Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.718
Filtrar
1.
Horm Behav ; 165: 105631, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232410

RESUMEN

Telomere length (TL) is an important cellular marker of biological aging impacting the brain and heart. However, how it is related to the brain (e.g., cognitive function and neuroanatomic architecture), and how these relationships may vary by sex and reproductive status, is not well established. Here we assessed the association between leukocyte TL and memory circuitry regional brain volumes and memory performance in early midlife, in relation to sex and reproductive status. Participants (N = 198; 95 females, 103 males; ages 45-55) underwent structural MRI and neuropsychological assessments of verbal, associative, and working memory. Overall, shorter TL was associated with smaller white matter volume in the parahippocampal gyrus and dorsolateral prefrontal cortex. In males, shorter TL was associated with worse working memory performance and corresponding smaller white matter volumes in the parahippocampal gyrus, anterior cingulate cortex, and dorsolateral prefrontal cortex. In females, the impact of cellular aging was revealed over the menopausal transition. In postmenopausal females, shorter TL was associated with poor associative memory performance and smaller grey matter volume in the right hippocampus. In contrast, TL was not related to memory performance or grey and white matter volumes in any memory circuitry region in pre/perimenopausal females. Results demonstrated that shorter TL is associated with worse memory function and smaller volume in memory circuitry regions in early midlife, an association that differs by sex and reproductive status. Taken together, TL may serve as an early indicator of sex-dependent brain abnormalities in early midlife.


Asunto(s)
Envejecimiento , Cognición , Leucocitos , Memoria , Menopausia , Humanos , Femenino , Persona de Mediana Edad , Masculino , Envejecimiento/fisiología , Leucocitos/fisiología , Cognición/fisiología , Menopausia/fisiología , Memoria/fisiología , Caracteres Sexuales , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Telómero/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Pruebas Neuropsicológicas
2.
Rev. Asoc. Méd. Argent ; 137(1): 4-10, mar. 2024.
Artículo en Español | LILACS | ID: biblio-1552830

RESUMEN

Se exponen los hallazgos históricos y la importancia biológica de los telómeros en la vida celular y en los aspectos genéticos del ADN humano. (AU)


The discovery and the biological importance of the telomeres are exposed. (AU)


Asunto(s)
Humanos , ADN/genética , Telómero/fisiología , Telómero/genética , Telomerasa/fisiología , Telomerasa/genética , Envejecimiento/fisiología , ADN/metabolismo , Senescencia Celular , Telomerasa/metabolismo , Replicación del ADN/fisiología , Acortamiento del Telómero , Neoplasias/fisiopatología
3.
Eur Child Adolesc Psychiatry ; 33(8): 2803-2812, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38246982

RESUMEN

Shortened telomere length (TL) has been associated with lower cognitive performance, different neurological diseases in adults, and certain neurodevelopmental disorders in children. However, the evidence about the association between TL and neuropsychological developmental outcomes in children from the general population is scarce. Therefore, this study aimed to explore the association between TL and neuropsychological function in children 4-5 years of age. We included 686 children from the INMA Project, a population-based birth cohort in Spain. Leucocyte TL was determined by quantitative PCR method, and neuropsychological outcomes were measured using the McCarthy Scales of Children's Abilities (MCSA). Multiple linear regression models were used to estimate associations adjusted for potential confounding variables. Main findings showed that a longer TL was associated with a higher mean working memory score (ß = 4.55; 95% CI = 0.39, 8.71). In addition, longer TL was associated with a higher mean global quantitative score (ß = 3.85; 95% CI = -0.19, 7.89), although the association was marginally significant. To our knowledge, this is the first study that shows a positive association between TL and better neuropsychological outcomes in children. Although further research is required to confirm these results, this study supports the hypothesis that TL is essential in protecting and maintaining a child's health, including cognitive functions such as working memory.


Asunto(s)
Pruebas Neuropsicológicas , Humanos , Femenino , Masculino , Estudios Transversales , Preescolar , España , Telómero/genética , Telómero/fisiología , Memoria a Corto Plazo/fisiología , Desarrollo Infantil/fisiología , Cohorte de Nacimiento , Cognición/fisiología
4.
Genes (Basel) ; 14(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37628647

RESUMEN

Telomeres are terminal DNA regions of chromosomes that prevent chromosomal fusion and degradation during cell division. In cattle, leukocyte telomere length (LTL) is associated with longevity, productive lifespan, and disease susceptibility. However, the genetic basis of LTL in this species is less studied than in humans. In this study, we utilized the whole-genome resequencing data of 239 animals from 17 cattle breeds for computational leukocyte telomere length estimation and subsequent genome-wide association study of LTL. As a result, we identified 42 significant SNPs, of which eight were found in seven genes (EXOC6B, PTPRD, RPS6KC1, NSL1, AGBL1, ENSBTAG00000052188, and GPC1) when using covariates for two major breed groups (Turano-Mongolian and European). Association analysis with covariates for breed effect detected 63 SNPs, including 13 in five genes (EXOC6B, PTPRD, RPS6KC1, ENSBTAG00000040318, and NELL1). The PTPRD gene, demonstrating the top signal in analysis with breed effect, was previously associated with leukocyte telomere length in cattle and likely is involved in the mechanism of alternative lengthening of telomeres. The single nucleotide variants found could be tested for marker-assisted selection to improve telomere-length-associated traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Leucocitos , Telómero , Animales , Bovinos/genética , División Celular , Leucocitos/fisiología , Telómero/genética , Telómero/fisiología
5.
N Engl J Med ; 388(26): 2422-2433, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37140166

RESUMEN

BACKGROUND: Telomere shortening is a well-characterized cellular aging mechanism, and short telomere syndromes cause age-related disease. However, whether long telomere length is advantageous is poorly understood. METHODS: We examined the clinical and molecular features of aging and cancer in persons carrying heterozygous loss-of-function mutations in the telomere-related gene POT1 and noncarrier relatives. RESULTS: A total of 17 POT1 mutation carriers and 21 noncarrier relatives were initially included in the study, and a validation cohort of 6 additional mutation carriers was subsequently recruited. A majority of the POT1 mutation carriers with telomere length evaluated (9 of 13) had long telomeres (>99th percentile). POT1 mutation carriers had a range of benign and malignant neoplasms involving epithelial, mesenchymal, and neuronal tissues in addition to B- and T-cell lymphoma and myeloid cancers. Five of 18 POT1 mutation carriers (28%) had T-cell clonality, and 8 of 12 (67%) had clonal hematopoiesis of indeterminate potential. A predisposition to clonal hematopoiesis had an autosomal dominant pattern of inheritance, as well as penetrance that increased with age; somatic DNMT3A and JAK2 hotspot mutations were common. These and other somatic driver mutations probably arose in the first decades of life, and their lineages secondarily accumulated a higher mutation burden characterized by a clocklike signature. Successive generations showed genetic anticipation (i.e., an increasingly early onset of disease). In contrast to noncarrier relatives, who had the typical telomere shortening with age, POT1 mutation carriers maintained telomere length over the course of 2 years. CONCLUSIONS: POT1 mutations associated with long telomere length conferred a predisposition to a familial clonal hematopoiesis syndrome that was associated with a range of benign and malignant solid neoplasms. The risk of these phenotypes was mediated by extended cellular longevity and by the capacity to maintain telomeres over time. (Funded by the National Institutes of Health and others.).


Asunto(s)
Envejecimiento , Hematopoyesis Clonal , Neoplasias , Telómero , Humanos , Envejecimiento/genética , Hematopoyesis Clonal/genética , Heterocigoto , Mutación con Pérdida de Función/genética , Mutación , Neoplasias/genética , Complejo Shelterina/genética , Síndrome , Telómero/genética , Telómero/fisiología , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/genética
6.
Psychol Med ; 53(13): 6171-6182, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36457292

RESUMEN

BACKGROUND: Although maternal stressor exposure has been associated with shorter telomere length (TL) in offspring, this literature is based largely on White samples. Furthermore, timing of maternal stressors has rarely been examined. Here, we examined how maternal stressors occurring during adolescence, pregnancy, and across the lifespan related to child TL in Black and White mothers. METHOD: Mothers (112 Black; 110 White; Mage = 39) and their youngest offspring (n = 222; Mage = 8) were part of a larger prospective cohort study, wherein mothers reported their stressors during adolescence (assessed twice during adolescence for the past year), pregnancy (assessed in midlife for most recent pregnancy), and across their lifespan (assessed in midlife). Mother and child provided saliva for TL measurement. Multiple linear regression models examined the interaction of maternal stressor exposure and race in relation to child TL, controlling for maternal TL and child gender and age. Race-stratified analyses were also conducted. RESULTS: Neither maternal adolescence nor lifespan stressors interacted with race in relation to child TL. In contrast, greater maternal pregnancy stressors were associated with shorter child TL, but this effect was present for children of White but not Black mothers. Moreover, this effect was significant for financial but not social pregnancy stressors. Race-stratified models revealed that greater financial pregnancy stressors predicted shorter telomeres in offspring of White, but not Black mothers. CONCLUSIONS: Race and maternal stressors interact and are related to biological aging across generations, but these effects are specific to certain races, stressors, and exposure time periods.


Asunto(s)
Madres , Acortamiento del Telómero , Adolescente , Adulto , Niño , Femenino , Humanos , Embarazo , Exposición Materna , Madres/psicología , Estudios Prospectivos , Telómero/fisiología , Acortamiento del Telómero/fisiología , Población Blanca/psicología , Relaciones Intergeneracionales/etnología , Negro o Afroamericano/psicología , Adulto Joven , Persona de Mediana Edad
7.
Nutrients ; 14(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014852

RESUMEN

Short telomeres have been associated with ageing and cardiovascular disease. The influence on leukocyte telomere length (LTL) of long-term intervention with combined selenium and coenzyme Q10 is unknown. Our aim was to determine whether 42 months of selenium and coenzyme Q10 supplementation prevented telomere attrition and further cardiovascular mortality. The investigation is an explorative sub-study of a double-blind, placebo-controlled, randomized trial. Swedish citizens low in selenium (n = 118), aged 70−80 years, were included. Intervention time was 4 years, with 10 years' follow-up time. LTL was relatively quantified with PCR at baseline and after 42 months. At baseline, LTL (SD) was 0.954 (0.260) in the active treatment group and 1.018 (0.317) in the placebo group (p = 0.23). At 42 months, less shortening of LTL was observed after active treatment compared with placebo (+0.019 vs. −0.129, respectively, p = 0.02), with a significant difference in change basing the analysis on individual changes in LTL (p < 0.001). Subjects suffering future death presented with significantly shorter LTL at 42 months than survivors [0.791 (0.190) vs. 0.941 (0.279), p = 0.01], with a significant difference in change of LTL according to cardiovascular mortality and survival (p = 0.03). To conclude, preservation of LTL after selenium and coenzyme Q10 supplementation associated with reduced cardiovascular mortality.


Asunto(s)
Enfermedades Cardiovasculares , Selenio , Telómero , Ubiquinona , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/prevención & control , Suplementos Dietéticos , Humanos , Leucocitos , Estudios Prospectivos , Selenio/farmacología , Selenio/uso terapéutico , Telómero/efectos de los fármacos , Telómero/fisiología , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
8.
Science ; 376(6599): eabh3104, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35549308

RESUMEN

A hallmark of meiosis is chromosomal pairing, which requires telomere tethering and rotation on the nuclear envelope through microtubules, driving chromosome homology searches. Telomere pulling toward the centrosome forms the "zygotene chromosomal bouquet." Here, we identified the "zygotene cilium" in oocytes. This cilium provides a cable system for the bouquet machinery and extends throughout the germline cyst. Using zebrafish mutants and live manipulations, we demonstrate that the cilium anchors the centrosome to counterbalance telomere pulling. The cilium is essential for bouquet and synaptonemal complex formation, oogenesis, ovarian development, and fertility. Thus, a cilium represents a conserved player in zebrafish and mouse meiosis, which sheds light on reproductive aspects in ciliopathies and suggests that cilia can control chromosomal dynamics.


Asunto(s)
Emparejamiento Cromosómico , Cilios , Oocitos , Oogénesis , Ovario , Animales , Centrómero/genética , Centrómero/fisiología , Emparejamiento Cromosómico/genética , Emparejamiento Cromosómico/fisiología , Cilios/fisiología , Femenino , Fertilidad/fisiología , Ratones , Morfogénesis , Oocitos/crecimiento & desarrollo , Oogénesis/genética , Oogénesis/fisiología , Ovario/crecimiento & desarrollo , Telómero/genética , Telómero/fisiología , Pez Cebra/genética , Pez Cebra/fisiología
9.
PLoS Genet ; 18(2): e1010040, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130272

RESUMEN

During meiotic prophase I, homologous chromosomes pair, synapse and recombine in a tightly regulated process that ensures the generation of genetically variable haploid gametes. Although the mechanisms underlying meiotic cell division have been well studied in model species, our understanding of the dynamics of meiotic prophase I in non-traditional model mammals remains in its infancy. Here, we reveal key meiotic features in previously uncharacterised marsupial species (the tammar wallaby and the fat-tailed dunnart), plus the fat-tailed mouse opossum, with a focus on sex chromosome pairing strategies, recombination and meiotic telomere homeostasis. We uncovered differences between phylogroups with important functional and evolutionary implications. First, sex chromosomes, which lack a pseudo-autosomal region in marsupials, had species specific pairing and silencing strategies, with implications for sex chromosome evolution. Second, we detected two waves of γH2AX accumulation during prophase I. The first wave was accompanied by low γH2AX levels on autosomes, which correlated with the low recombination rates that distinguish marsupials from eutherian mammals. In the second wave, γH2AX was restricted to sex chromosomes in all three species, which correlated with transcription from the X in tammar wallaby. This suggests non-canonical functions of γH2AX on meiotic sex chromosomes. Finally, we uncover evidence for telomere elongation in primary spermatocytes of the fat-tailed dunnart, a unique strategy within mammals. Our results provide new insights into meiotic progression and telomere homeostasis in marsupials, highlighting the importance of capturing the diversity of meiotic strategies within mammals.


Asunto(s)
Emparejamiento Cromosómico/fisiología , Cromosomas Sexuales/fisiología , Telómero/fisiología , Animales , Macropodidae/genética , Marsupiales/genética , Meiosis/genética , Meiosis/fisiología , Profase Meiótica I/fisiología , Zarigüeyas/genética , Cromosomas Sexuales/genética , Telómero/genética , Cromosoma X/genética , Cromosoma Y/genética
10.
JAMA Intern Med ; 182(3): 291-300, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040871

RESUMEN

IMPORTANCE: Telomeres protect DNA from damage. Because they shorten with each mitotic cycle, leukocyte telomere length (LTL) serves as a mitotic clock. Reduced LTL has been associated with multiple human disorders. OBJECTIVE: To determine the association between LTL and overall as well as disease-specific mortality and morbidity. DESIGN, SETTING, AND PARTICIPANTS: This multicenter, community-based cohort study conducted from March 2006 to December 2010 included longitudinal follow-up (mean [SD], 12 [2] years) for 472 432 English participants from the United Kingdom Biobank (UK Biobank) and analyzed morbidity and mortality. The data were analyzed in 2021. MAIN OUTCOMES AND MEASURES: Hazard ratios (HRs) and odds ratios for mortality and morbidity associated with a standard deviation change in LTL, adjusted for age, sex, body mass index (calculated as weight in kilograms divided by height in meters squared), and ethnicity. RESULTS: This study included a total of 472 432 English participants, of whom 54% were women (mean age, 57 years). Reduced LTL was associated with increased overall (HR, 1.08; 95% CI, 1.07-1.09), cardiovascular (HR, 1.09; 95% CI, 1.06-1.12), respiratory (HR, 1.40; 95% CI, 1.34-1.45), digestive (HR, 1.26; 95% CI, 1.19-1.33), musculoskeletal (HR, 1.51; 95% CI, 1.35-1.92), and COVID-19 (HR, 1.15; 95% CI, 1.07-1.23) mortality, but not cancer-related mortality. A total of 214 disorders were significantly overrepresented and 37 underrepresented in participants with shorter LTL. Respiratory (11%), digestive/liver-related (14%), circulatory (18%), and musculoskeletal conditions (6%), together with infections (5%), accounted for most positive associations, whereas (benign) neoplasms and endocrinologic/metabolic disorders were the most underrepresented entities. Malignant tumors, esophageal cancer, and lymphoid and myeloid leukemia were significantly more common in participants with shorter LTL, whereas brain cancer and melanoma were less prevalent. While smoking and alcohol consumption were associated with shorter LTL, additional adjustment for both factors, as well as cognitive function/major comorbid conditions, did not significantly alter the results. CONCLUSIONS AND RELEVANCE: This cohort study found that shorter LTL was associated with a small risk increase of overall mortality, but a higher risk of mortality was associated with specific organs and diseases.


Asunto(s)
Leucocitos/fisiología , Mortalidad/tendencias , Telómero/fisiología , Adulto , Anciano , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Riesgo , Reino Unido
11.
Aging (Albany NY) ; 14(1): 354-367, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34995210

RESUMEN

Telomere is a unique DNA-protein complex which covers the ends of chromosomes to avoid end fusion and maintain the stability and integrity of chromosomes. Telomere length (TL) shortening has been linked to aging and various age-related diseases in humans. Here we recruited a total of 1031 Chinese individuals aged between 12 and 111 years, including 108 families with parents and their offspring. DNA was extracted from peripheral white blood cells and TL was measured by quantitative PCR (qPCR). We explored the associations of TL with age, gender and clinical variables, and tested the parental effects on TL variation. First, we found that TL was shortened with age, however, TL was better maintained in females than males. Second, there was a robust association of TL between mother and offspring, but not between father and their offspring. In addition, TL was inversely associated with visceral fat index in females, and positively associated with apolipoprotein A levels. Knockdown of the key genes for lipid metabolism (PNPLA2 and CPT1) shortened the TL in HepG2 cells. These findings indicate that TL is maternally inherited, and impairment of lipid metabolism may contribute to the TL shortening in the Chinese population.


Asunto(s)
Pueblo Asiatico/genética , Metabolismo de los Lípidos/genética , Telómero/genética , Telómero/fisiología , Anciano , Anciano de 80 o más Años , Envejecimiento , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
12.
Dev Cell ; 57(2): 277-290.e9, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35077681

RESUMEN

Telomeres form unique nuclear compartments that prevent degradation and fusion of chromosome ends by recruiting shelterin proteins and regulating access of DNA damage repair factors. To understand how these dynamic components protect chromosome ends, we combine in vivo biophysical interrogation and in vitro reconstitution of human shelterin. We show that shelterin components form multicomponent liquid condensates with selective biomolecular partitioning on telomeric DNA. Tethering and anomalous diffusion prevent multiple telomeres from coalescing into a single condensate in mammalian cells. However, telomeres coalesce when brought into contact via an optogenetic approach. TRF1 and TRF2 subunits of shelterin drive phase separation, and their N-terminal domains specify interactions with telomeric DNA in vitro. Telomeric condensates selectively recruit telomere-associated factors and regulate access of DNA damage repair factors. We propose that shelterin mediates phase separation of telomeric chromatin, which underlies the dynamic yet persistent nature of the end-protection mechanism.


Asunto(s)
Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Línea Celular , Cromatina/genética , ADN/metabolismo , Daño del ADN/fisiología , Reparación del ADN/genética , Reparación del ADN/fisiología , Humanos , Optogenética/métodos , Unión Proteica/genética , Unión Proteica/fisiología , Complejo Shelterina/genética , Complejo Shelterina/fisiología , Telómero/fisiología , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética
13.
Respir Res ; 22(1): 316, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34937547

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an age-related condition that has been associated with early telomere attrition; the clinical implications of telomere shortening in COPD are not well known. In this study we aimed to determine the relationship of the epigenetic regulation of telomeric length in peripheral blood with the risk of exacerbations and hospitalization in patients with COPD. METHODS: Blood DNA methylation profiles were obtained from 292 patients with COPD enrolled in the placebo arm of the Macrolide Azithromycin to Prevent Rapid Worsening of Symptoms Associated with Chronic Obstructive Pulmonary Disease (MACRO) Study and who were followed for 1-year. We calculated telomere length based on DNA methylation markers (DNAmTL) and related this biomarker to the risk of exacerbation and hospitalization and health status (St. George Respiratory Questionnaire [SGRQ]) score over time using a Cox proportional hazards model. We also used linear models to investigate the associations of DNAmTL with the rates of exacerbation and hospitalization (adjusted for chronological age, lung function, race, sex, smoking, body mass index and cell composition). RESULTS: Participants with short DNAmTL demonstrated increased risk of exacerbation (P = 0.02) and hospitalization (P = 0.03) compared to those with longer DNAmTL. DNAmTL age acceleration was associated with higher rates of exacerbation (P = 1.35 × 10-04) and hospitalization (P = 5.21 × 10-03) and poor health status (lower SGRQ scores) independent of chronological age (P = 0.03). CONCLUSION: Telomeric age based on blood DNA methylation is associated with COPD exacerbation and hospitalization and thus a promising biomarker for poor outcomes in COPD.


Asunto(s)
Azitromicina/uso terapéutico , Hospitalización/tendencias , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Telómero/fisiología , Adulto , Anciano , Antibacterianos/uso terapéutico , Biomarcadores/metabolismo , Metilación de ADN , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/genética , Calidad de Vida , Estudios Retrospectivos , Encuestas y Cuestionarios , Factores de Tiempo , Estados Unidos/epidemiología
14.
Genes (Basel) ; 12(12)2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34946868

RESUMEN

RECQL4 is a member of the evolutionarily conserved RecQ family of 3' to 5' DNA helicases. RECQL4 is critical for maintaining genomic stability through its functions in DNA repair, recombination, and replication. Unlike many DNA repair proteins, RECQL4 has unique functions in many of the central DNA repair pathways such as replication, telomere, double-strand break repair, base excision repair, mitochondrial maintenance, nucleotide excision repair, and crosslink repair. Consistent with these diverse roles, mutations in RECQL4 are associated with three distinct genetic diseases, which are characterized by developmental defects and/or cancer predisposition. In this review, we provide an overview of the roles and regulation of RECQL4 during maintenance of genome homeostasis.


Asunto(s)
Inestabilidad Genómica , RecQ Helicasas/fisiología , Animales , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Humanos , Mitocondrias , Proteínas de Saccharomyces cerevisiae/fisiología , Telómero/fisiología , Ubiquitinación
15.
Nat Commun ; 12(1): 6850, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824242

RESUMEN

The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells' skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance.


Asunto(s)
Hematopoyesis/fisiología , Acortamiento del Telómero/fisiología , Animales , Trastornos de Fallo de la Médula Ósea/genética , Trastornos de Fallo de la Médula Ósea/metabolismo , Trastornos de Fallo de la Médula Ósea/patología , Autorrenovación de las Células , Reprogramación Celular , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Interferones/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Telómero/química , Telómero/fisiología , Acortamiento del Telómero/genética
17.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681758

RESUMEN

Understanding the telomere maintenance mechanism (TMM) in immortal cancer cells is vital for TMM-targeted therapies in clinical settings. In this study, we classified four telomere maintenance mechanisms into telomerase, ALT, telomerase + ALT, and non-defined telomere maintenance mechanism (NDTMM) across 31 cancer types using 10,704 transcriptomic datasets from The Cancer Genome Atlas. Our results demonstrated that approximately 50% of the total cohort displayed ALT activity with high telomerase activity in most cancer types. We confirmed significant patient prognoses according to distinct TMMs in six cancer types: adrenocortical carcinoma (ACC), PAAD, HNSC, SARC, GBM, and metastatic cancer. Patients with metastasis had a poor prognosis in the ALT group (p < 0.006) subjected to RAS protein signal transduction. Glioblastoma patients had poor prognosis in NDTMM (p < 0.0043) and showed high levels of myeloid leukocyte activation. Pancreatic adenocarcinoma (p < 0.04) and head and neck squamous cell carcinoma (p < 0.046) patients had a good prognosis in the ALT group with high immune cell activation. Furthermore, we showed that master transcriptional regulators might affect the selection of the TMM pathway and explained why different telomere maintenance mechanisms exist. Furthermore, they can be used to segregate patients and predict responders to different TMM-targeted therapeutics.


Asunto(s)
Neoplasias/genética , Neoplasias/mortalidad , Telómero/fisiología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/mortalidad , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Neoplasias/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Telómero/genética , Homeostasis del Telómero/fisiología
18.
RNA ; 27(12): 1441-1458, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34556550

RESUMEN

Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.


Asunto(s)
Empalme Alternativo , Proteínas de Ciclo Celular/metabolismo , Transferasas Intramoleculares/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Procesamiento Postranscripcional del ARN , Ribosomas/metabolismo , Telómero/fisiología , Proteínas de Ciclo Celular/genética , Disqueratosis Congénita , Humanos , Transferasas Intramoleculares/genética , Proteínas Nucleares/genética
19.
Sci Rep ; 11(1): 15914, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354128

RESUMEN

Osteoarthritis (OA) is a chronic degenerative joint disease, being the main cause of laboral inability. Decreased telomere size in peripheral blood leukocytes (PBL) has been correlated with age-related pathologies, like knee OA. In a dynamic approach, telomere-qPCR was performed to evaluate the relative percentage of PBL telomere loss after a 6-year follow-up, in 281 subjects from the prospective osteoarthritis initiative (OAI) cohort. A radiological Kellgren-Lawrence (KL) grade ≥ 2 was indicative of knee OA. Individuals with knee OA at recruitment (n = 144) showed a higher PBL telomere loss after 6 years than those without knee OA at baseline (n = 137; p = 0.018). Moreover, individuals that developed knee OA during the follow-up (n = 39) exhibited a higher telomere loss compared to those that remained without OA (n = 98; p < 0.001). Logistic regression analysis showed that PBLs telomere loss was not significantly associated with knee OA at recruitment, but behaves as an independent risk factor associated with incidence after follow-up (OR: 1.043; p = 0.041), together with maximum KL grade (OR: 3.627; p = 0.011), body mass index-BMI (OR: 1.252; p < 0.001) and WOMAC-index (OR: 1.247; p = 0.021), at recruitment. The telomere decay in PBLs is faster in individuals with incident knee OA, possibly reflecting a systemic-global accelerated aging that enhances the cartilage degeneration.


Asunto(s)
Osteoartritis de la Rodilla/genética , Homeostasis del Telómero/fisiología , Telómero/patología , Envejecimiento , Estudios de Cohortes , Estudios de Seguimiento , Humanos , Incidencia , Articulación de la Rodilla/patología , Leucocitos/patología , Leucocitos Mononucleares/patología , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Estudios Prospectivos , Factores de Riesgo , Telómero/metabolismo , Telómero/fisiología , Homeostasis del Telómero/genética
20.
J Autoimmun ; 123: 102699, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34265700

RESUMEN

Telomeres are repetitive DNA sequences located at the ends of linear chromosomes that preserve the integrity and stability of the genome. Telomere dysfunctions due to short telomeres or altered telomere structures can ultimately lead to replicative cellular senescence and chromosomal instability, both mechanisms being hallmarks of ageing. Chronic inflammation, oxidative stress and finally telomere length (TL) dynamics have been shown to be involved in various age-related non-communicable diseases (NCDs). Immune-mediated inflammatory diseases (IMIDs), including affections such as inflammatory bowel disease, psoriasis, rheumatoid arthritis, spondyloarthritis and uveitis belong to this group of age-related NCDs. Although in recent years, we have witnessed the emergence of studies in the literature linking these IMIDs to TL dynamics, the causality between these diseases and telomere attrition is still unclear and controversial. In this review, we provide an overview of available studies on telomere dynamics and discuss the utility of TL measurements in immune-mediated inflammatory diseases.


Asunto(s)
Inflamación/etiología , Telómero/fisiología , Artritis Reumatoide/etiología , Humanos , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/etiología , Psoriasis/etiología , Espondiloartritis/etiología , Uveítis/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA