Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802105

RESUMEN

Several lines of evidence suggest the existence in the eukaryotic cells of a tight, yet largely unexplored, connection between DNA replication and sister chromatid cohesion. Tethering of newly duplicated chromatids is mediated by cohesin, an evolutionarily conserved hetero-tetrameric protein complex that has a ring-like structure and is believed to encircle DNA. Cohesin is loaded onto chromatin in telophase/G1 and converted into a cohesive state during the subsequent S phase, a process known as cohesion establishment. Many studies have revealed that down-regulation of a number of DNA replication factors gives rise to chromosomal cohesion defects, suggesting that they play critical roles in cohesion establishment. Conversely, loss of cohesin subunits (and/or regulators) has been found to alter DNA replication fork dynamics. A critical step of the cohesion establishment process consists in cohesin acetylation, a modification accomplished by dedicated acetyltransferases that operate at the replication forks. Defects in cohesion establishment give rise to chromosome mis-segregation and aneuploidy, phenotypes frequently observed in pre-cancerous and cancerous cells. Herein, we will review our present knowledge of the molecular mechanisms underlying the functional link between DNA replication and cohesion establishment, a phenomenon that is unique to the eukaryotic organisms.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Replicación del ADN/fisiología , Fase G1/fisiología , Telofase/fisiología , Animales , Humanos , Cohesinas
2.
Elife ; 82019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31833472

RESUMEN

During organogenesis, precise control of spindle orientation balances proliferation and differentiation. In the developing murine epidermis, planar and perpendicular divisions yield symmetric and asymmetric fate outcomes, respectively. Classically, division axis specification involves centrosome migration and spindle rotation, events occurring early in mitosis. Here, we identify a novel orientation mechanism which corrects erroneous anaphase orientations during telophase. The directionality of reorientation correlates with the maintenance or loss of basal contact by the apical daughter. While the scaffolding protein LGN is known to determine initial spindle positioning, we show that LGN also functions during telophase to reorient oblique divisions toward perpendicular. The fidelity of telophase correction also relies on the tension-sensitive adherens junction proteins vinculin, α-E-catenin, and afadin. Failure of this corrective mechanism impacts tissue architecture, as persistent oblique divisions induce precocious, sustained differentiation. The division orientation plasticity provided by telophase correction may enable progenitors to adapt to local tissue needs.


Asunto(s)
Células Epidérmicas/citología , Células Epiteliales/citología , Telofase/fisiología , Actomiosina/fisiología , Anafase , Animales , Autorrenovación de las Células , Forma de la Célula , Citoesqueleto/ultraestructura , Epidermis/embriología , Femenino , Genes Reporteros , Microscopía Intravital , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Conformación Proteica , Interferencia de ARN , Huso Acromático/ultraestructura , Vinculina/genética , Vinculina/fisiología , alfa Catenina/genética , alfa Catenina/fisiología
3.
PLoS Genet ; 14(5): e1007388, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29813053

RESUMEN

It is widely accepted in eukaryotes that the cleavage furrow only initiates after mitosis completion. In fission yeast, cytokinesis requires the synthesis of a septum tightly coupled to cleavage furrow ingression. The current cytokinesis model establishes that simultaneous septation and furrow ingression only initiate after spindle breakage and mitosis exit. Thus, this model considers that although Cdk1 is inactivated at early-anaphase, septation onset requires the long elapsed time until mitosis completion and full activation of the Hippo-like SIN pathway. Here, we studied the precise timing of septation onset regarding mitosis by exploiting both the septum-specific detection with the fluorochrome calcofluor and the high-resolution electron microscopy during anaphase and telophase. Contrarily to the existing model, we found that both septum and cleavage furrow start to ingress at early anaphase B, long before spindle breakage, with a slow ingression rate during anaphase B, and greatly increasing after telophase onset. This shows that mitosis and cleavage furrow ingression are not concatenated but simultaneous events in fission yeast. We found that the timing of septation during early anaphase correlates with the cell size and is regulated by the corresponding levels of SIN Etd1 and Rho1. Cdk1 inactivation was directly required for timely septation in early anaphase. Strikingly the reduced SIN activity present after Cdk1 loss was enough to trigger septation by immediately inducing the medial recruitment of the SIN kinase complex Sid2-Mob1. On the other hand, septation onset did not depend on the SIN asymmetry establishment, which is considered a hallmark for SIN activation. These results recalibrate the timing of key cytokinetic events in fission yeast; and unveil a size-dependent control mechanism that synchronizes simultaneous nuclei separation with septum and cleavage furrow ingression to safeguard the proper chromosome segregation during cell division.


