Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 367
1.
Sci Adv ; 10(9): eadj3864, 2024 Mar.
Article En | MEDLINE | ID: mdl-38416829

Wall teichoic acid (WTA), a covalent adduct of Gram-positive bacterial cell wall peptidoglycan, contributes directly to virulence and antibiotic resistance in pathogenic species. Polymerization of the Staphylococcus aureus WTA ribitol-phosphate chain is catalyzed by TarL, a member of the largely uncharacterized TagF-like family of membrane-associated enzymes. We report the cryo-electron microscopy structure of TarL, showing a tetramer that forms an extensive membrane-binding platform of monotopic helices. TarL is composed of an amino-terminal immunoglobulin-like domain and a carboxyl-terminal glycosyltransferase-B domain for ribitol-phosphate polymerization. The active site of the latter is complexed to donor substrate cytidine diphosphate-ribitol, providing mechanistic insights into the catalyzed phosphotransfer reaction. Furthermore, the active site is surrounded by electropositive residues that serve to retain the lipid-linked acceptor for polymerization. Our data advance general insight into the architecture and membrane association of the still poorly characterized monotopic membrane protein class and present molecular details of ribitol-phosphate polymerization that may aid in the design of new antimicrobials.


Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Staphylococcus aureus/metabolism , Cryoelectron Microscopy , Methicillin-Resistant Staphylococcus aureus/metabolism , Virulence , Ribitol/metabolism , Teichoic Acids/analysis , Teichoic Acids/chemistry , Teichoic Acids/metabolism , Phosphates/metabolism , Drug Resistance, Microbial
2.
Methods Mol Biol ; 2727: 107-124, 2024.
Article En | MEDLINE | ID: mdl-37815712

Type I lipoteichoic acid (LTA) is a glycerol phosphate polymer found in the cell envelope of diverse Gram-positive bacteria. The glycerol phosphate backbone is often further decorated with D-alanine and/or sugar residues. Here, we provide details of a 1-butanol extraction and purification method of type I LTA by hydrophobic interaction chromatography. The protocol has been adapted from methods originally described by Fischer et al. (Eur J Biochem 133:523-530, 1983) and further optimized by Morath et al. (J Exp Med 193:393-397, 2001). We also present information on a 2D nuclear magnetic resonance (NMR) analysis method to gain chemical and structural information of the purified LTA material.


Glycerol , Lipopolysaccharides , Lipopolysaccharides/metabolism , Teichoic Acids/chemistry , Chromatography , Magnetic Resonance Spectroscopy , Hydrophobic and Hydrophilic Interactions , Phosphates
3.
Sci Adv ; 9(47): eadj2641, 2023 11 24.
Article En | MEDLINE | ID: mdl-38000019

Staphylococcus epidermidis expresses glycerol phosphate wall teichoic acid (WTA), but some health care-associated methicillin-resistant S. epidermidis (HA-MRSE) clones produce a second, ribitol phosphate (RboP) WTA, resembling that of the aggressive pathogen Staphylococcus aureus. RboP-WTA promotes HA-MRSE persistence and virulence in bloodstream infections. We report here that the TarM enzyme of HA-MRSE [TarM(Se)] glycosylates RboP-WTA with glucose, instead of N-acetylglucosamine (GlcNAc) by TarM(Sa) in S. aureus. Replacement of GlcNAc with glucose in RboP-WTA impairs HA-MRSE detection by human immunoglobulin G, which may contribute to the immune-evasion capacities of many invasive S. epidermidis. Crystal structures of complexes with uridine diphosphate glucose (UDP-glucose), and with UDP and glycosylated poly(RboP), reveal the binding mode and glycosylation mechanism of this enzyme and explain why TarM(Se) and TarM(Sa) link different sugars to poly(RboP). These structural data provide evidence that TarM(Se) is a processive WTA glycosyltransferase. Our study will support the targeted inhibition of TarM enzymes, and the development of RboP-WTA targeting vaccines and phage therapies.


