Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1155: 61-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31468386

RESUMEN

Taurine is an abundant sulfur-containing amino acid in myeloid cells. It undergoes halogenation in activated phagocytes and is converted to taurine chloramine (TauCl) and taurine bromamine. Bone homeostasis is mediated by the balance between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoclasts are bone-resorbing multinucleated cells differentiated from monocyte/macrophage precursor cells in response to receptor activator of NF-κB ligand (RANKL). In this study, we investigated the effect of TauCl on RANKL-induced osteoclastogenesis from RAW 264.7 macrophages. TauCl inhibited the formation of multi-nucleated osteoclast and the activity of tartrate-resistant acid phosphatase (TRAP). TauCl decreased the mRNA expression of osteoclast markers, such as TRAP, cathepsin K, and calcitonin receptor. TauCl also inhibited expression of the transcription factors, c-Fos and nuclear factor of activated T cells, which are important for osteoclast differentiation. These results suggest that TauCl might be used as a therapeutic agent to treat bone diseases associated with excessive bone resorption.


Asunto(s)
Diferenciación Celular , Osteoclastos/efectos de los fármacos , Taurina/análogos & derivados , Animales , Ratones , Ligando RANK/fisiología , Células RAW 264.7 , Transducción de Señal , Fosfatasa Ácida Tartratorresistente/fisiología , Taurina/farmacología , Factores de Transcripción/fisiología
2.
BMC Cancer ; 17(1): 650, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28915803

RESUMEN

BACKGROUND: Tartrate-resistant acid phosphatase (TRAP/ACP5), a metalloenzyme that is characteristic for its expression in activated osteoclasts and in macrophages, has recently gained considerable focus as a driver of metastasis and was associated with clinically relevant parameters of cancer progression and cancer aggressiveness. METHODS: MDA-MB-231 breast cancer cells with different TRAP expression levels (overexpression and knockdown) were generated and characterized for protein expression and activity levels. Functional cell experiments, such as proliferation, migration and invasion assays were performed as well as global phosphoproteomic and proteomic analysis was conducted to connect molecular perturbations to the phenotypic changes. RESULTS: We identified an association between metastasis-related properties of TRAP-overexpressing MDA-MB-231 breast cancer cells and a TRAP-dependent regulation of Transforming growth factor (TGFß) pathway proteins and Cluster of differentiation 44 (CD44). Overexpression of TRAP increased anchorage-independent and anchorage-dependent cell growth and proliferation, induced a more elongated cellular morphology and promoted cell migration and invasion. Migration was increased in the presence of the extracellular matrix (ECM) proteins osteopontin and fibronectin and the basement membrane proteins collagen IV and laminin I. TRAP-induced properties were reverted upon shRNA-mediated knockdown of TRAP or treatment with the small molecule TRAP inhibitor 5-PNA. Global phosphoproteomics and proteomics analyses identified possible substrates of TRAP phosphatase activity or signaling intermediates and outlined a TRAP-dependent regulation of proteins involved in cell adhesion and ECM organization. Upregulation of TGFß isoform 2 (TGFß2), TGFß receptor type 1 (TßR1) and Mothers against decapentaplegic homolog 2 (SMAD2), as well as increased intracellular phosphorylation of CD44 were identified upon TRAP perturbation. Functional antibody-mediated blocking and chemical inhibition demonstrated that TRAP-dependent migration and proliferation is regulated via TGFß2/TßR, whereas proliferation beyond basal levels is regulated through CD44. CONCLUSION: Altogether, TRAP promotes metastasis-related cell properties in MDA-MB-231 breast cancer cells via TGFß2/TßR and CD44, thereby identifying a potential signaling mechanism associated to TRAP action in breast cancer cells.


Asunto(s)
Receptores de Hialuranos/metabolismo , Fosfatasa Ácida Tartratorresistente/fisiología , Factor de Crecimiento Transformador beta2/fisiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Forma de la Célula , Femenino , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Transducción de Señal
3.
Free Radic Biol Med ; 97: 330-341, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27343691

RESUMEN

Osteoclastogenesis was induced by RANKL stimulation in mouse monocytes to examine the possible bactericidal function of osteoclast precursors (OCp) and mature osteoclasts (OCm) relative to their production of NO and ROS. Tartrate-resistant acid phosphatase (TRAP)-positive OCp, but few or no OCm, phagocytized and killed Escherichia coli in association with the production of reactive oxygen species (ROS) and nitric oxide (NO). Phagocytosis of E. coli and production of ROS and NO were significantly lower in TRAP+ OCp derived from Toll-like receptor (TLR)-4 KO mice than that derived from wild-type (WT) or TLR2-KO mice. Interestingly, after phagocytosis, TRAP+ OCp derived from wild-type and TLR2-KO mice did not differentiate into OCm, even with continuous exposure to RANKL. In contrast, E. coli-phagocytized TRAP+ OCp from TLR4-KO mice could differentiate into OCm. Importantly, neither NO nor ROS produced by TRAP+ OCp appeared to be engaged in phagocytosis-induced suppression of osteoclastogenesis. These results suggested that TLR4 signaling not only induces ROS and NO production to kill phagocytized bacteria, but also interrupts OCm differentiation. Thus, it can be concluded that TRAP+ OCp, but not OCm, can mediate bactericidal activity via phagocytosis accompanied by the production of ROS and NO via TLR4-associated reprograming toward phagocytic cell type.


Asunto(s)
Óxido Nítrico/fisiología , Osteoclastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fosfatasa Ácida Tartratorresistente/fisiología , Receptor Toll-Like 4/fisiología , Animales , Escherichia coli/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Viabilidad Microbiana , Osteoclastos/microbiología , Fagocitosis , Ligando RANK/fisiología , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...