Asunto(s)
Anafase/fisiología , Proteínas de Ciclo Celular/fisiología , Citocinesis/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/fisiología , Huso Acromático/fisiología , Bencenosulfonatos/química , Proteína Quinasa CDC2/fisiología , Núcleo Celular/fisiología , Microscopía Electrónica de Transmisión , Microscopía Fluorescente/métodos , Proteínas Quinasas/fisiología , Schizosaccharomyces/ultraestructura , Huso Acromático/ultraestructura , Telofase/fisiología , Factores de Tiempo , Proteínas de Unión al GTP rho/fisiología
4.
Sci Adv ; 3(1): e1601602, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28116354

RESUMEN

ASXL1 is frequently mutated in a spectrum of myeloid malignancies with poor prognosis. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice; however, the underlying molecular mechanisms remain unclear. We report that ASXL1 interacts with the cohesin complex, which has been shown to guide sister chromatid segregation and regulate gene expression. Loss of Asxl1 impairs the cohesin function, as reflected by an impaired telophase chromatid disjunction in hematopoietic cells. Chromatin immunoprecipitation followed by DNA sequencing data revealed that ASXL1, RAD21, and SMC1A share 93% of genomic binding sites at promoter regions in Lin-cKit+ (LK) cells. We have shown that loss of Asxl1 reduces the genome binding of RAD21 and SMC1A and alters the expression of ASXL1/cohesin target genes in LK cells. Our study underscores the ASXL1-cohesin interaction as a novel means to maintain normal sister chromatid separation and regulate gene expression in hematopoietic cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Regulación de la Expresión Génica/fisiología , Hematopoyesis/fisiología , Proteínas Represoras/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Represoras/genética , Telofase/fisiología , Cohesinas
5.
Plant Physiol ; 173(1): 863-871, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881728

RESUMEN

A sensitive and dynamically responsive auxin signaling reporter based on the DII domain of the INDOLE-3-ACETIC ACID28 (IAA28, DII) protein from Arabidopsis (Arabidopsis thaliana) was modified for use in maize (Zea mays). The DII domain was fused to a yellow fluorescent protein and a nuclear localization sequence to simplify quantitative nuclear fluorescence signal. DII degradation dynamics provide an estimate of input signal into the auxin signaling pathway that is influenced by both auxin accumulation and F-box coreceptor concentration. In maize, the DII-based marker responded rapidly and in a dose-dependent manner to exogenous auxin via proteasome-mediated degradation. Low levels of DII-specific fluorescence corresponding to high endogenous auxin signaling occurred near vasculature tissue and the outer layer and glume primordia of spikelet pair meristems and floral meristems, respectively. In addition, high DII levels were observed in cells during telophase and early G1, suggesting that low auxin signaling at these stages may be important for cell cycle progression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Telofase/fisiología , Factores de Transcripción/metabolismo , Zea mays/citología , Proteínas de Arabidopsis/genética , Fase G1/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/farmacología , Meristema/genética , Meristema/metabolismo , Plantas Modificadas Genéticamente , Dominios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Imagen de Lapso de Tiempo , Factores de Transcripción/genética , Zea mays/efectos de los fármacos , Zea mays/genética , Zea mays/metabolismo
6.
Genes Cells ; 21(9): 978-93, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27458047

