/metabolism
7.
Immunology ; 171(4): 583-594, 2024 Apr.
Article En | MEDLINE | ID: mdl-38178705

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder involving scarring of pulmonary tissue and a subsequent decrease in respiratory capacity, ultimately resulting in death. Tartrate resistant acid phosphatase 5 (ACP5) plays a role in IPF but the exact mechanisms are yet to be elucidated. In this study, we have utilized various perturbations of the bleomycin mouse model of IPF including genetic knockout, RANKL inhibition, and macrophage adoptive transfer to further understand ACP5's role in pulmonary fibrosis. Genetic ablation of Acp5 decreased immune cell recruitment to the lungs and reduced the levels of hydroxyproline (reflecting extracellular matrix-production) as well as histological damage. Additionally, gene expression profiling of murine lung tissue revealed downregulation of genes including Ccl13, Mmp13, and Il-1α that encodes proteins specifically related to immune cell recruitment and macrophage/fibroblast interactions. Furthermore, antibody-based neutralization of RANKL, an important inducer of Acp5 expression, reduced immune cell recruitment but did not decrease fibrotic lung development. Adoptive transfer of Acp5-/- bone marrow-derived monocyte (BMDM) macrophages 7 or 14 days after bleomycin administration resulted in reductions of cytokine production and decreased levels of lung damage, compared to adoptive transfer of WT control macrophages. Taken together, the data presented in this study suggest that macrophage derived ACP5 plays an important role in development of pulmonary fibrosis and could present a tractable target for therapeutic intervention in IPF.


Idiopathic Pulmonary Fibrosis , Lung , Animals , Mice , Tartrate-Resistant Acid Phosphatase/genetics , Tartrate-Resistant Acid Phosphatase/metabolism , Lung/pathology , Macrophages , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Fibrosis , Bleomycin/metabolism , Bleomycin/pharmacology
8.
J Investig Med ; 72(4): 370-382, 2024 Apr.
Article En | MEDLINE | ID: mdl-38264863

Morinda officinalis polysaccharide (MOP) is the bioactive ingredient extracted from the root of Morinda officinalis, and Morinda officinalis is applied to treat osteoporosis (OP). The purpose of this study was to determine the role of MOP on human bone marrow mesenchymal stem cells (hBMSCs) and the underlying mechanism. HBMSCs were isolated from bone marrow samples of patients with OP and treated with MOP. Quantitative real-time polymerase chain reaction was adopted to quantify the expression of microRNA-210-3p (miR-210-3p) and scavenger receptor class A member 3 (SCARA3) mRNA. Cell Counting Kit-8 assay was employed to detect cell viability; Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling assay and flow cytometry were adopted to detect apoptosis; Alkaline Phosphatase (ALP) activity assay kit was applied to detect ALP activity; Western blot was executed to quantify the expression levels of SCARA3, osteogenic and adipogenic differentiation markers. Ovariectomized rats were treated with MOP. Bone mineral density (BMD), serum tartrate-resistant acid phosphatase 5b (TRACP 5b), and N-telopeptide of type I collagen (NTx) levels were assessed by BMD detector and Enzyme-linked immunosorbent assay kits. It was revealed that MOP could promote hBMSCs' viability and osteogenic differentiation and inhibit apoptosis and adipogenic differentiation. MOP could also upregulate SCARA3 expression through repressing miR-210-3p expression. Treatment with MOP increased the BMD and decreased the TRACP 5b and NTx levels in ovariectomized rats. MOP may boost the osteogenic differentiation and inhibit adipogenic differentiation of hBMSCs by miR-210-3p/SCARA3 axis.