Glycosyltransferases , Staphylococcus aureus , Humans , Glycosyltransferases/chemistry , Staphylococcus epidermidis , Teichoic Acids/chemistry , Teichoic Acids/metabolism , Uridine Diphosphate/metabolism , Glucose/metabolism , Phosphates/metabolism
4.
Int J Biol Macromol ; 253(Pt 5): 126825, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37696369

Teichoic acid (TA) is a weakly anionic polymer present in the cell walls of Gram-positive bacteria. It can be classified into wall teichoic acid (WTA) and lipoteichoic acid (LTA) based on its localization in the cell wall. The structure and biosynthetic pathway of TAs are strain-specific and have a significant role in maintaining cell wall stability. TAs have various beneficial functions, such as immunomodulatory, anticancer and antioxidant activities. However, the purity and yield of TAs are generally not high, and different isolation methods may even affect their structural integrity, which limits the research progress on the probiotic functions of TA. This paper reviews an overview of the structure and biosynthetic pathway of TAs in different strains, as well as the research progress of the isolation and purification methods of TAs. Furthermore, this review also highlights the current research status on the biological functions of TAs. Through a comprehensive understanding of this review, it is expected to pave the way for advancements in isolating and purifying high-quality TAs and, in turn, lay a foundation for contributing to the development of targeted probiotic therapies.


Cell Wall , Gram-Positive Bacteria , Cell Wall/chemistry , Gram-Positive Bacteria/metabolism , Glycosylation , Teichoic Acids/chemistry , Lipopolysaccharides/chemistry , Biosynthetic Pathways , Polymers/metabolism
5.
Carbohydr Res ; 531: 108898, 2023 Sep.
Article En | MEDLINE | ID: mdl-37453325

Lactococcus cremoris and Lactococcus lactis are among the most extensively exploited species of lactic acid bacteria in dairy fermentations. The cell wall of lactococci, like other Gram-positive bacteria, possesses a thick peptidoglycan layer, which may incorporate cell wall polysaccharides (CWPS), wall teichoic acids (WTA), and/or lipoteichoic acids (LTA). In this study, we report the isolation, purification and structural analysis of the carbohydrate moieties of glycolipids (GL) and LTA of the L. cremoris model strain 3107. Chemical structures of these compounds were studied by chemical methods, NMR spectroscopy and positive and negative mode ESI MS. We found that the LTA of strain 3107 is composed of short chains of 1,3-polyglycerol phosphate (PGP), attached to O-6 of the non-reducing glucose of the kojibiose-Gro backbone of the glycolipid anchor. Extraction of cells with cold TCA afforded the detection of 1,3-glycerol phosphate chains randomly substituted at O-2 of glycerol by D-Ala. Unlike the LTA of L. lactis strains studied to date, the PGP backbone of the LTA of L. cremoris 3107 did not carry any glycosyl substitution. The deacylated glycolipid fraction contained the free kojibiose-Gro oligosaccharide, identical to the backbone of the GL anchor of LTA, and its shorter fragment α-Glc-1-Gro. These OS may have originated from the GL precursors of LTA biosynthesis.


Glycolipids , Lactococcus lactis , Teichoic Acids/chemistry , Glycerol , Lactococcus lactis/chemistry , Lipopolysaccharides/chemistry , Phosphates
6.
J Biol Chem ; 298(10): 102488, 2022 10.
Article En | MEDLINE | ID: mdl-36113580

Rhamnose-rich cell wall polysaccharides (Rha-CWPSs) have emerged as crucial cell wall components of numerous Gram-positive, ovoid-shaped bacteria-including streptococci, enterococci, and lactococci-of which many are of clinical or biotechnological importance. Rha-CWPS are composed of a conserved polyrhamnose backbone with side-chain substituents of variable size and structure. Because these substituents contain phosphate groups, Rha-CWPS can also be classified as polyanionic glycopolymers, similar to wall teichoic acids, of which they appear to be functional homologs. Recent advances have highlighted the critical role of these side-chain substituents in bacterial cell growth and division, as well as in specific interactions between bacteria and infecting bacteriophages or eukaryotic hosts. Here, we review the current state of knowledge on the structure and biosynthesis of Rha-CWPS in several ovoid-shaped bacterial species. We emphasize the role played by multicomponent transmembrane glycosylation systems in the addition of side-chain substituents of various sizes as extracytoplasmic modifications of the polyrhamnose backbone. We provide an overview of the contribution of Rha-CWPS to cell wall architecture and biogenesis and discuss current hypotheses regarding their importance in the cell division process. Finally, we sum up the critical roles that Rha-CWPS can play as bacteriophage receptors or in escaping host defenses, roles that are mediated mainly through their side-chain substituents. From an applied perspective, increased knowledge of Rha-CWPS can lead to advancements in strategies for preventing phage infection of lactococci and streptococci in food fermentation and for combating pathogenic streptococci and enterococci.


Bacteriophages , Cell Wall , Gram-Positive Bacteria , Cell Wall/chemistry , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/cytology , Polysaccharides/chemistry , Rhamnose , Teichoic Acids/chemistry , Cell Division/physiology
7.
J Chem Inf Model ; 62(10): 2409-2420, 2022 05 23.
Article En | MEDLINE | ID: mdl-35475370

FmtA is a novel esterase that shares the penicillin-binding protein (PBP) core structural folding but found to hydrolyze the removal of d-Ala from teichoic acids. Molecular docking, dynamics, and MM-GBSA of FmtA and its variants S127A, K130A, Y211A, D213A, and K130AY211A, in the presence or absence of wall teichoic acid (WTA), suggest that active site residues S127, K130, Y211, D213, N343, and G344 play a role in substrate binding. Quantum mechanics (QM)/molecular mechanics (MM) calculations reveal that during WTA catalysis, K130 deprotonates S127, and the nucleophilic S127 attacks the carbonyl carbon of d-Ala bound to WTA. The tetrahedral intermediate (TI) complex is stabilized by hydrogen bonding to the oxyanion holes. The TI complex displays a high energy gap and collapses to an energetically favorable acyl-enzyme complex.


Esterases , Staphylococcus aureus , Catalysis , Cell Wall/chemistry , Cell Wall/metabolism , Esterases/analysis , Esterases/metabolism , Molecular Docking Simulation , Staphylococcus aureus/metabolism , Teichoic Acids/analysis , Teichoic Acids/chemistry , Teichoic Acids/metabolism
8.
Food Funct ; 13(6): 3098-3109, 2022 Mar 21.
Article En | MEDLINE | ID: mdl-35226005

As a broadly defined member of lactic acid bacteria (LAB), the Lactobacillus strain is well characterized in food fermentation and specific strains can enhance the intestinal barrier function and be recognized as the probiotic strain. In recent years, many molecules of the cell surface are thought to be related to the adhesion property in the gastrointestinal mucosa. Mucus layer-related proteins, extracellular matrix proteins, and immunoglobulins also exhibit immunity regulation and protection of the intestinal epithelial barrier function. Meanwhile, the effects of bile and the low pH of the gastrointestinal tract (GIT) on Lactobacillus colonization are also needed to be considered. Furthermore, LAB can adhere and aggregate in the GIT to promote the maturity of biofilm and the extracellular matrix secreting through the signal molecules in the quorum sensing (QS) system. Therefore, it is of great interest to use the QS system to regulate the initial adhesion ability of Lactobacillus and further enhance the probiotic effect of the biofilm formation of beneficial bacteria. This review summarizes the adhesion properties of cell surface proteins derived from Lactobacillus strains in recent studies and provides valuable information on the QS effect on the adhesion property of Lactobacillus strains in the GIT environment.