RESUMEN

ICRF-193 [meso-4,4-(2,3-butanediyl)-bis(2,6-piperazinedione)] is a complex-stabilizing inhibitor of DNA topoisomerase II (topo II) that is used as an effective anticancer drug. ICRF-193 inhibits topo II catalytic activity in vitro and blocks nuclear division in vivo. Here, we examined the effects of ICRF-193 treatment on chromatin behavior and spindle dynamics using detailed live mitotic cell analysis in the fission yeast, Schizosaccharomyces pombe. Time-lapse movie analysis showed that ICRF-193 treatment leads to an elongation of presumed chromatin fibers connected to kinetochores during mid-mitosis. Anaphase spindles begin to arch, and eventually spindle poles come together abruptly, as if the spindle snapped at the point of spindle microtubule overlap in telophase. Segregating chromosomes appeared as elastic clumps and subsequently pulled back and merged. The snapped spindle phenotype was abolished by microtubule destabilization after thiabendazole treatment, accompanied by unequal chromosome segregation or severe defects in spindle extension. Thus, we conclude that ICRF-193-treated, unseparated sister chromatids pulling toward opposite spindle poles produce the arched and snapped telophase spindle. ICRF-193 treatment increased DNA content, suggesting that the failure of sister chromatids to separate properly in anaphase, causes the spindle to break in telophase, resulting in polyploidization.


Asunto(s)
Piperazinas/farmacología , Schizosaccharomyces/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Telofase/efectos de los fármacos , Anafase/efectos de los fármacos , Anafase/fisiología , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/genética , División del Núcleo Celular , Cromátides/efectos de los fármacos , Cromátides/genética , Cromátides/metabolismo , Segregación Cromosómica , Dicetopiperazinas , Cinetocoros/metabolismo , Microtúbulos/efectos de los fármacos , Mitosis , Ploidias , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/fisiología , Telofase/fisiología , Inhibidores de Topoisomerasa II/farmacología
7.
J Cell Sci ; 128(18): 3466-77, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26224877

RESUMEN

The metazoan nucleus breaks down and reassembles during each cell division. Upon mitotic exit, the successful reestablishment of an interphase nucleus requires the coordinated reorganization of chromatin and formation of a functional nuclear envelope. Here, we report that the histone demethylase LSD1 (also known as KDM1A) plays a crucial role in nuclear assembly at the end of mitosis. Downregulation of LSD1 in cells extends telophase and impairs nuclear pore complex assembly. In vitro, LSD1 demethylase activity is required for the recruitment of MEL28 (also known as ELYS and AHCTF1) and nuclear envelope precursor vesicles to chromatin, crucial steps in nuclear reassembly. Accordingly, the formation of a closed nuclear envelope and nuclear pore complex assembly are impaired upon depletion of LSD1 or inhibition of its activity. Our results identify histone demethylation by LSD1 as a new regulatory mechanism linking the chromatin state and nuclear envelope formation at the end of mitosis.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histona Demetilasas/metabolismo , Membrana Nuclear/metabolismo , Telofase/fisiología , Animales , Células HeLa , Humanos , Xenopus laevis
8.
PLoS One ; 9(7): e102898, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036038