Mesenchymal Stem Cells , MicroRNAs , Morinda , Osteoporosis , Polysaccharides , Animals , Humans , Rats , Bone Marrow/metabolism , Cells, Cultured , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , MicroRNAs/drug effects , MicroRNAs/metabolism , Morinda/chemistry , Morinda/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Osteoporosis/drug therapy , Receptors, Scavenger/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism , Polysaccharides/pharmacology , Scavenger Receptors, Class A/drug effects , Scavenger Receptors, Class A/metabolism
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(10): 1706-1714, 2023 Oct 20.
Article Zh | MEDLINE | ID: mdl-37933646

OBJECTIVE: To explore the mechanism of Qingluo Tongbi formula for regulating "immune-bone erosion" in rheumatoid arthritis (RA). METHODS: Sixty-four RA patients were randomized into two groups to receive treatment with oral methotrexate or Qingluo Tongbi Formula for 12 weeks. Flow cytometry was used to analyze the changes in the percentages of CD3-CD19+, CD19+CD27 and CD19+BAFFR+B cell subpopulations in peripheral blood of the patients, and serum levels of B cell activating factor (BAFF), RANKL, RANK and osteoprotegerin (OPG) levels were detected using ELISA. Before and after the treatment, serum levels of ß-CTX, TRACP-5b, BGP, BALP, and PINP were measured with ELISA, and bone mineral density was determined with DXEA dual-energy X-ray absorptiometry. In the cell experiment, RAW264.7 cells were induced to differentiated into osteoclasts and treated with Qingluo Tongbi Formula at low-, moderate and high doses (125, 250 and 500 µg/mL, respectively) or with methotrexate (2 µg/mL) for 48 h, and the changes in the expression levels of RANKL, RANK, OPG and c-Fos were detected using Western blotting. RESULTS: The B cell subgroups in RA patients were correlated with the RANKL/RANK/OPG system. Treatment with Qingluo Tongbi Formula obviously down-regulated the percentages of the B cell subgroups, lowered serum levels of BAFF, ß-CTX and TRACP-5b, increased the levels of BGP, BALP and PINP, and improved lumbar bone density of RA patients (P<0.05); All these changes were significantly correlated with the regulation of B cell expressions (P<0.05). In RAW264.7 cells-derived osteoclasts, Qingluo Tongbi Formula significantly decreased the expressions of RANKL, RANK and c-Fos and increased the expression of OPG (P<0.05). CONCLUSION: Qingluo Tongbi Formula inhibits bone erosion in RA possibly by regulating B cell subset percentages and BAFF expression and inhibiting osteoclast differentiation via the RANKL/RANK/OPG pathway.


Arthritis, Rheumatoid , Drugs, Chinese Herbal , Humans , Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/pharmacology , Methotrexate , Osteoclasts , Osteoprotegerin/metabolism , RANK Ligand/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism
10.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article En | MEDLINE | ID: mdl-37108342

Tartrate-resistant acid phosphatase type 5 (TRAP5) is an enzyme that is highly expressed in activated macrophages and osteoclasts and plays important biological functions in mammalian immune defense systems. In the study, we investigated the functions of tartrate-resistant acid phosphatase type 5b from Oreochromis niloticus (OnTRAP5b). The OnTRAP5b gene has an open reading frame of 975 bp, which encodes a mature peptide consisting of 302 amino acids with a molecular weight of 33.448 kDa. The OnTRAP5b protein contains a metallophosphatase domain with metal binding and active sites. Phylogenetic analysis revealed that OnTRAP5b is clustered with TRAP5b of teleost fish and shares a high amino acid sequence similarity with other TRAP5b in teleost fish (61.73-98.15%). Tissues expression analysis showed that OnTRAP5b was most abundant in the liver and was also widely expressed in other tissues. Upon challenge with Streptococcus agalactiae and Aeromonas hydrophila in vivo and in vitro, the expression of OnTRAP5b was significantly up-regulated. Additionally, the purified recombinant OnTRAP5b ((r)OnTRAP5) protein exhibited optimal phosphatase activity at pH 5.0 and an ideal temperature of 50 °C. The Vmax, Km, and kcat of purified (r)OnTRAP5b were found to be 0.484 µmol × min-1 × mg-1, 2.112 mM, and 0.27 s-1 with respect to pNPP as a substrate, respectively. Its phosphatase activity was differentially affected by metal ions (K+, Na+, Mg2+, Ca2+, Mn2+, Cu2+, Zn2+, and Fe3+) and inhibitors (sodium tartrate, sodium fluoride, and EDTA). Furthermore, (r)OnTRAP5b was found to promote the expression of inflammatory-related genes in head kidney macrophages and induce reactive oxygen expression and phagocytosis. Moreover, OnTRAP5b overexpression and knockdown had a significant effect on bacterial proliferation in vivo. When taken together, our findings suggest that OnTRAP5b plays a significant role in the immune response against bacterial infection in Nile tilapia.