Bacterial Adhesion , Bacterial Proteins/metabolism , Gastrointestinal Tract/microbiology , Lactobacillales/physiology , Lactobacillus/physiology , Membrane Proteins/metabolism , Quorum Sensing , Fimbriae, Bacterial/physiology , Flagella/physiology , Humans , Lactobacillus/ultrastructure , Membrane Glycoproteins/metabolism , Mucus/metabolism , Mucus/microbiology , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Probiotics , Teichoic Acids/chemistry , Teichoic Acids/metabolism
9.
J Biol Chem ; 298(2): 101464, 2022 02.
Article En | MEDLINE | ID: mdl-34864059

Wall teichoic acid (WTA) polymers are covalently affixed to the Gram-positive bacterial cell wall and have important functions in cell elongation, cell morphology, biofilm formation, and ß-lactam antibiotic resistance. The first committed step in WTA biosynthesis is catalyzed by the TagA glycosyltransferase (also called TarA), a peripheral membrane protein that produces the conserved linkage unit, which joins WTA to the cell wall peptidoglycan. TagA contains a conserved GT26 core domain followed by a C-terminal polypeptide tail that is important for catalysis and membrane binding. Here, we report the crystal structure of the Thermoanaerobacter italicus TagA enzyme bound to UDP-N-acetyl-d-mannosamine, revealing the molecular basis of substrate binding. Native MS experiments support the model that only monomeric TagA is enzymatically active and that it is stabilized by membrane binding. Molecular dynamics simulations and enzyme activity measurements indicate that the C-terminal polypeptide tail facilitates catalysis by encapsulating the UDP-N-acetyl-d-mannosamine substrate, presenting three highly conserved arginine residues to the active site that are important for catalysis (R214, R221, and R224). From these data, we present a mechanistic model of catalysis that ascribes functions for these residues. This work could facilitate the development of new antimicrobial compounds that disrupt WTA biosynthesis in pathogenic bacteria.


Bacterial Proteins , Glycosyltransferases , Lipoproteins , Staphylococcus aureus , Teichoic Acids , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Wall/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Staphylococcus aureus/metabolism , Substrate Specificity , Teichoic Acids/chemistry , Teichoic Acids/metabolism , Uridine Diphosphate/metabolism
10.
Microb Genom ; 8(12)2022 12.
Article En | MEDLINE | ID: mdl-36748528

Staphylococcus aureus is a leading cause of skin and soft tissue infections and systemic infections. Wall teichoic acids (WTAs) are cell wall-anchored glycopolymers that are important for S. aureus nasal colonization, phage-mediated horizontal gene transfer, and antibiotic resistance. WTAs consist of a polymerized ribitol phosphate (RboP) chain that can be glycosylated with N-acetylglucosamine (GlcNAc) by three glycosyltransferases: TarS, TarM, and TarP. TarS and TarP modify WTA with ß-linked GlcNAc at the C-4 (ß1,4-GlcNAc) and the C-3 position (ß1,3-GlcNAc) of the RboP subunit, respectively, whereas TarM modifies WTA with α-linked GlcNAc at the C-4 position (α1,4-GlcNAc). Importantly, these WTA glycosylation patterns impact immune recognition and clearance of S. aureus. Previous studies suggest that tarS is near-universally present within the S. aureus population, whereas a smaller proportion co-contain either tarM or tarP. To gain more insight into the presence and genetic variation of tarS, tarM and tarP in the S. aureus population, we analysed a collection of 25 652 S. aureus genomes within the PubMLST database. Over 99 % of isolates contained tarS. Co-presence of tarS/tarM or tarS/tarP occurred in 37 and 7 % of isolates, respectively, and was associated with specific S. aureus clonal complexes. We also identified 26 isolates (0.1 %) that contained all three glycosyltransferase genes. At sequence level, we identified tar alleles with amino acid substitutions in critical enzymatic residues or with premature stop codons. Several tar variants were expressed in a S. aureus tar-negative strain. Analysis using specific monoclonal antibodies and human langerin showed that WTA glycosylation was severely attenuated or absent. Overall, our data provide a broad overview of the genetic diversity of the three WTA glycosyltransferases in the S. aureus population and the functional consequences for immune recognition.


Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Teichoic Acids/chemistry , Teichoic Acids/metabolism , Bacterial Proteins/metabolism , Codon, Nonsense/metabolism
11.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article En | MEDLINE | ID: mdl-34785593

Emerging antibiotic resistance demands identification of novel antibacterial compound classes. A bacterial whole-cell screen based on pneumococcal autolysin-mediated lysis induction was developed to identify potential bacterial cell wall synthesis inhibitors. A hit class comprising a 1-amino substituted tetrahydrocarbazole (THCz) scaffold, containing two essential amine groups, displayed bactericidal activity against a broad range of gram-positive and selected gram-negative pathogens in the low micromolar range. Mode of action studies revealed that THCz inhibit cell envelope synthesis by targeting undecaprenyl pyrophosphate-containing lipid intermediates and thus simultaneously inhibit peptidoglycan, teichoic acid, and polysaccharide capsule biosynthesis. Resistance did not readily develop in vitro, and the ease of synthesizing and modifying these small molecules, as compared to natural lipid II-binding antibiotics, makes THCz promising scaffolds for development of cell wall-targeting antimicrobials.


Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Wall/chemistry , Cell Wall/drug effects , Lipids/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , N-Acetylmuramoyl-L-alanine Amidase , Peptidoglycan/biosynthesis , Polyisoprenyl Phosphates , Streptococcus pneumoniae/drug effects , Teichoic Acids/chemistry , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives
12.
ACS Chem Biol ; 16(8): 1344-1349, 2021 08 20.
Article En | MEDLINE | ID: mdl-34255482

Glycerol phosphate (GroP)-based teichoic acids (TAs) are antigenic cell-wall components found in both enterococcus and staphylococcus species. Their immunogenicity has been explored using both native and synthetic structures, but no details have yet been reported on the structural basis of their interaction with antibodies. This work represents the first case study in which a monoclonal antibody, generated against a synthetic TA, was developed and employed for molecular-level binding analysis using TA microarrays, ELISA, SPR-analyses, and STD-NMR spectroscopy. Our findings show that the number and the chirality of the GroP residues are crucial for interaction and that the sugar appendage contributes to the presentation of the backbone to the binding site of the antibody.


Antibodies, Monoclonal, Murine-Derived/metabolism , Epitopes/metabolism , Glycerophosphates/metabolism , Teichoic Acids/metabolism , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes/immunology , Glycerophosphates/chemistry , Glycerophosphates/immunology , Mice , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Teichoic Acids/chemistry , Teichoic Acids/immunology
13.
Glycobiology ; 31(12): 1655-1669, 2021 12 30.
Article En | MEDLINE | ID: mdl-34314482

The opportunistic pathogen Streptococcus mitis possesses, like other members of the Mitis group of viridans streptococci, phosphorylcholine (P-Cho)-containing teichoic acids (TAs) in its cell wall. Bioinformatic analyses predicted the presence of TAs that are almost identical with those identified in the pathogen Streptococcus pneumoniae, but a detailed analysis of S. mitis lipoteichoic acid (LTA) was not performed to date. Here, we determined the structures of LTA from two S. mitis strains, the high-level beta-lactam and multiple antibiotic resistant strain B6 and the penicillin-sensitive strain NCTC10712. In agreement with bioinformatic predictions, we found that the structure of one LTA (type IV) was like pneumococcal LTA, except the exchange of a glucose moiety with a galactose within the repeating units. Further genome comparisons suggested that the majority of S. mitis strains should contain the same type IV LTA as S. pneumoniae, providing a more complete understanding of the biosynthesis of these P-Cho-containing TAs in members of the Mitis group of streptococci. Remarkably, we observed besides type IV LTA, an additional polymer belonging to LTA type I in both investigated S. mitis strains. This LTA consists of ß-galactofuranosyl-(1,3)-diacylglycerol as glycolipid anchor and a poly-glycerol-phosphate chain at the O-6 position of the furanosidic galactose. Hence, these bacteria are capable of synthesizing two different LTA polymers, most likely produced by distinct biosynthesis pathways. Our bioinformatics analysis revealed the prevalence of the LTA synthase LtaS, most probably responsible for the second LTA version (type I), among S. mitis and Streptococcus pseudopneumoniae strains.


Streptococcus mitis , Teichoic Acids , Lipopolysaccharides/chemistry , Streptococcus mitis/genetics , Streptococcus mitis/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Teichoic Acids/chemistry
14.
J Biol Chem ; 296: 100384, 2021.
Article En | MEDLINE | ID: mdl-33556370

UTP-glucose-1-phosphate uridylyltransferases are enzymes that produce UDP-glucose from UTP and glucose-1-phosphate. In Bacillus subtilis 168, UDP-glucose is required for the decoration of wall teichoic acid (WTA) with glucose residues and the formation of glucolipids. The B. subtilis UGPase GtaB is essential for UDP-glucose production under standard aerobic growth conditions, and gtaB mutants display severe growth and morphological defects. However, bioinformatics predictions indicate that two other UTP-glucose-1-phosphate uridylyltransferases are present in B. subtilis. Here, we investigated the function of one of them named YngB. The crystal structure of YngB revealed that the protein has the typical fold and all necessary active site features of a functional UGPase. Furthermore, UGPase activity could be demonstrated in vitro using UTP and glucose-1-phosphate as substrates. Expression of YngB from a synthetic promoter in a B. subtilis gtaB mutant resulted in the reintroduction of glucose residues on WTA and production of glycolipids, demonstrating that the enzyme can function as UGPase in vivo. When WT and mutant B. subtilis strains were grown under anaerobic conditions, YngB-dependent glycolipid production and glucose decorations on WTA could be detected, revealing that YngB is expressed from its native promoter under anaerobic condition. Based on these findings, along with the structure of the operon containing yngB and the transcription factor thought to be required for its expression, we propose that besides WTA, potentially other cell wall components might be decorated with glucose residues during oxygen-limited growth condition.


Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Glycolipids/metabolism , Teichoic Acids/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Anaerobiosis , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Wall/metabolism , Crystallography, X-Ray/methods , Glycosylation , Promoter Regions, Genetic , Teichoic Acids/chemistry , UTP-Glucose-1-Phosphate Uridylyltransferase/chemistry , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics
15.
ACS Appl Bio Mater ; 4(5): 3749-3761, 2021 05 17.
Article En | MEDLINE | ID: mdl-35006805

Antimicrobial resistance is a global threat. In addition to the emergence of resistance to last resort drugs, bacteria escape antibiotics killing by forming complex biofilms. Strategies to tackle antibiotic resistance as well as biofilms are urgently needed. Wall teichoic acid (WTA), a generic anionic glycopolymer present on the cell surface of many Gram-positive bacteria, has been proposed as a possible therapeutic target, but its druggability remains to be demonstrated. Here we report a cationic glycosylated block co-ß-peptide that binds to WTA. By doing so, the co-ß-peptide not only inhibits biofilm formation, it also disperses preformed biofilms in several Gram-positive bacteria and resensitizes methicillin-resistant Staphylococcus aureus to oxacillin. The cationic block of the co-ß-peptide physically interacts with the anionic WTA within the cell envelope, whereas the glycosylated block forms a nonfouling corona around the bacteria. This reduces physical interaction between bacteria-substrate and bacteria-biofilm matrix, leading to biofilm inhibition and dispersal. The WTA-targeting co-ß-peptide is a promising lead for the future development of broad-spectrum anti-biofilm strategies against Gram-positive bacteria.


Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Gram-Positive Bacteria/drug effects , Peptides/pharmacology , Teichoic Acids/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biofilms/drug effects , Biofilms/growth & development , Cations/chemical synthesis , Cations/chemistry , Cations/pharmacology , Glycosylation , Materials Testing , Microbial Sensitivity Tests , Particle Size , Peptides/chemical synthesis , Peptides/chemistry , Teichoic Acids/chemistry
16.
Probiotics Antimicrob Proteins ; 13(1): 72-79, 2021 02.
Article En | MEDLINE | ID: mdl-32607729

Probiotics in livestock feed supplements are considered to be an alternative to antibiotics. However, effector molecules responsible for the beneficial roles of probiotics in pigs are in general not well known. Thus, this study demonstrated that a well-known virulence factor, flagellin of Salmonella typhimurium, significantly induced IL-8 production in porcine peripheral blood mononuclear cells, whereas lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria Lactobacillus plantarum, L. casei, and L. rhamnosus GG, effectively inhibited flagellin-induced IL-8 production at mRNA and protein levels. However, the lipoproteins of L. plantarum, L. casei, and L. rhamnosus GG did not suppress flagellin-induced IL-8 production. While D-alanine-deficient L. plantarum LTA inhibited flagellin-induced IL-8 production, L. plantarum LTA deficient in both D-alanine and acyl chains failed to inhibit it; this suggests that the acyl moieties of L. plantarum LTA are essential for inhibiting flagellin-induced IL-8 production. Taken together, L. plantarum LTA plays an important role in improving anti-inflammatory responses of porcine peripheral blood mononuclear cells.


Flagellin/toxicity , Interleukin-8/biosynthesis , Lactobacillus plantarum/chemistry , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Salmonella typhimurium , Teichoic Acids/pharmacology , Animals , Flagellin/chemistry , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/prevention & control , Lipopolysaccharides/chemistry , Salmonella typhimurium/chemistry , Salmonella typhimurium/pathogenicity , Swine , Teichoic Acids/chemistry
17.
Biochemistry (Mosc) ; 85(5): 629-635, 2020 May.
Article En | MEDLINE | ID: mdl-32571193

Two glycosyl 1-phosphate polymers containing monoglycosyl 1-phosphate, -6)-α-D-Glcp-(1-P-, and diglycosyl 1-phosphate, -6)-α-D-GalpNAc-(1→6)-α-D-GlcpNAc-(1-P-, in the repeating unit were identified in the cell wall of Glutamicibacter protophormiae VKM Ac-2104T (formerly, Arthrobacter protophormiae). The structures of these polymers were described for the first time in prokaryotes. Teichulosonic acid, the third identified polymer, with 3-deoxy-D-glycero-α-D-galacto-non-2-ulopyranosonic acid (Kdn) and ß-D-glucopyranose residues in the main chain, →6)-ß-D-Glcp-(1→8)-α-Kdn-(2→, has been previously detected in a number of actinobacteria. The structures of these glycopolymers were established based on the results of chemical analysis and one-dimensional 1H, 13C, and 31P NMR spectroscopy using two-dimensional homonuclear (1H,1H COZY, TOCSY, ROESY) and heteronuclear (1H,13C HSQC, HSQC-TOCSY, HMBC, and 1H,31P HMBC) techniques.


Cell Wall/metabolism , Glucosephosphates/metabolism , Magnetic Resonance Spectroscopy/methods , Micrococcaceae/metabolism , Polymers/chemistry , Polysaccharides, Bacterial/metabolism , Teichoic Acids/metabolism , Cell Wall/chemistry , Glucosephosphates/chemistry , Polysaccharides, Bacterial/chemistry , Teichoic Acids/chemistry
18.
Commun Biol ; 3(1): 314, 2020 06 17.
Article En | MEDLINE | ID: mdl-32555532

The bacterial cell wall is a multicomponent structure that provides structural support and protection. In monoderm species, the cell wall is made up predominantly of peptidoglycan, teichoic acids and capsular glycans. Filamentous monoderm Actinobacteria incorporate new cell-wall material at their tips. Here we use cryo-electron tomography to reveal the architecture of the actinobacterial cell wall of Streptomyces coelicolor. Our data shows a density difference between the apex and subapical regions. Removal of teichoic acids results in a patchy cell wall and distinct lamellae. Knock-down of tagO expression using CRISPR-dCas9 interference leads to growth retardation, presumably because build-in of teichoic acids had become rate-limiting. Absence of extracellular glycans produced by MatAB and CslA proteins results in a thinner wall lacking lamellae and patches. We propose that the Streptomyces cell wall is composed of layers of peptidoglycan and extracellular polymers that are structurally supported by teichoic acids.


Cell Wall/chemistry , Streptomyces coelicolor/cytology , Teichoic Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Cas Systems , Cell Wall/metabolism , Cryoelectron Microscopy , Gene Expression Regulation, Bacterial , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Polysaccharides/metabolism , Streptomyces coelicolor/genetics , Streptomyces coelicolor/growth & development , Teichoic Acids/chemistry , Tomography/methods
19.
Trends Microbiol ; 28(12): 985-998, 2020 12.
Article En | MEDLINE | ID: mdl-32540314

Staphylococcus aureus is a major opportunistic human pathogen that frequently causes disease in community and hospital settings. Nasal colonization is an important risk factor for developing invasive disease. Cell wall-associated glycopolymers called wall teichoic acids (WTAs) contribute to efficient nasal colonization by S. aureus. In addition, WTAs are key targets of the host immune system due to their accessibility and high abundance on the S. aureus cell surface. In this review we discuss the new insights into interactions between the host and S. aureus WTA and the implications of these interactions for preventative and therapeutic approaches against S. aureus-mediated disease.


Host Microbial Interactions/physiology , Staphylococcal Infections/immunology , Staphylococcus aureus/metabolism , Teichoic Acids/metabolism , Antibodies, Bacterial , Cell Wall/metabolism , Humans , Immunity, Innate , Phage Therapy , Staphylococcal Infections/prevention & control , Staphylococcal Infections/therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/immunology , Teichoic Acids/chemistry , Teichoic Acids/immunology , Vaccination
20.
J Biol Chem ; 295(28): 9513-9530, 2020 07 10.
Article En | MEDLINE | ID: mdl-32424044

Clostridium perfringens is a leading cause of food-poisoning and causes avian necrotic enteritis, posing a significant problem to both the poultry industry and human health. No effective vaccine against C. perfringens is currently available. Using an antiserum screen of mutants generated from a C. perfringens transposon-mutant library, here we identified an immunoreactive antigen that was lost in a putative glycosyltransferase mutant, suggesting that this antigen is likely a glycoconjugate. Following injection of formalin-fixed whole cells of C. perfringens HN13 (a laboratory strain) and JGS4143 (chicken isolate) intramuscularly into chickens, the HN13-derived antiserum was cross-reactive in immunoblots with all tested 32 field isolates, whereas only 5 of 32 isolates were recognized by JGS4143-derived antiserum. The immunoreactive antigens from both HN13 and JGS4143 were isolated, and structural analysis by MALDI-TOF-MS, GC-MS, and 2D NMR revealed that both were atypical lipoteichoic acids (LTAs) with poly-(ß1→4)-ManNAc backbones substituted with phosphoethanolamine. However, although the ManNAc residues in JGS4143 LTA were phosphoethanolamine-modified, a few of these residues were instead modified with phosphoglycerol in the HN13 LTA. The JGS4143 LTA also had a terminal ribose and ManNAc instead of ManN in the core region, suggesting that these differences may contribute to the broadly cross-reactive response elicited by HN13. In a passive-protection chicken experiment, oral challenge with C. perfringens JGS4143 lead to 22% survival, whereas co-gavage with JGS4143 and α-HN13 antiserum resulted in 89% survival. This serum also induced bacterial killing in opsonophagocytosis assays, suggesting that HN13 LTA is an attractive target for future vaccine-development studies.


Chickens , Clostridium Infections , Clostridium perfringens , Lipopolysaccharides , Poultry Diseases , Teichoic Acids , Animals , Chickens/immunology , Chickens/microbiology , Clostridium Infections/immunology , Clostridium Infections/prevention & control , Clostridium perfringens/chemistry , Clostridium perfringens/immunology , Humans , Lipopolysaccharides/chemistry , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Poultry Diseases/immunology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Teichoic Acids/chemistry , Teichoic Acids/immunology , Teichoic Acids/pharmacology
...