RESUMEN

KIF20A (Kinesin-like family member 20A), also called mitotic kinesin-like proteins 2 (MKLP2), is a mammalian mitotic kinesin-like motor protein of the Kinesin superfamily proteins (KIFs), which was originally involved in Golgi apparatus dynamics and thought to essential for cell cycle regulation during successful cytokinesis. In the present study, we investigated whether KIF20A has roles on porcine oocyte meiotic maturation and subsequent early embryo development. By immunofluorescence staining, KIF20A was found to exhibit a dynamic localization pattern during meiosis. KIF20A was restricted to centromeres after germinal vesicle breakdown (GVBD), transferred to the midbody at telophase I (TI), and again associated with centromeres at metaphase II (MII). Inhibition of endogenous KIF20A via a specific inhibitor, Paprotrain, resulted in failure of polar body extrusion. Further cell cycle analysis showed that the percentage of oocytes that arrested at early metaphase I (MI) stage increased after KIF20A activity inhibition; however, the proportion of oocytes at anaphase/telophase I (ATI) and MII stages decreased significantly. Our results also showed that KIF20A inhibition did not affect spindle morphology. In addition, KIF20A was localized at the nucleus of early embryos, and KIF20A inhibition resulted in failure of early parthenogenetic embryo development. These results demonstrated that KIF20A is critical for porcine oocyte meiotic maturation and subsequent early embryo development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Desarrollo Embrionario/fisiología , Cinesinas/metabolismo , Cuerpos Polares/metabolismo , Cuerpos Polares/fisiología , Animales , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiología , Meiosis/fisiología , Metafase/fisiología , Porcinos , Telofase/fisiología
9.
Nat Cell Biol ; 14(10): 1068-78, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23000966

RESUMEN

The final cytokinesis event involves severing of the connecting intercellular bridge (ICB) between daughter cells. FIP3-positive recycling endosomes (FIP3 endosomes) and ESCRT complexes have been implicated in mediating the final stages of cytokinesis. Here we analyse the spatiotemporal dynamics of the actin cytoskeleton, FIP3-endosome fusion and ESCRT-III localization during cytokinesis to show that the ICB narrows by a FIP3-endosome-mediated secondary ingression, whereas the ESCRT-III complex is needed only for the last scission step of cytokinesis. We characterize the role of FIP3 endosomes during cytokinesis to demonstrate that FIP3 endosomes deliver SCAMP2/3 and p50RhoGAP to the ICB during late telophase, proteins required for the formation of the secondary ingression. We also show that the FIP3-endosome-induced secondary ingression is required for the recruitment of the ESCRT-III complex to the abscission site. Finally, we characterize a FIP3-endosome-dependent regulation of the ICB cortical actin network through the delivery of p50RhoGAP. These results provide a framework for the coordinated efforts of actin, FIP3 endosomes and the ESCRTs to regulate cytokinesis and abscission.


Asunto(s)
Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Endosomas/fisiología , Quinasa I-kappa B/fisiología , Actinas/fisiología , Proteínas Portadoras/fisiología , Citoesqueleto/fisiología , Proteínas Activadoras de GTPasa/fisiología , Células HeLa , Humanos , Proteínas de la Membrana/fisiología , Telofase/fisiología
10.
Biol Reprod ; 87(1): 11, 1-12, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22539682

RESUMEN

Meiosis in mammalian females is marked by two arrest points, at prophase I and metaphase II, which must be tightly regulated in order to produce a haploid gamete at the time of fertilization. The transition metal zinc has emerged as a necessary and dynamic regulator of the establishment, maintenance, and exit from metaphase II arrest, but the roles of zinc during prophase I arrest are largely unknown. In this study, we investigate the mechanisms of zinc regulation during the first meiotic arrest. Disrupting zinc availability in the prophase I arrested oocyte by treatment with the heavy metal chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) causes meiotic resumption even in the presence of pharmacological inhibitors of meiosis. We further show that the MOS-MAPK pathway mediates zinc-dependent prophase I arrest, as the pathway prematurely activates during TPEN-induced meiotic resumption. Conversely, inhibition of the MOS-MAPK pathway maintains prophase I arrest. While prolonged zinc insufficiency ultimately results in telophase I arrest, early and transient exposure of oocytes to TPEN is sufficient to induce meiotic resumption and bypass the telophase I block, allowing the formation of developmentally competent eggs upon parthenogenetic activation. These results establish zinc as a crucial regulator of meiosis throughout the entirety of oocyte maturation, including the maintenance of and release from the first and second meiotic arrest points.