Cichlids , Fish Diseases , Streptococcal Infections , Animals , Cichlids/genetics , Cichlids/microbiology , Immunity, Innate/genetics , Tartrate-Resistant Acid Phosphatase/genetics , Tartrate-Resistant Acid Phosphatase/metabolism , Phylogeny , Fish Proteins/metabolism , Streptococcal Infections/veterinary , Streptococcus agalactiae/genetics , Gene Expression Regulation , Mammals/metabolism
11.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article En | MEDLINE | ID: mdl-36834470

In this study, we investigated the effect of EMF exposure on the regulation of RANKL-induced osteoclast differentiation in Raw 264.7 cells. In the EMF-exposed group, the cell volume did not increase despite RANKL treatment, and the expression levels of Caspase-3 remained much lower than those in the RANKL-treated group. TRAP and F-actin staining revealed smaller actin rings in cells exposed to EMF during RANKL-induced differentiation, indicating that EMF inhibited osteoclast differentiation. EMF-irradiated cells exhibited reduced mRNA levels of osteoclastic differentiation markers cathepsin K (CTSK), tartrate-resistant acid phosphatase (TRAP), and matrix metalloproteinase 9 (MMP-9). Furthermore, as measured by RT-qPCR and Western blot, EMF induced no changes in the levels of p-ERK and p-38; however, it reduced the levels of TRPV4 and p-CREB. Overall, our findings indicate that EMF irradiation inhibits osteoclast differentiation through the TRPV4 and p-CREB pathway.


Bone Resorption , TRPV Cation Channels , Animals , Mice , Actins/metabolism , Bone Resorption/metabolism , Cell Differentiation , Hematopoiesis , Osteoclasts/metabolism , RANK Ligand/metabolism , RAW 264.7 Cells , Tartrate-Resistant Acid Phosphatase/metabolism , TRPV Cation Channels/metabolism , Electromagnetic Fields
12.
Biotechnol Bioeng ; 120(4): 1120-1132, 2023 04.
Article En | MEDLINE | ID: mdl-36539392

Culture medium exchange leads to loss of valuable auto- and paracrine factors produced by the cells. However, frequent renewal of culture medium is necessary for nutrient supply and to prevent waste product accumulation. Thus it remains the gold standard in cell culture applications. The use of dialysis as a medium refreshment method could provide a solution as low molecular weight molecules such as nutrients and waste products could easily be exchanged, while high molecular weight components such as growth factors, used in cell interactions, could be maintained in the cell culture compartment. This study investigates a dialysis culture approach for an in vitro bone remodeling model. In this model, both the differentiation of human mesenchymal stromal cells (MSCs) into osteoblasts and monocytes (MCs) into osteoclasts is studied. A custom-made simple dialysis culture system with a commercially available cellulose dialysis insert was developed. The data reported here revealed increased osteoblastic and osteoclastic activity in the dialysis groups compared to the standard nondialysis groups, mainly shown by significantly higher alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activity, respectively. This simple culture system has the potential to create a more efficient microenvironment allowing for cell interactions via secreted factors in mono- and cocultures and could be applied for many other tissues.


