Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
J Vis Exp ; (210)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39283143

RESUMEN

Telomeres, the protective structures at the ends of chromosomes, are crucial for maintaining cellular longevity and genome stability. Their proper function depends on tightly regulated processes of replication, elongation, and damage response. The shelterin complex, especially Telomere Repeat-binding Factor 1 (TRF1) and TRF2, plays a pivotal role in telomere protection and has emerged as a potential anti-cancer target for drug discovery. These proteins bind to the repetitive telomeric DNA motif TTAGGG, facilitating the formation of protective structures and recruitment of other telomeric proteins. Structural methods and advanced imaging techniques have provided insights into telomeric protein-DNA interactions, but probing the dynamic processes requires single-molecule approaches. Tools like magnetic tweezers, optical tweezers, and atomic force microscopy (AFM) have been employed to study telomeric protein-DNA interactions, revealing important details such as TRF2-dependent DNA distortion and telomerase catalysis. However, the preparation of single-molecule constructs with telomeric repetitive motifs continues to be a challenging task, potentially limiting the breadth of studies utilizing single-molecule mechanical methods. To address this, we developed a method to study interactions using full-length human telomeric DNA with magnetic tweezers. This protocol describes how to express and purify TRF2, prepare telomeric DNA, set up single-molecule mechanical assays, and analyze data. This detailed guide will benefit researchers in telomere biology and telomere-targeted drug discovery.


Asunto(s)
ADN , Telómero , ADN/química , ADN/metabolismo , ADN/genética , Telómero/metabolismo , Telómero/química , Humanos , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Imagen Individual de Molécula/métodos , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Pinzas Ópticas
2.
Respir Res ; 25(1): 299, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113018

RESUMEN

BACKGROUND: Although recent studies provide mechanistic understanding to the pathogenesis of radiation induced lung injury (RILI), rare therapeutics show definitive promise for treating this disease. Type II alveolar epithelial cells (AECII) injury in various manner results in an inflammation response to initiate RILI. RESULTS: Here, we reported that radiation (IR) up-regulated the TNKS1BP1, causing progressive accumulation of the cellular senescence by up-regulating EEF2 in AECII and lung tissue of RILI mice. Senescent AECII induced Senescence-Associated Secretory Phenotype (SASP), consequently activating fibroblasts and macrophages to promote RILI development. In response to IR, elevated TNKS1BP1 interacted with and decreased CNOT4 to suppress EEF2 degradation. Ectopic expression of EEF2 accelerated AECII senescence. Using a model system of TNKS1BP1 knockout (KO) mice, we demonstrated that TNKS1BP1 KO prevents IR-induced lung tissue senescence and RILI. CONCLUSIONS: Notably, this study suggested that a regulatory mechanism of the TNKS1BP1/CNOT4/EEF2 axis in AECII senescence may be a potential strategy for RILI.


Asunto(s)
Células Epiteliales Alveolares , Senescencia Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de la radiación , Células Epiteliales Alveolares/patología , Células Cultivadas , Senescencia Celular/efectos de la radiación , Senescencia Celular/fisiología , Quinasa del Factor 2 de Elongación/metabolismo , Quinasa del Factor 2 de Elongación/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/genética , Lesión Pulmonar/patología , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
3.
J Cancer Res Clin Oncol ; 150(7): 353, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012375

RESUMEN

This article presents an in-depth exploration of the roles of Telomere Repeat-binding Factors 1 and 2 (TRF1 and TRF2), and the shelterin complex, in the context of cancer biology. It emphasizes their emerging significance as potential biomarkers and targets for therapeutic intervention. Central to the shelterin complex, TRF1 and TRF2 are crucial in maintaining telomere integrity and genomic stability, their dysregulation often being a hallmark of cancerous cells. The article delves into the diagnostic and prognostic capabilities of TRF1 and TRF2 across various cancer types, highlighting their sensitivity and specificity. Furthermore, it reviews current strides in drug discovery targeting the shelterin complex, detailing specific compounds and their modes of action. The review candidly addresses the challenges in developing therapies aimed at the shelterin complex, including drug resistance, off-target effects, and issues in drug delivery. By synthesizing recent research findings, the article sheds light on the intricate relationship between telomere biology and cancer development. It underscores the urgency for continued research to navigate the existing challenges and fully leverage the therapeutic potential of TRF1, TRF2, and the shelterin complex in the realm of cancer treatment.