Asunto(s)
Profase Meiótica I/fisiología , Oocitos/citología , Oocitos/metabolismo , Zinc/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/fisiología , Quelantes/farmacología , Etilenodiaminas/farmacología , Femenino , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas , Profase Meiótica I/efectos de los fármacos , Ratones , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos , Oogénesis/fisiología , Partenogénesis , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Proto-Oncogénicas c-mos/metabolismo , Telofase/efectos de los fármacos , Telofase/fisiología , Zinc/deficiencia
11.
PLoS One ; 7(4): e34763, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22493714

RESUMEN

Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.


Asunto(s)
Nucléolo Celular/ultraestructura , Mitosis/fisiología , Naegleria/ultraestructura , Huso Acromático/ultraestructura , Nucléolo Celular/fisiología , Cromosomas/ultraestructura , Metafase/fisiología , Microscopía Confocal , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Naegleria/fisiología , Membrana Nuclear/fisiología , Membrana Nuclear/ultraestructura , Proteínas Nucleares/ultraestructura , Profase/fisiología , Huso Acromático/fisiología , Telofase/fisiología , Tubulina (Proteína)/ultraestructura
12.
Eur J Cell Biol ; 91(5): 413-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22365812

RESUMEN

Mitosis is a continuous process to separate replicated chromosomes into two daughter cells through prophase, metaphase, anaphase, and telophase. Although a number of methods have been established to synchronize cells at different phases of the cell cycle, it is difficult to synchronize cells at the specific phases, anaphase and telophase, during mitosis because of the short duration of anaphase. Here, we show that HeLa S3 cells in anaphase and in telophase are successfully enriched by treatment with a combination of low concentrations of the microtubule-depolymerizing agent nocodazole and the myosin II inhibitor blebbistatin. After 9-h release from thymidine block at G1/S phase, addition of nocodazole at 20 ng/ml but not 40 ng/ml ensures rapid release from the nocodazole arrest. Subsequently, the cells are cultured in the presence of 50 µM blebbistatin for 20 and 50 min to enrich cells in anaphase and telophase, respectively. Western blot analysis verifies down-regulation of phospho-histone H3-Ser10, phospho-Aurora A/B/C, and cyclin B1 during M-phase progression. Furthermore, we show how the electrophoretic mobility shifts of the Src-family kinases c-Yes and c-Src can change in each phase of mitosis. These results provide a useful synchronization method for biochemically examining protein dynamics during M-phase progression.


Asunto(s)
Anafase/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Metafase/efectos de los fármacos , Nocodazol/farmacología , Telofase/efectos de los fármacos , Moduladores de Tubulina/farmacología , Anafase/fisiología , Técnicas de Cultivo de Célula/métodos , Puntos de Control del Ciclo Celular/fisiología , Células HeLa , Humanos , Metafase/fisiología , Miosina Tipo II/antagonistas & inhibidores , Miosina Tipo II/metabolismo , Telofase/fisiología
13.
Fungal Genet Biol ; 48(10): 998-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21807107

RESUMEN

Mitosis in Aspergillus nidulans is very rapid, requiring less than 5 min at 37 °C in germlings (Bergen and Morris, 1983). In this time the cytoplasmic microtubules (MTs) must disassemble, the mitotic spindle assemble, function and disassemble, and cytoplasmic MTs reassemble. It follows that cytoplasmic MTs must be extremely dynamic in this period and we were interested, in particular, in examining the processes of MT disassembly in prophase and reassembly in anaphase and telophase. We observed a diploid strain that expressed GFP-α-tubulin. We used a spinning disk confocal microscope that allowed rapid image capture, which proved necessary because microtubule dynamics were extremely rapid. We found, for the first time, that microtubule severing occurs in prophase in a filamentous fungus and that catastrophe rather than nucleation limits astral microtubule growth.


Asunto(s)
Aspergillus nidulans/citología , Aspergillus nidulans/metabolismo , Microtúbulos/fisiología , Mitosis/genética , Mitosis/fisiología , Anafase/genética , Anafase/fisiología , Aspergillus nidulans/genética , Diploidia , Haploidia , Microtúbulos/genética , Profase/genética , Profase/fisiología , Huso Acromático/genética , Huso Acromático/fisiología , Telofase/genética , Telofase/fisiología
15.
Exp Cell Res ; 317(2): 143-50, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20832400

RESUMEN

Abscission marks the completion of cell division and its failure is associated with delayed cytokinesis and even tetraploidization. Aberrant abscission and consequential ploidy changes can underlie various diseases including cancer. Midbody, a transient structure formed in the intercellular bridge during telophase, contains several proteins including Aurora kinase B (AURKB), which participate in abscission. We report here an unexpected expression pattern and function of the transcription repressor protein CGG triplet repeat-binding protein 1 (CGGBP1), in normal human fibroblasts. We show that CGGBP1, a chromatin-associated protein, trans-localizes to spindle midzone and midbodies in a manner similar to that of AURKB. CGGBP1 depletion resulted in a cell cycle block at G2, characterized by failure of cells to undergo mitosis and also reduced entry into S phase. Consistent with its presence in the midbodies, live microscopy showed that CGGBP1 deficiency caused mitotic failure at abscission resulting in tetraploidy, which could be rescued by CGGBP1 overexpression. These results show that CGGBP1 is a bona fide midbody protein required for normal abscission and mitosis in general.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Citocinesis/fisiología , Proteínas de Unión al ADN/metabolismo , Orgánulos/metabolismo , Aurora Quinasa B , Aurora Quinasas , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , División Celular/fisiología , Núcleo Celular/química , Células Cultivadas , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Mitosis/fisiología , Orgánulos/química , Ploidias , Proteínas Serina-Treonina Quinasas/fisiología , Fase S/fisiología , Piel/citología , Huso Acromático/metabolismo , Telofase/fisiología , Tetraploidía
16.
J Cell Biol ; 191(7): 1351-65, 2010 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-21187330

RESUMEN

Cytokinesis, the final step of cell division, usually ends with the abscission of the two daughter cells. In some tissues, however, daughter cells never completely separate and remain interconnected by intercellular bridges or ring canals. In this paper, we report the identification and analysis of a novel ring canal component, Nessun Dorma (Nesd), isolated as an evolutionarily conserved partner of the centralspindlin complex, a key regulator of cytokinesis. Nesd contains a pectin lyase-like domain found in proteins that bind to polysaccharides, and we present evidence that it has high affinity for ß-galactosides in vitro. Moreover, nesd is an essential gene in Drosophila melanogaster, in which it is required for completion of cytokinesis during male meiosis and possibly in female germline cells. Our findings indicate that Nesd is a novel carbohydrate-binding protein that functions together with centralspindlin in late cytokinesis, thus highlighting the importance of glycosylation in this process.


Asunto(s)
Citocinesis/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Meiosis/fisiología , Proteínas Asociadas a Microtúbulos/genética , Espermatocitos/citología , Huso Acromático/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Contráctiles/metabolismo , Proteínas de Drosophila/genética , Femenino , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Galactósidos/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Filogenia , Polisacáridos/metabolismo , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Espermatocitos/metabolismo , Telofase/fisiología
17.
Nat Chem Biol ; 6(9): 674-81, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20693991

RESUMEN

Cellular metal ion fluxes are known in alkali and alkaline earth metals but are not well documented in transition metals. Here we describe major changes in the zinc physiology of the mammalian oocyte as it matures and initiates embryonic development. Single-cell elemental analysis of mouse oocytes by synchrotron-based X-ray fluorescence microscopy (XFM) revealed a 50% increase in total zinc content within the 12-14-h period of meiotic maturation. Perturbation of zinc homeostasis with a cell-permeable small-molecule chelator blocked meiotic progression past telophase I. Zinc supplementation rescued this phenotype when administered before this meiotic block. However, after telophase arrest, zinc triggered parthenogenesis, suggesting that exit from this meiotic step is tightly regulated by the availability of a zinc-dependent signal. These results implicate the zinc bolus acquired during meiotic maturation as an important part of the maternal legacy to the embryo.


Asunto(s)
Mamíferos/embriología , Meiosis/fisiología , Oocitos/citología , Oocitos/metabolismo , Zinc/metabolismo , Animales , Quelantes/farmacología , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Femenino , Meiosis/efectos de los fármacos , Ratones , Microscopía Fluorescente , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Partenogénesis/efectos de los fármacos , Partenogénesis/fisiología , Embarazo , Telofase/efectos de los fármacos , Telofase/fisiología , Zinc/antagonistas & inhibidores
19.
J Cell Biol ; 189(5): 795-811, 2010 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-20498018

RESUMEN

The biogenesis of nuclear pore complexes (NPCs) represents a paradigm for the assembly of high-complexity macromolecular structures. So far, only three integral pore membrane proteins are known to function redundantly in NPC anchoring within the nuclear envelope. Here, we describe the identification and functional characterization of Pom33, a novel transmembrane protein dynamically associated with budding yeast NPCs. Pom33 becomes critical for yeast viability in the absence of a functional Nup84 complex or Ndc1 interaction network, which are two core NPC subcomplexes, and associates with the reticulon Rtn1. Moreover, POM33 loss of function impairs NPC distribution, a readout for a subset of genes required for pore biogenesis, including members of the Nup84 complex and RTN1. Consistently, we show that Pom33 is required for normal NPC density in the daughter nucleus and for proper NPC biogenesis and/or stability in the absence of Nup170. We hypothesize that, by modifying or stabilizing the nuclear envelope-NPC interface, Pom33 may contribute to proper distribution and/or efficient assembly of nuclear pores.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular/genética , Secuencia de Aminoácidos , Proliferación Celular , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Poro Nuclear/genética , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Filogenia , Unión Proteica/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Telofase/fisiología
20.
Proc Natl Acad Sci U S A ; 107(2): 781-5, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20080752

RESUMEN

Crossing over establishes connections between homologous chromosomes that promote their proper segregation at the first meiotic division. However, there exists a backup system to ensure the correct segregation of those chromosome pairs that fail to cross over. We have found that, in budding yeast, a mutation eliminating the synaptonemal complex protein, Zip1, increases the meiosis I nondisjunction rate of nonexchange chromosomes (NECs). The centromeres of NECs become tethered during meiotic prophase, and this tethering is disrupted by the zip1 mutation. Furthermore, the Zip1 protein often colocalizes to the centromeres of the tethered chromosomes, suggesting that Zip1 plays a direct role in holding NECs together. Zip3, a protein involved in the initiation of synaptonemal complex formation, is also important for NEC segregation. In the absence of Zip3, both the tethering of NECs and the localization of Zip1 to centromeres are impaired. A mutation in the MAD3 gene, which encodes a component of the spindle checkpoint, also increases the nondisjunction of NECs. Together, the zip1 and mad3 mutations have an additive effect, suggesting that these proteins act in parallel pathways to promote NEC segregation. We propose that Mad3 promotes the segregation of NECs that are not tethered by Zip1 at their centromeres.


Asunto(s)
Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Anafase/fisiología , Proteínas de Ciclo Celular/genética , Centrómero/genética , Cromosomas Fúngicos/genética , Intercambio Genético/genética , ADN de Hongos/genética , Meiosis , Metafase/fisiología , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/citología , Complejo Sinaptonémico/genética , Telofase/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...