Osteoclasts , Renal Dialysis , Humans , Osteoclasts/metabolism , Coculture Techniques , Osteoblasts , Tartrate-Resistant Acid Phosphatase/metabolism , Cell Culture Techniques
13.
Fish Shellfish Immunol ; 132: 108495, 2023 Jan.
Article En | MEDLINE | ID: mdl-36566835

Tartrate-resistant acid phosphatase (ACP5) plays an important biological function in immune defense and is highly expressed in activated macrophages, osteoclasts and dendritic cells. In teleost, the functionality of ACP5 remains to be revealed. In this study, we cloned and identified SoACP5 from red drum (Sciaenops ocellatus) and analyzed its function in vivo and in vitro. The open reading frame of SoACP5 is 1002 bp in length, encoding 333 amino acids. SoACP5 shares high sequence identities (96.70%-49.25%) with ACP5 of other species. The SoACP5 mRNA was widely distributed in collected tissues of healthy red drum, and with the maximum in gills. The expression of SoACP5 increased significantly in vivo following challenge with Edwardsiella tarda. Moreover, the recombinant SoACP5 protein (rSoACP5) was purified with his-tag band resin columns, and confirmed to have phosphatase activity which was optimal at pH 5 and 55 °C. Various metal ions (K+, Zn2+, Mn2+, Mg2+, Ca2+, Cu2+, Fe2+ and Fe3+) have different effects on phosphatase activity. rSoACP5 induced the cellular proliferation of peripheral blood leukocytes. The over-expression and knockdown of SoACP5 in vivo had a significant effect on bacterial proliferation. Furthermore, both of the antibacterial activity and phosphatase activity were decreased when the reducedSoACP5 was oxidized by H2O2. In summary, the present study indicated that SoACP5 is likely involved in host defense against bacterial infection in S. ocellatus.


Bacterial Infections , Perciformes , Animals , Tartrate-Resistant Acid Phosphatase/metabolism , Amino Acid Sequence , Hydrogen Peroxide/metabolism , Recombinant Proteins
14.
Front Immunol ; 13: 1079775, 2022.
Article En | MEDLINE | ID: mdl-36569898

Introduction: During airway infection, upregulation of proinflammatory cytokines and subsequent immune cell recruitment is essential to mitigate bacterial infection. Conversely, during prolonged and non-resolving airway inflammation, neutrophils contribute to tissue damage and remodeling. This occurs during diseases including cystic fibrosis (CF) and COPD where bacterial pathogens, not least Pseudomonas aeruginosa, contribute to disease progression through long-lasting infections. Tartrate-resistant acid phosphatase (TRAP) 5 is a metalloenzyme expressed by alveolar macrophages and one of its target substrates is the phosphoglycoprotein osteopontin (OPN). Methods: We used a knockout mouse strain (Trap5-/-) and BALB/c-Tg (Rela-luc)31Xen mice paired with siRNA administration or functional protein add-back to elucidate the role of Trap5 during bacterial infection. In a series of experiments, Trap5-/- and wild-type control mice received intratracheal administration of P.aerugniosa (Xen41) or LPS, with mice monitored using intravital imaging (IVIS). In addition, multiplex cytokine immunoassays, flow cytometry, multispectral analyses, histological staining were performed. Results: In this study, we found that Trap5-/- mice had impaired clearance of P. aeruginosa airway infection and reduced recruitment of immune cells (i.e. neutrophils and inflammatory macrophages). Trap5 knockdown using siRNA resulted in a decreased activation of the proinflammatory transcription factor NF-κB in reporter mice and a subsequent decrease of proinflammatory gene expression. Add-back experiments of enzymatically active TRAP5 to Trap5-/- mice restored immune cell recruitment and bacterial killing. In human CF lung tissue, TRAP5 of alveolar macrophages was detected in proximity to OPN to a higher degree than in normal lung tissue, indicating possible interactions. Discussion: Taken together, the findings of this study suggest a key role for TRAP5 in modulating airway inflammation. This could have bearing in diseases such as CF and COPD where excessive neutrophilic inflammation could be targeted by pharmacological inhibitors of TRAP5.


Bacterial Infections , Cystic Fibrosis , Pneumonia , Pulmonary Disease, Chronic Obstructive , Mice , Humans , Animals , Tartrate-Resistant Acid Phosphatase/metabolism , Disease Models, Animal , Lung/pathology , Pneumonia/metabolism , Cystic Fibrosis/genetics , Cytokines/metabolism , Inflammation/metabolism , Bacterial Infections/metabolism , Mice, Knockout , Bacteria/metabolism , Pulmonary Disease, Chronic Obstructive/pathology
15.
Nutrients ; 14(19)2022 Sep 24.
Article En | MEDLINE | ID: mdl-36235631

Monotropein (Mon) is a kind of iridoid glycoside plant secondary metabolite primarily present in some edible and medicinal plants. The aim of this study was to investigate the effect of Mon on lipopolysaccharide (LPS)-induced inflammatory bone loss in mice and osteoclasts (OCs) derived from bone marrow-derived macrophages (BMMs), and explore the mechanisms underlying the effect of Mon on LPS-induced osteoclastogenesis. It was found that Mon markedly attenuated deterioration of the bone micro-architecture, enhanced tissue mineral content (TMC) and bone volume/total volume (BV/TV), reduced structure model index (SMI) and trabecular separation/spacing (Tb.Sp) in the bone tissue and decreased the activities of tartrate resistant acid phosphatase-5b (TRACP-5b), receptor activator NF-κB (RANK), and receptor activator NF-κB ligand (RANKL) as well as the serum levels of interleukin 6 (IL-6) and interleukin 1ß (IL-1ß) in LPS-treated mice. In addition, Mon treatment reduced the number of TRAP positive OCs in the bone tissue of LPS-treated mice and also exerted a stronger inhibitory effect on formation, differentiation, and F-actin ring construction of OCs derived from BMMs. Mon significantly inhibited the expression of the nuclear factor of activated T-cells c1 (NFATc1) and the immediate early gene (C-Fos) and nuclear translocation of NFATc1 in LPS-treated OCs, thereby inhibiting the expression of matrix metalloproteinase-9 (MMP-9), cathepsin K (CtsK), and TRAP. Mon significantly inhibited the expression of TRAF6, phosphorylation of P65, and degradation of IKBα, thus inhibiting the activation of NF-κB pathway in LPS-induced inflammatory mice and OCs derived from BMMs, and also inhibited LPS-induced phosphorylation of protein kinase B (Akt) and Glycogen synthase kinase 3ß (GSK-3ß) in OCs derived from BMMs. In conclusion, these results suggested that Mon could effectively inhibit osteoclastogenesis both in vitro and in vivo and therefore may prove to be potential option for prevention and treatment of osteoclastic bone resorption-related diseases.


Bone Resorption , Osteoclasts , Actins/metabolism , Animals , Bone Resorption/metabolism , Cathepsin K/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Iridoid Glycosides/pharmacology , Iridoids , Ligands , Lipopolysaccharides/adverse effects , Matrix Metalloproteinase 9/metabolism , Mice , NF-kappa B/metabolism , NFATC Transcription Factors , Proto-Oncogene Proteins c-akt/metabolism , TNF Receptor-Associated Factor 6/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism
16.
Am J Orthod Dentofacial Orthop ; 162(4): e159-e168, 2022 Oct.
Article En | MEDLINE | ID: mdl-36058797

INTRODUCTION: This study aimed to investigate the role of wingless-type MMTV integration site family member 5a (Wnt5a)-receptor tyrosine kinase-like orphan receptor 2 (Ror2) signaling in root resorption. METHODS: The messenger RNA (mRNA) expression of Wnt5a, Ror2, and RANKL in periodontal ligament cells (PDLCs) under compression force (CF) with or without Ror2 small interfering RNA (siRNA) were measured by quantitative reverse transcription-polymerase chain reaction, and these proteins released into culture supernatants were measured using enzyme-linked immunosorbent assay. Then these PDLC-conditioned media under CF with or without Ror2 siRNA were used to culture osteoclast precursors to detect osteoclastogenesis effects via tartrate-resistant acid phosphatase staining. In in vivo studies, the odontoclast number and the root resorption volume under excessive CF with or without Ror2 siRNA were investigated by tartrate-resistant acid phosphatase immunohistochemical staining and microcomputed tomography. The protein levels for Wnt5a, Ror2, and receptor activator of nuclear factor-kappa B ligand (RANKL) in the periodontal ligament tissues were also detected using immunohistochemical staining. Finally, the odontoclast number, root resorption volume, and the mRNA and protein expressions were compared between immature and mature teeth. RESULTS: The mRNA production and protein release level of Wnt5a, Ror2, and RANKL increased after CF, whereas they were significantly downregulated with Ror2 siRNA. The osteoclast number increased treating with culture medium from PDLC applying CF, but the increase was inhibited after adding Ror2 siRNA. In the animal model, the odontoclast number and root resorption volume significantly increased in the CF group but decreased in the CF with the Ror2 siRNA group. The protein levels of Wnt5a, Ror2, and RANKL in periodontal ligament were upregulated under excessive CF, and the pathway was inhibited with Ror2 siRNA. In the immature tooth group, the odontoclast number, root resorption volume, and the mRNA and protein expressions of Wnt5a-Ror2 signaling were reduced. CONCLUSIONS: Wnt5a-Ror2 signaling in PDLCs enhanced by excessive CF could promote RANKL release and induce precursor differentiation, partly leading to increased odontoclast activity and ultimate root resorption. The less resorption of the immature tooth may be due to odontoclastogenesis inhibition by decreased expression of Wnt5a-Ror2 signaling.


RANK Ligand , Root Resorption , Animals , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Osteoclasts , RANK Ligand/metabolism , RNA, Messenger , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/pharmacology , Tartrate-Resistant Acid Phosphatase/metabolism , X-Ray Microtomography
17.
Shanghai Kou Qiang Yi Xue ; 31(2): 156-161, 2022 Apr.
Article Zh | MEDLINE | ID: mdl-36110072

PURPOSE: To investigate the effect of low-energy microwave irradiation on the movement of orthodontic teeth and periodontal tissue reconstruction in rats. METHODS: SD rats were randomly divided into control group and experimental group. Helical spring force method was used to construct a rat orthodontic model through a nickel-titanium tension spring device. Rats in the experimental group were irradiated with a microwave treatment apparatus once a day to move the first molars for 30 minutes, while rats in the control group were not given any intervention. The rats were sacrificed on the day of modeling, 7 d, 14 d, and 21 d thereafter. The movement distance of the rat's first molars was measured. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect osteoclast counts in rat periodontal tissues, immunohistochemistry was used to detect the expression of cell differentiation factor (osteoclast differentiation factor, ODF) in rat periodontal tissues; real-time fluorescence quantitative PCR(RT-PCR) was used to detect the mRNA expression of interleukin 6(IL-6) and tumor necrosis factor-α (TNF-α). SPSS 20.0 software package was used to analyze the experimental data. RESULTS: At 7, 14, 21 d, compared with the control group, the distance of the first molar movement, the count of osteoclasts in the periodontal tissue, and the expression of ODF in the experimental group were significantly increased (P<0.05), while the mRNA expression of IL-6 and TNF-α in periodontal tissues was significantly decreased (P<0.05). CONCLUSIONS: Low-energy microwave irradiation can significantly accelerate the movement of orthodontic teeth, inhibit the expression of inflammatory genes, and promote the reconstruction of periodontal tissue.


RANK Ligand , Tooth Movement Techniques , Animals , Interleukin-6/genetics , Interleukin-6/metabolism , Microwaves/adverse effects , Nickel/metabolism , Periodontal Ligament/metabolism , RANK Ligand/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Tartrate-Resistant Acid Phosphatase/metabolism , Titanium , Tumor Necrosis Factor-alpha/metabolism
18.
J Endod ; 48(10): 1308-1318.e5, 2022 Oct.
Article En | MEDLINE | ID: mdl-36041584

INTRODUCTION: Periapical periodontitis develops due to the interplay between root canal microorganisms and host defenses. The mechanism underlying the pathogenesis of periapical periodontitis remains unclear. Regulator of G protein signaling protein 10 (RGS10) has been suggested to play a role in regulating inflammation. This study explored the potential regulatory effects of RGS10 on periapical periodontitis and the proinflammatory pathway of nuclear factor (NF)-κB. METHODS: Disease models of periapical inflammation in mice were established, and adenovirus-associated virus (AAV) was used to inhibit RGS10 expression. Periapical lesions were detected using micro-computed tomography. Quantitative reverse transcriptase PCR (qRT-PCR), western blotting (WB), enzyme-linked immunosorbent assay (ELISA), enzyme activity staining of tartrate-resistant acid phosphatase, and immunohistochemistry were conducted to assess the role of RGS10 expression on NF-κB proinflammatory signaling, OPG, RANKL, and osteoclasts in the periapical regions of each group. TNFα was used to stimulate L929 cells alone or with small interfering RNA (siRNA). To assess the expression of associated molecules, WB, immunofluorescence, qRT-PCR, and ELISA were performed. RESULTS: RGS10 inhibition increased alveolar bone destruction in periapical periodontitis lesions and substantially enhanced the NF-κB proinflammatory signaling pathway activation level. Furthermore, RGS10 inhibition upregulated the ratio of OPG/RANKL and the maturation of osteoclasts during alveolar bone resorption. L929 cell TNFα stimulation and siRNA transfection confirmed these in vivo results. CONCLUSION: RGS10 negatively regulates NF-κB proinflammatory signaling in periapical periodontitis and participates in bone remodeling. Therefore, RGS10 is a promising treatment option for long-term chronic periapical inflammation and may be a new target for the artificial regulation of inflammation.


Alveolar Bone Loss , Periapical Periodontitis , RGS Proteins , Alveolar Bone Loss/metabolism , Animals , Inflammation/pathology , Mice , NF-kappa B/metabolism , Osteoclasts/metabolism , Periapical Periodontitis/pathology , RANK Ligand/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , RNA, Small Interfering , Tartrate-Resistant Acid Phosphatase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation , X-Ray Microtomography
19.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1080-1089, 2022 Aug 25.
Article En | MEDLINE | ID: mdl-35929595

Diabetes osteoporosis is a chronic complication of diabetes mellitus (DM) and is associated with osteoclast formation and enhanced bone resorption. Specnuezhenide (SPN) is an active compound with anti-inflammatory and immunomodulatory properties. However, the roles of SPN in diabetic osteoporosis remain unknown. In this study, primary bone marrow macrophages (BMMs) were pretreated with SPN and were stimulated with receptor activator of nuclear factor kappa B ligand (RANKL; 50 ng/mL) to induce osteoclastogenesis. The number of osteoclasts was detected by tartrate-resistant acid phosphatase (TRAP) staining. The protein levels of cellular oncogene fos/nuclear factor of activated T cells c1 (c-Fos/NFATc1), nuclear factor kappa-B (NF-κB), and mitogen-activated protein kinases (MAPKs) were evaluated by western blot analysis. NF-κB luciferase assays were used to examine the role of SPN in NF-κB activation. The DM model group received a high-glucose, high-fat diet and was then intraperitoneally injected with streptozotocin (STZ). Micro-CT scanning, serum biochemical analysis, histological analysis were used to assess bone loss. We found that SPN suppressed RANKL-induced osteoclast formation and that SPN inhibited the expression of osteoclast-related genes and c-Fos/ NFATc1. SPN inhibited RANKL-induced activation of NF-κB and MAPKs. In vivo experiments revealed that SPN suppressed diabetes-induced bone loss and the number of osteoclasts. Furthermore, SPN decreased the levels of bone turnover markers and increased the levels of runt-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), calcium (Ca) and phosphorus (P). SPN also regulated diabetes-related markers. This study suggests that SPN suppresses diabetes-induced bone loss by inhibiting RANKL-induced osteoclastogenesis, and provides an experimental basis for the treatment of diabetic osteoporosis.


Diabetes Mellitus , Osteoporosis , Bone Marrow Cells/metabolism , Calcium/metabolism , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/metabolism , Diabetes Mellitus/metabolism , Glucose/metabolism , Glucosides , Humans , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , Osteogenesis , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/metabolism , Osteoprotegerin/metabolism , Phosphorus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Pyrans , RANK Ligand/pharmacology , Signal Transduction , Streptozocin , Tartrate-Resistant Acid Phosphatase/metabolism
20.
Bone ; 164: 116511, 2022 11.
Article En | MEDLINE | ID: mdl-35933095

BACKGROUND: Numerous studies have demonstrated that iron overload is a risk factor of osteoporosis. However, there has been no systematic and in-depth studies on the effect of iron overload on osteocytes and its role in iron overload-induced bone loss. Therefore, to address this problem, we carried out in vitro and in vivo studies using MLO-Y4 osteocyte-like cells and Hepcidin-/- mice as iron overload models. METHODS: (1) MLO-Y4 cells were treated with ferric ammonium citrate (FAC). Intracellular reactive oxygen species (ROS) levels and apoptosis of MLO-Y4 cells were determined by flow cytometry. Western blotting was performed to evaluate the effect of FAC on the expression of sclerostin and RANKL/OPG. (2) The conditioned medium of MLO-Y4 cells after treatment with FAC was collected and used to treat pre-osteoblasts and monocytes. Alkaline phosphatase (ALP) staining and alizarin red (AR) staining were used to evaluate osteogenic differentiation capacity, and tartrate-resistant acid phosphatase (TRAP) staining was performed to demonstrate osteoclast differentiation capacity. (3) In vivo studies included a wild type mouse, Hepcidin-/- mice, Hepcidin-/- mice + deferoxamine (DFO), and Hepcidin-/- mice + N-actyl-l-cysteine (NAC) group. Micro-CT was performed to evaluate the bone mineral density (BMD), bone volume, and bone micro-architecture of the mice, and three bending tests were used to assess bone strength. Histological analysis was used to detect alterations in bone turnover. TUNEL staining and scanning electron microscopy (SEM) were performed to evaluate the apoptosis and morphology of osteocytes. Immunohistochemical staining and Western blotting were used to determine alterations in sclerostin and RANKL/OPG expression levels in mice. RESULTS: (1) FAC increased intracellular ROS and apoptosis in MLO-Y4 cells, while FAC enhanced the expression of sclerostin and RANKL/OPG in MLO-Y4 cells. (2) Conditioned medium of MLO-Y4 cells inhibited the osteogenic capacity of osteoblasts while stimulating osteoclast differentiation. (3) By increasing oxidative stress, iron overload promotes the apoptosis of osteocytes and undermines the morphology of osteocytes in Hepcidin-/- mice, further increasing the expression levels of sclerostin and RANKL/OPG in osteocytes, which is considered to be the causative factor for reduced bone formation and enhanced bone resorption. DFO administration reduced iron levels, and NAC treatment decreased oxidative stress in Hepcidin-/- mice. Therefore, DFO or NAC treatment rescued the decrease in BMD, bone volume, and bone strength and attenuated the deterioration of bone architecture in Hepcidin-/- mice by attenuating the effect of iron overload on osteocytes. CONCLUSION: Osteocyte apoptosis due to increased ROS and resultant sclerostin and RANKL/OPG expression alteration was the main reason for bone loss in Hepcidin-/- mice. Osteocytes are the main targets for the prevention and treatment of iron overload-induced osteoporosis.


Bone Diseases, Metabolic , Iron Overload , Osteoporosis , Alkaline Phosphatase/metabolism , Animals , Apoptosis , Bone Diseases, Metabolic/metabolism , Cell Line , Culture Media, Conditioned/pharmacology , Cysteine/metabolism , Cysteine/pharmacology , Deferoxamine/pharmacology , Hepcidins/metabolism , Iron/metabolism , Iron Overload/complications , Iron Overload/metabolism , Mice , Osteocytes/metabolism , Osteogenesis , Osteoporosis/metabolism , RANK Ligand/metabolism , Reactive Oxygen Species/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism
...