Asunto(s)
Neoplasias , Telómero , Proteína 1 de Unión a Repeticiones Teloméricas , Proteína 2 de Unión a Repeticiones Teloméricas , Humanos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Telómero/metabolismo , Terapia Molecular Dirigida/métodos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Complejo Shelterina , Proteínas de Unión a Telómeros
4.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588418

RESUMEN

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Unión a Telómeros , Animales , Proteínas de Unión a Telómeros/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dimerización , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Unión Proteica , Telómero/genética , Telómero/metabolismo , Complejo Shelterina , ADN/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas , Mamíferos/genética
5.
BMC Cancer ; 23(1): 1101, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953246

RESUMEN

TAB182 participates in DNA damage repair and radio-/chemosensitivity regulation in various tumors, but its role in tumorigenesis and therapeutic resistance in breast cancer remains unclear. In the current paper, we observed that triple-negative Breast Cancer (TNBC), a highly aggressive type of breast cancer, exhibits a lower expression of TAB182. TAB182 knockdown stimulates the proliferation, migration, and invasion of TNBC cells. Our study first obtained RNA-seq data to explore the cellular functions mediated by TAB182 at the genome level in TNBC cells. A transcriptome analysis and in vitro experiments enabled us to identify that TAB182 downregulation drives the enhanced properties of cancer stem-like cells (CSCs) in TNBC cells. Furthermore, TAB182 deletion contributes to the resistance of cells to olaparib or cisplatin, which can be rescued by silencing GLI2, a gene downstream of cancer stemness-related signaling pathways. Our results reveal a novel function of TAB182 as a potential negative regulator of cancer stem-like properties and drug sensitivity in TNBC cells, suggesting that TAB182 may be a tumor suppressor gene and is associated with increased therapeutic benefits for TNBC patients.


Asunto(s)
Células Madre Neoplásicas , Proteína 1 de Unión a Repeticiones Teloméricas , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/genética
6.
Chemistry ; 29(55): e202300970, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37332024

RESUMEN

In this work, we present studies on relatively new and still not well-explored potential anticancer targets which are shelterin proteins, in particular the TRF1 protein can be blocked by in silico designed "peptidomimetic" molecules. TRF1 interacts directly with the TIN2 protein, and this protein-protein interaction is crucial for the proper functioning of telomere, which could be blocked by our novel modified peptide molecules. Our chemotherapeutic approach is based on assumption that modulation of TRF1-TIN2 interaction may be more harmful for cancer cells as cancer telomeres are more fragile than in normal cells. We have shown in vitro within SPR experiments that our modified peptide PEP1 molecule interacts with TRF1, presumably at the site originally occupied by the TIN2 protein. Disturbance of the shelterin complex by studied molecule may not in short term lead to cytotoxic effects, however blocking TRF1-TIN2 resulted in cellular senescence in cellular breast cancer lines used as a cancer model. Thus, our compounds appeared useful as starting model compounds for precise blockage of TRF proteins.


Asunto(s)
Complejo Shelterina , Proteína 2 de Unión a Repeticiones Teloméricas , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Telómero/metabolismo , Péptidos/farmacología
7.
J Am Chem Soc ; 145(19): 10872-10879, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37141574

RESUMEN

Telomeres are naturally shortened after each round of cell division in noncancerous normal cells, while the activation of telomerase activity to extend telomere in the cancer cell is essential for cell transformation. Therefore, telomeres are regarded as a potential anticancer target. In this study, we report the development of a nucleotide-based proteolysis-targeting chimera (PROTAC) designed to degrade TRF1/2 (telomeric repeat-binding factor 1/2), which are the key components of the shelterin complex (telosome) that regulates the telomere length by directly interacting with telomere DNA repeats. The prototype telomere-targeting chimeras (TeloTACs) efficiently degrade TRF1/2 in a VHL- and proteosome-dependent manner, resulting in the shortening of telomeres and suppressed cancer cell proliferation. Compared to the traditional receptor-based off-target therapy, TeloTACs have potential application in a broad spectrum of cancer cell lines due to their ability to selectively kill cancer cells that overexpress TRF1/2. In summary, TeloTACs provide a nucleotide-based degradation approach for shortening the telomere and inhibiting tumor cell growth, representing a promising avenue for cancer treatment.


Asunto(s)
Telómero , Proteína 1 de Unión a Repeticiones Teloméricas , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Telómero/metabolismo , Proteínas/genética , Línea Celular , Complejo de la Endopetidasa Proteasomal/metabolismo
8.
Biophys J ; 122(10): 1822-1832, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37081787

RESUMEN

Telomeres, complexes of DNA and proteins, protect ends of linear chromosomes. In humans, the two shelterin proteins TRF1 and TIN2, along with cohesin subunit SA1, were proposed to mediate telomere cohesion. Although the ability of the TRF1-TIN2 and TRF1-SA1 systems to compact telomeric DNA by DNA-DNA bridging has been reported, the function of the full ternary TRF1-TIN2-SA1 system has not been explored in detail. Here, we quantify the compaction of nanochannel-stretched DNA by the ternary system, as well as its constituents, and obtain estimates of the relative impact of its constituents and their interactions. We find that TRF1, TIN2, and SA1 work synergistically to cause a compaction of the DNA substrate, and that maximal compaction occurs if all three proteins are present. By altering the sequence with which DNA substrates are exposed to proteins, we establish that compaction by TRF1 and TIN2 can proceed through binding of TRF1 to DNA, followed by compaction as TIN2 recognizes the previously bound TRF1. We further establish that SA1 alone can also lead to a compaction, and that compaction in a combined system of all three proteins can be understood as an additive effect of TRF1-TIN2 and SA1-based compaction. Atomic force microscopy of intermolecular aggregation confirms that a combination of TRF1, TIN2, and SA1 together drive strong intermolecular aggregation as it would be required during chromosome cohesion.


Asunto(s)
Telómero , Proteína 1 de Unión a Repeticiones Teloméricas , Humanos , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Telómero/metabolismo , Complejo Shelterina , ADN
9.
Zool Res ; 44(3): 636-649, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37070589

RESUMEN

Telomeres are nucleoprotein structures located at the end of each chromosome, which function in terminal protection and genomic stability. Telomeric damage is closely related to replicative senescence in vitro and physical aging in vivo. As relatively long-lived mammals based on body size, bats display unique telomeric patterns, including the up-regulation of genes involved in alternative lengthening of telomeres (ALT), DNA repair, and DNA replication. At present, however, the relevant molecular mechanisms remain unclear. In this study, we performed cross-species comparison and identified EPAS1, a well-defined oxygen response gene, as a key telomeric protector in bat fibroblasts. Bat fibroblasts showed high expression of EPAS1, which enhanced the transcription of shelterin components TRF1 and TRF2, as well as DNA repair factor RAD50, conferring bat fibroblasts with resistance to senescence during long-term consecutive expansion. Based on a human single-cell transcriptome atlas, we found that EPAS1 was predominantly expressed in the human pulmonary endothelial cell subpopulation. Using in vitro-cultured human pulmonary endothelial cells, we confirmed the functional and mechanistic conservation of EPAS1 in telomeric protection between bats and humans. In addition, the EPAS1 agonist M1001 was shown to be a protective compound against bleomycin-induced pulmonary telomeric damage and senescence. In conclusion, we identified a potential mechanism for regulating telomere stability in human pulmonary diseases associated with aging, drawing insights from the longevity of bats.


Asunto(s)
Quirópteros , Humanos , Animales , Quirópteros/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Células Endoteliales/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de Unión al ADN/genética , Ácido Anhídrido Hidrolasas/genética
10.
J Biomol Struct Dyn ; 41(24): 14665-14688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995171

RESUMEN

By limiting chromosome erosion and end-to-end fusions, telomere integrity is critical for chromosome stability and cell survival. During mitotic cycles or due to environmental stresses, telomeres become progressively shorter and dysfunctional, thus triggering cellular senescence, genomic instability and cell death. To avoid such consequences, the telomerase action, as well as the Shelterin and CST complexes, assure the telomere's protection. Telomeric repeat binding factor 1 (TERF1), which is one of the primary components of the Shelterin complex, binds directly to the telomere and controls its length and function by regulating the telomerase activity. Several reports about TERF1 gene variations have been associated with different diseases, and some of them have linked these variations to male infertility. Hence, this paper can be advantageous to investigate the association between the missense variants of the TERF1 gene and the susceptibility to male infertility. The stepwise prediction of SNPs pathogenicity followed in this study was based on stability and conservation analysis, post-translational modification, secondary structure, functional interaction prediction, binding energy evaluation and finally molecular dynamic simulation. Prediction matching among the tools revealed that out of 18 SNPs, only four (rs1486407144, rs1259659354, rs1257022048 and rs1320180267) were predicted as the most damaging and highly deleterious SNPs affecting the TERF1 protein and its molecular dynamics when interacting with the TERB1 protein by influencing the function, structural stability, flexibility and compaction of the overall complex. Interestingly, these polymorphisms should be considered during genetic screening so they can be used effectively as genetic biomarkers for male infertility diagnosis.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Infertilidad Masculina , Telomerasa , Humanos , Masculino , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Simulación de Dinámica Molecular , Telomerasa/genética , Telomerasa/metabolismo , Polimorfismo de Nucleótido Simple/genética , Proteínas de Unión a Telómeros/genética , Telómero/metabolismo , Infertilidad Masculina/genética , Complejo Shelterina
11.
Stem Cell Res ; 68: 103045, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805322

RESUMEN

Telomeric repeat binding factor 1 (TRF1) plays an essential role in maintaining telomere length. Here, we established TRF1-knockout human pluripotent stem cells (hPSCs; hTRF1-KO) using the CRISPR/Cas9 technology. The hTRF1-KO cell lines expressed pluripotency markers and demonstrated a normal karyotype (46, XX) and DNA profile. In addition, hTRF1-KOcells spontaneously differentiated into all three germ layers in vitro. Thus, these cell lines could be useful models in various research fields.


Asunto(s)
Células Madre Embrionarias Humanas , Telómero , Humanos , Telómero/genética , Telómero/metabolismo , Sistemas CRISPR-Cas/genética , Células Madre Embrionarias Humanas/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Línea Celular
12.
Cells ; 11(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36497103

RESUMEN

Telomere shortening is well known to be associated with ageing. Age is the most decisive risk factor for age-related macular degeneration (AMD) development. The older the individual, the higher the AMD risk. For this reason, we aimed to find any associations between telomere length, distribution of genetic variants in telomere-related genes (TERT, TERT-CLPTM1, TRF1, TRF2, and TNKS2), and serum TERF-1 and TERF2 levels on AMD development. METHODS: Our study enrolled 342 patients with AMD and 177 healthy controls. Samples of DNA from peripheral blood leukocytes were extracted by DNA salting-out method. The genotyping of TERT rs2736098, rs401681 in TERT-CLPTM1 locus, TRF1 rs1545827, rs10107605, TNKS2 rs10509637, rs10509639, and TRF2 rs251796 and relative leukocyte telomere length (T/S) measurement were carried out using the real-time polymerase chain reaction method. Serum TERF-1 and TERF2 levels were measured by enzymatic immunoassay (ELISA). RESULTS: We found longer telomeres in early AMD patients compared to the control group. Additionally, we revealed that minor allele C at TRF1 rs10107605 was associated with decreases the odds of both early and exudative AMD. Each minor allele G at TRF2 rs251796 and TRF1 rs1545827 C/T genotype and C/T+T/T genotypes, compared to the C/C genotype, increases the odds of having shorter telomeres. Furthermore, we found elevated TERF1 serum levels in the early AMD group compared to the control group. CONCLUSIONS: In conclusion, these results suggest that relative leukocyte telomere length and genetic variants of TRF1 and TRF2 play a role in AMD development. Additionally, TERF1 is likely to be associated with early AMD.


Asunto(s)
Degeneración Macular , Tanquirasas , Telomerasa , Humanos , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Leucocitos/metabolismo , Degeneración Macular/genética , ADN
13.
Nat Commun ; 13(1): 5656, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202783

RESUMEN

TRF1 is an essential component of the telomeric protective complex or shelterin. We previously showed that dysfunctional telomeres in alveolar type II (ATII) cells lead to interstitial lung fibrosis. Here, we study the lung pathologies upon telomere dysfunction in fibroblasts, club and basal cells. TRF1 deficiency in lung fibroblasts, club and basal cells induced telomeric damage, proliferative defects, cell cycle arrest and apoptosis. While Trf1 deletion in fibroblasts does not spontaneously lead to lung pathologies, upon bleomycin challenge exacerbates lung fibrosis. Unlike in females, Trf1 deletion in club and basal cells from male mice resulted in lung inflammation and airway remodeling. Here, we show that depletion of TRF1 in fibroblasts, Club and basal cells does not lead to interstitial lung fibrosis, underscoring ATII cells as the relevant cell type for the origin of interstitial fibrosis. Our findings contribute to a better understanding of proper telomere protection in lung tissue homeostasis.


Asunto(s)
Fibrosis Pulmonar , Proteína 1 de Unión a Repeticiones Teloméricas , Animales , Bleomicina/toxicidad , Femenino , Fibroblastos/metabolismo , Masculino , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/genética
14.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142374

RESUMEN

RNA-protein interactions drive key cellular pathways such as protein translation, nuclear organization and genome stability maintenance. The human telomeric protein TRF2 binds to the long noncoding RNA TERRA through independent domains, including its N-terminal B domain. We previously demonstrated that TRF2 B domain binding to TERRA supports invasion of TERRA into telomeric double stranded DNA, leading to the formation of telomeric RNA:DNA hybrids. The other telomeric protein TRF1, which also binds to TERRA, suppresses this TRF2-associated activity by preventing TERRA-B domain interactions. Herein, we show that the binding of both TRF1 and TRF2 to TERRA depends on the ability of the latter to form G-quadruplex structures. Moreover, a cluster of arginines within the B domain is largely responsible for its binding to TERRA. On the other side, a patch of glutamates within the N-terminal A domain of TRF1 mainly accounts for the inhibition of TERRA-B domain complex formation. Finally, mouse TRF2 B domain binds to TERRA, similarly to its human counterpart, while mouse TRF1 A domain lacks the inhibitory activity. Our data shed further light on the complex crosstalk between telomeric proteins and RNAs and suggest a lack of functional conservation in mouse.


Asunto(s)
ARN Largo no Codificante , Proteína 1 de Unión a Repeticiones Teloméricas , Proteína 2 de Unión a Repeticiones Teloméricas , Animales , ADN/química , Glutamatos , Humanos , Ratones , ARN Largo no Codificante/genética , Telómero/genética , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética
15.
Reprod Biomed Online ; 44(6): 1090-1100, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35397997

RESUMEN

RESEARCH QUESTION: How do age and normo- or oligoasthenozoospermia affect telomere length dynamics in spermatozoa and blood? DESIGN: Sperm and blood samples were collected from a cohort of 37 men aged 25 and under and 40 men aged 40 and over, with either normozoospermia (NZ) or oligoasthenozoospermia (OAZ). Telomere length was evaluated using quantitative fluorescence in-situ hybridization. Telomerase mRNA (TERC and TERT) and shelterin (TRF1) gene expression were analysed using quantitative real-time polymerase chain reaction. TRF1 protein immunoreactivity was also evaluated using immunofluorescence. RESULTS: Mean sperm telomere length (STL) increased with age in the NZ group; older NZ men accumulated the longest telomeres (P < 0.001). In peripheral blood mononuclear cells (PBMC), mean telomere length decreased with age in NZ groups, although not reaching statistical significance. Interestingly, the younger OAZ group had the shortest mean telomere length (versus young NZ, P = 0.0081; versus old NZ, P = 0.0116; versus old OAZ, P = 0.0009) and accumulated the highest percentage of short telomeres compared with the other groups (overall P = 0.0017). Analysis of TERC and TERT mRNA expression in spermatozoa and PBMC did not show significant differences among groups. Statistically significant positive correlations were found between STL and seminal parameters in younger NZ men (P = 0.009 for sperm count and P = 0.007 for total progressive motility). Protein immunoreactivity of TRF1 in blood was not significantly different in all groups analysed. CONCLUSIONS: The OAZ group did not show the increase of STL with age that is seen in NZ individuals, suggesting that telomere length elongation mechanisms fail in OAZ patients. In PBMC, younger OAZ individuals showed significantly shorter mean telomere length, suggesting that this parameter could be a good biomarker of OAZ in younger OAZ patients. Telomerase gene and TRF1 mRNA expression and TRF1 protein immunoreactivity did not differ significantly between groups, and so these factors cannot be used as OAZ biomarkers.


Asunto(s)
Telomerasa , Proteína 1 de Unión a Repeticiones Teloméricas , Adulto , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , Espermatozoides/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
16.
J Biomol Struct Dyn ; 40(19): 9053-9066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33982644

RESUMEN

Telomeric repeat binding factor 1 (TRF1) is one of the major components of the shelterin complex. It directly binds to the telomere and controls its function by regulating the telomerase acting on it. Several variations are reported in the TRF1 gene; some are associated with variety of diseases. Here, we have studied the structural and functional significance of these variations in the TRFH domain of TRF1. We have used cutting-edge computational methods such as SIFT, PolyPhen-2, PROVEAN, Mutation Assessor, mCSM, SDM, STRUM, MAESTRO, and DUET to predict the effects of 124 mutations in the TRFH domain of TRF1. Out of 124 mutations, we have identified 12 deleterious mutations with high confidence based on their prediction. To see the impact of the finally selected mutations on the structure and stability of TRF1, all-atom molecular dynamics (MD) simulations on TRF1-Wild type (WT), L79R and P150R mutants for 200 ns were carried out. A significant conformational change in the structure of the P150R mutant was observed. Our integrated computational study provides a comprehensive understanding of structural changes in TRF1 incurred due to the mutations and subsequent function, leading to the progression of many diseases.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteína 1 de Unión a Repeticiones Teloméricas , Proteína 2 de Unión a Repeticiones Teloméricas , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Telómero/genética , Telómero/metabolismo , Simulación de Dinámica Molecular , Mutación
17.
Front Immunol ; 12: 696486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745087

RESUMEN

Oxidative stress, a well-known cause of stress-induced premature senescence (SIPS), is increased in patients with calcium oxalate (CaOx) kidney stones (KS). Oxalate and calcium oxalate monohydrate (COM) induce oxidative stress in renal tubular cells, but to our knowledge, their effect on SIPS has not yet been examined. Here, we examined whether oxalate, COM, or urine from patients with CaOx KS could induce SIPS and telomere shortening in human kidney (HK)-2 cells, a proximal tubular renal cell line. Urine from age- and sex-matched individuals without stones was used as a control. In sublethal amounts, H2O2, oxalate, COM, and urine from those with KS evoked oxidative stress in HK-2 cells, indicated by increased protein carbonyl content and decreased total antioxidant capacity, but urine from those without stones did not. The proportion of senescent HK-2 cells, as indicated by SA-ßgal staining, increased after treatment with H2O2, oxalate, COM, and urine from those with KS. Expression of p16 was higher in HK-2 cells treated with H2O2, oxalate, COM, and urine from those with KS than it was in cells treated with urine from those without stones and untreated controls. p16 was upregulated in the SA-ßgal positive cells. Relative telomere length was shorter in HK-2 cells treated with H2O2, oxalate, COM, and urine from those with KS than that in cells treated with urine from those without stones and untreated controls. Transcript expression of shelterin components (TRF1, TRF2 and POT1) was decreased in HK-2 cells treated with H2O2, oxalate, COM, and urine from those with KS, in which case the expression was highest. Urine from those without KS did not significantly alter TRF1, TRF2, and POT1 mRNA expression in HK-2 cells relative to untreated controls. In conclusion, oxalate, COM, and urine from patients with CaOx KS induced SIPS and telomere shortening in renal tubular cells. SIPS induced by a lithogenic milieu may result from upregulation of p16 and downregulation of shelterin components, specifically POT1, and might contribute, at least in part, to the development of CaOx KS.


Asunto(s)
Envejecimiento Prematuro/etiología , Oxalato de Calcio/farmacología , Nefrolitiasis/orina , Oxalatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Acortamiento del Telómero , Anciano , Línea Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/análisis , Daño del ADN , Femenino , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Persona de Mediana Edad , Nefrolitiasis/etiología , Proteína 1 de Unión a Repeticiones Teloméricas/genética
18.
Biochimie ; 190: 12-19, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34214617

RESUMEN

Zebrafish is broadly used as a model organism in gene loss-of-function studies in vivo, but its employment in vitro is greatly limited by the lack of efficient gene knockdown approaches in zebrafish cell lines such as ZF4. In this article, we attempted to induce silencing of telomere associated genes in ZF4 by applying the frequently-used siRNA transfection technology and a novel moiety-linked morpholino (vivo-MO). By proceeding with integrated optimization of siRNAs transfection and vivo-MOs treatment, we compared five transfection reagents and vivo-MOs simultaneously to evaluate the efficiency of terfa silencing in ZF4. 48 h after siRNAs transfection, Lipofectamine™ 3000 and X-tremeGENE™ HP leaded to knockdown in 35% and 43% of terfa transcription, respectively, while vivo-MO-terfa modulated 58% down-expression of zfTRF2 in contrast to vivo-MO-ctrl 72 h after treatment. Further siRNAs transfection targeting telomere associated genes by X-tremeGENE™ HP showed silencing in 40-68% of these genes without significant cytotoxicity and off-target effect. Our results confirmed the feasibility of gene loss-of-function studies in a zebrafish cell line, offered a systematic optimizing strategy to employ gene silencing experiments, and presented Lipofectamine™ 3000, X-tremeGENE™ HP and vivo-morpholinos as candidate gene silencing approaches for zebrafish in vitro gene loss-of-function studies. Successfully knockdown of shelterin genes further opened a new field for telomeric study in zebrafish.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Telómero/genética , Telómero/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen/efectos de los fármacos , Proteínas de Unión al GTP Monoméricas/genética , Morfolinos/farmacología , Complejo Shelterina/genética , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Transfección/métodos , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Mol Med Rep ; 24(2)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34184077

RESUMEN

Uterine leiomyoma is a benign smooth muscle tumor of the uterus that can exhibit histopathological traits that mimic malignancy. Telomere shortening is an early event in tumorigenesis and telomerase activation facilitates tumor progression later in the course of carcinogenesis. Telomeric repeat­binding factor (TRF)1 and TRF2 protect telomeres, and their gene expression levels are dysregulated in various cancer types. However, the roles of telomeres and telomere protection proteins in uterine leiomyoma remain largely unknown. In this study, telomere length and the mRNA levels of various telomere­related genes in normal tissues and leiomyoma were determined, and their relationships were evaluated. Uterine leiomyoma and normal myometrium were surgically obtained from 18 and 13 patients, respectively. Telomere length and gene expression were determined by Southern blot analysis and reverse transcription­quantitative PCR, respectively. In matched samples, telomeres were consistently shorter in leiomyoma tissue than in adjacent normal tissue. TRF1, TRF2, PIN2­interacting telomerase inhibitor 1 (PINX1), and telomerase RNA component were expressed at comparable levels in both leiomyoma and normal tissues. None of these genes were associated with telomere length in leiomyoma. All tested tissues were negative for telomerase reverse transcriptase, which encodes the catalytic component of telomerase, indicating that cells in uterine leiomyoma were not immortalized. In summary, telomere erosion, which reflects active proliferation during tumor evolution, was evident in uterine leiomyoma. Steady­state expression of TRF1, TRF2 and PINX1 may be important for maintenance of telomere integrity in leiomyoma, where telomere length is shortened.


Asunto(s)
Leiomioma/genética , Leiomioma/metabolismo , Acortamiento del Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Adulto , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/genética , Correlación de Datos , Femenino , Humanos , Persona de Mediana Edad , Miometrio/metabolismo , Telómero/química , Telómero/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
20.
Am J Med Genet B Neuropsychiatr Genet ; 186(8): 508-520, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34042246

RESUMEN

Identification of genetic factors leading to increased risk of suicide death is critical to combat rising suicide rates, however, only a fraction of the genetic variation influencing risk has been accounted for. To address this limitation, we conducted the first comprehensive analysis of rare genetic variation in suicide death leveraging the largest suicide death biobank, the Utah Suicide Genetic Risk Study (USGRS). We conducted a single-variant association analysis of rare (minor allele frequency <1%) putatively functional single-nucleotide polymorphisms (SNPs) present on the Illumina PsychArray genotyping array in 2,672 USGRS suicide deaths of non-Finnish European (NFE) ancestry and 51,583 NFE controls from the Genome Aggregation Database. Secondary analyses used an independent control sample of 21,324 NFE controls from the Psychiatric Genomics Consortium. Five novel, high-impact, rare SNPs were identified with significant associations with suicide death (SNAPC1, rs75418419; TNKS1BP1, rs143883793; ADGRF5, rs149197213; PER1, rs145053802; and ESS2, rs62223875). 119 suicide decedents carried these high-impact SNPs. Both PER1 and SNAPC1 have other supporting gene-level evidence of suicide risk, and psychiatric associations exist for PER1 (bipolar disorder, schizophrenia), and for TNKS1BP1 and ESS2 (schizophrenia). Three of the genes (PER1, TNKS1BP1, and ADGRF5), together with additional genes implicated by genome-wide association studies on suicidal behavior, showed significant enrichment in immune system, homeostatic and signal transduction processes. No specific diagnostic phenotypes were associated with the subset of suicide deaths with the identified rare variants. These findings suggest an important role for rare variants in suicide risk and implicate genes and gene pathways for targeted replication.


Asunto(s)
Predisposición Genética a la Enfermedad , Suicidio , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Nucleares/genética , Proteínas Circadianas Period/genética , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA