Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Sci Total Environ ; 947: 174535, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972403

RESUMEN

The role and mechanisms of DEP exposure on thyroid injury are not yet clear. This study explores thyroid damage induced by in vivo DEP exposure using a mouse model. This study has observed alterations in thyroid follicular architecture, including rupture, colloid overflow, and the formation of voids. Additionally, there was a significant decrease in the expression levels of proteins involved in thyroid hormone synthesis, such as thyroid peroxidase and thyroglobulin, their trend of change is consistent with the damage to the thyroid structure. Serum levels of triiodothyronine and tetraiodothyronine were raise. However, the decrease in TSH expression suggests that the function of the HPT axis is unaffected. To delve deeper into the intrinsic mechanisms of thyroid injury, we performed KEGG pathway enrichment analysis, which revealed notable alterations in the cell adhesion signaling pathway. Our immunofluorescence results show that DEP exposure impairs thyroid adhesion, and integrin α3ß1 plays an important role. CD151 binds to α3ß1, promoting multimolecular complex formation and activating adhesion-dependent small GTPases. Our in vitro model has confirmed the pivotal role of integrin α3ß1 in thyroid cell adhesion, which may be mediated by the CD151/α3ß1/Rac1 pathway. In summary, exposure to DEP disrupts the structure and function of the thyroid, a process that likely involves the regulation of cell adhesion through the CD151/α3ß1/Rac1 pathway, leading to glandular damage.


Asunto(s)
Integrina alfa3beta1 , Glándula Tiroides , Emisiones de Vehículos , Animales , Ratones , Glándula Tiroides/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Integrina alfa3beta1/metabolismo , Adhesión Celular/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Material Particulado/toxicidad , Células Epiteliales Tiroideas/efectos de los fármacos , Células Epiteliales Tiroideas/metabolismo , Transducción de Señal
2.
Nat Commun ; 15(1): 5895, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003267

RESUMEN

Autoimmune thyroid diseases (AITD) such as Graves' disease (GD) or Hashimoto's thyroiditis (HT) are organ-specific diseases that involve complex interactions between distinct components of thyroid tissue. Here, we use spatial transcriptomics to explore the molecular architecture, heterogeneity and location of different cells present in the thyroid tissue, including thyroid follicular cells (TFCs), stromal cells such as fibroblasts, endothelial cells, and thyroid infiltrating lymphocytes. We identify damaged antigen-presenting TFCs with upregulated CD74 and MIF expression in thyroid samples from AITD patients. Furthermore, we discern two main fibroblast subpopulations in the connective tissue including ADIRF+ myofibroblasts, mainly enriched in GD, and inflammatory fibroblasts, enriched in HT patients. We also demonstrate an increase of fenestrated PLVAP+ vessels in AITD, especially in GD. Our data unveil stromal and thyroid epithelial cell subpopulations that could play a role in the pathogenesis of AITD.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Enfermedad de Graves , Enfermedad de Hashimoto , Glándula Tiroides , Humanos , Enfermedad de Graves/patología , Enfermedad de Graves/inmunología , Enfermedad de Graves/genética , Enfermedad de Graves/metabolismo , Glándula Tiroides/patología , Glándula Tiroides/metabolismo , Enfermedad de Hashimoto/patología , Enfermedad de Hashimoto/inmunología , Enfermedad de Hashimoto/metabolismo , Enfermedad de Hashimoto/genética , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Células Epiteliales Tiroideas/metabolismo , Células Epiteliales Tiroideas/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Transcriptoma , Miofibroblastos/metabolismo , Miofibroblastos/patología , Células del Estroma/metabolismo , Células del Estroma/patología , Femenino , Factores Inhibidores de la Migración de Macrófagos , Oxidorreductasas Intramoleculares
3.
Eur J Pharmacol ; 973: 176588, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621508

RESUMEN

Hashimoto's thyroiditis (HT) is the most frequent autoimmune disorder. Growing work points to the involvement of aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, in the regulation of immune homeostasis. However, the roles of AhR and its ligands in HT remains unclear. In this study, we leveraged public human database analyses to postulate that the AhR expression was predominantly in thyroid follicular cells, correlating significantly with the thyroid infiltration levels of multiple immune cells in HT patients. Using a thyroglobulin-induced HT mouse model and in vitro thyroid follicular epithelial cell cultures, we found a significant downregulation of AhR expression in thyrocytes both in vivo and in vitro. Conversely, activating AhR by FICZ, a natural AhR ligand, mitigated inflammation and apoptosis in thyrocytes in vitro and conferred protection against HT in mice. RNA sequencing (RNA-seq) of thyroid tissues indicated that AhR activation moderated HT-associated immune or inflammatory signatures. Further, immunoinfiltration analysis indicated that AhR activation regulated immune cell infiltration in the thyroid of HT mice, such as suppressing cytotoxic CD8+ T cell infiltration and promoting anti-inflammatory M2 macrophage polarization. Concomitantly, the expression levels of interleukin-2 (IL-2), a lymphokine that downregulates immune responses, were typically decreased in HT but restored upon AhR activation. In silico validation substantiated the binding interaction between AhR and IL-2. In conclusion, targeting the AhR with FICZ regulates IL-2 and immune infiltration to alleviate experimental HT, shedding new light on the therapeutic intervention of this prevalent disease.


Asunto(s)
Carbazoles , Enfermedad de Hashimoto , Interleucina-2 , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Ratones , Enfermedad de Hashimoto/inmunología , Enfermedad de Hashimoto/metabolismo , Enfermedad de Hashimoto/patología , Humanos , Interleucina-2/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Células Epiteliales Tiroideas/metabolismo , Células Epiteliales Tiroideas/efectos de los fármacos , Femenino , Apoptosis , Simulación del Acoplamiento Molecular
4.
Nature ; 627(8003): 407-415, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383779

RESUMEN

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Asunto(s)
Acuaporina 4 , Autoanticuerpos , Autoantígenos , Linfocitos B , Tolerancia Inmunológica , Neuromielitis Óptica , Animales , Humanos , Ratones , Proteína AIRE , Acuaporina 4/deficiencia , Acuaporina 4/genética , Acuaporina 4/inmunología , Acuaporina 4/metabolismo , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Antígenos CD40/inmunología , Centro Germinal/citología , Centro Germinal/inmunología , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Timo/citología , Timo/inmunología , Células Epiteliales Tiroideas/inmunología , Células Epiteliales Tiroideas/metabolismo , Transcriptoma
5.
Toxicol Sci ; 199(1): 89-107, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38310358

RESUMEN

The success and sustainability of U.S. EPA efforts to reduce, refine, and replace in vivo animal testing depends on the ability to translate toxicokinetic and toxicodynamic data from in vitro and in silico new approach methods (NAMs) to human-relevant exposures and health outcomes. Organotypic culture models employing primary human cells enable consideration of human health effects and inter-individual variability but present significant challenges for test method standardization, transferability, and validation. Increasing confidence in the information provided by these in vitro NAMs requires setting appropriate performance standards and benchmarks, defined by the context of use, to consider human biology and mechanistic relevance without animal data. The human thyroid microtissue (hTMT) assay utilizes primary human thyrocytes to reproduce structural and functional features of the thyroid gland that enable testing for potential thyroid-disrupting chemicals. As a variable-donor assay platform, conventional principles for assay performance standardization need to be balanced with the ability to predict a range of human responses. The objectives of this study were to (1) define the technical parameters for optimal donor procurement, primary thyrocyte qualification, and performance in the hTMT assay, and (2) set benchmark ranges for reference chemical responses. Thyrocytes derived from a cohort of 32 demographically diverse euthyroid donors were characterized across a battery of endpoints to evaluate morphological and functional variability. Reference chemical responses were profiled to evaluate the range and chemical-specific variability of donor-dependent effects within the cohort. The data-informed minimum acceptance criteria for donor qualification and set benchmark parameters for method transfer proficiency testing and validation of assay performance.


Asunto(s)
Glándula Tiroides , Humanos , Glándula Tiroides/efectos de los fármacos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Células Epiteliales Tiroideas/efectos de los fármacos , Células Epiteliales Tiroideas/metabolismo , Células Cultivadas , Disruptores Endocrinos/toxicidad , Adulto Joven , Bioensayo/normas , Bioensayo/métodos , Reproducibilidad de los Resultados , Alternativas a las Pruebas en Animales/normas , Anciano , Benchmarking
6.
Nature ; 623(7988): 803-813, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938781

RESUMEN

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Asunto(s)
Autoanticuerpos , Predisposición Genética a la Enfermedad , Interferón Tipo I , FN-kappa B , Humanos , Autoanticuerpos/inmunología , COVID-19/genética , COVID-19/inmunología , Mutación con Ganancia de Función , Heterocigoto , Proteínas I-kappa B/deficiencia , Proteínas I-kappa B/genética , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Mutación con Pérdida de Función , FN-kappa B/deficiencia , FN-kappa B/genética , Subunidad p52 de NF-kappa B/deficiencia , Subunidad p52 de NF-kappa B/genética , Neumonía Viral/genética , Neumonía Viral/inmunología , Timo/anomalías , Timo/inmunología , Timo/patología , Células Epiteliales Tiroideas/metabolismo , Células Epiteliales Tiroideas/patología , Proteína AIRE , Quinasa de Factor Nuclear kappa B
7.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511265

RESUMEN

There is much evidence linking oxidative stress to thyroid cancer, and stem cells are thought to play a key role in the tumor-initiating mechanism. Their vulnerability to oxidative stress is unexplored. This study aimed to comparatively evaluate the antioxidant capacity of stem/precursor thyroid cells and mature thyrocytes. Human stem/precursor cells and mature thyrocytes were exposed to increasing concentrations of menadione, an oxidative-stress-producing agent, and reactive oxygen species (ROS) production and cell viability were measured. The expression of antioxidant and detoxification genes was measured via qPCR as well as the total antioxidant capacity and the content of glutathione. Menadione elevated ROS generation in stem/precursor thyroid cells more than in mature thyrocytes. The ROS increase was inversely correlated (p = 0.005) with cell viability, an effect that was partially prevented by the antioxidant curcumin. Most thyroid antioxidant defense genes, notably those encoding for the glutathione-generating system and phase I detoxification enzymes, were significantly less expressed in stem/precursor thyroid cells. As a result, the glutathione level and the total antioxidant capacity in stem/precursor thyroid cells were significantly decreased. This reduced antioxidant defense may have clinical implications, making stem/precursor thyroid cells critical targets for environmental conditions that are not detrimental for differentiated thyrocytes.


Asunto(s)
Células Epiteliales Tiroideas , Glándula Tiroides , Humanos , Glándula Tiroides/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Epiteliales Tiroideas/metabolismo , Vitamina K 3 , Estrés Oxidativo , Glutatión/metabolismo , Células Madre/metabolismo
8.
Nat Rev Cancer ; 23(9): 631-650, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37438605

RESUMEN

The genomic simplicity of differentiated cancers derived from thyroid follicular cells offers unique insights into how oncogenic drivers impact tumour phenotype. Essentially, the main oncoproteins in thyroid cancer activate nodes in the receptor tyrosine kinase-RAS-BRAF pathway, which constitutively induces MAPK signalling to varying degrees consistent with their specific biochemical mechanisms of action. The magnitude of the flux through the MAPK signalling pathway determines key elements of thyroid cancer biology, including differentiation state, invasive properties and the cellular composition of the tumour microenvironment. Progression of disease results from genomic lesions that drive immortalization, disrupt chromatin accessibility and cause cell cycle checkpoint dysfunction, in conjunction with a tumour microenvironment characterized by progressive immunosuppression. This Review charts the genomic trajectories of these common endocrine tumours, while connecting them to the biological states that they confer.


Asunto(s)
Células Epiteliales Tiroideas , Neoplasias de la Tiroides , Humanos , Células Epiteliales Tiroideas/metabolismo , Células Epiteliales Tiroideas/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Microambiente Tumoral/genética
9.
BMC Med ; 21(1): 206, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280674

RESUMEN

BACKGROUND: Hashimoto's thyroiditis (HT) is an organ-specific autoimmune disease characterized by lymphocyte infiltration that destroys thyrocyte cells. The aim of the present study was to elucidate the role and mechanisms of tissue small extracellular vesicle (sEV) microRNAs (miRNAs) in the pathogenesis of HT. METHODS: Differentially expressed tissue sEV miRNAs were identified between HT tissue and normal tissue by RNA sequencing in the testing set (n = 20). Subsequently, using quantitative real-time polymerase chain reaction (qRT‒PCR) assays and logistic regression analysis in the validation set (n = 60), the most relevant tissue sEV miRNAs to HT were verified. The parental and recipient cells of that tissue sEV miRNA were then explored. In vitro and in vivo experiments were further performed to elucidate the function and potential mechanisms of sEV miRNAs that contribute to the development of HT. RESULTS: We identified that miR-142-3p encapsulated in T lymphocyte-derived tissue sEVs can induce Treg function defect and thyrocyte destruction through an intact response loop. Inactivation of miR-142-3p can effectively protect non-obese diabetic (NOD).H-2h4 mice from HT development display reduced lymphocyte infiltration, lower antibody titers, and higher Treg cells. Looking at the mechanisms underlying sEV action on thyrocyte destruction, we found that the strong deleterious effect mediated by tissue sEV miR-142-3p is due to its ability to block the activation of the ERK1/2 signaling pathway by downregulating RAC1. CONCLUSIONS: Our findings highlight the fact that tissue sEV-mediated miR-142-3p transfer can serve as a communication mode between T lymphocytes and thyrocyte cells in HT, favoring the progression of HT.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Células Epiteliales Tiroideas , Tiroiditis , Ratones , Animales , Células Epiteliales Tiroideas/metabolismo , Linfocitos T Reguladores , Ratones Endogámicos NOD , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo
10.
J Endocrinol Invest ; 46(12): 2501-2512, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37133653

RESUMEN

PURPOSE: Thyroid cell lines are useful tools to study the physiology and pathology of the thyroid, however, they do not produce or secrete hormones in vitro. On the other hand, the detection of endogenous thyroid hormones in primary thyrocytes was often hindered by the dedifferentiation of thyrocytes ex vivo and the presence of large amounts of exogenous hormones in the culture medium. This study aimed to create a culture system that could maintain the function of thyrocytes to produce and secrete thyroid hormones in vitro. METHODS: We established a Transwell culture system of primary human thyrocytes. Thyrocytes were seeded on a porous membrane in the inner chamber of the Transwell with top and bottom surfaces exposed to different culture components, mimicking the 'lumen-capillary' structure of the thyroid follicle. Moreover, to eliminate exogenous thyroid hormones from the culture medium, two alternatives were tried: a culture recipe using hormone-reduced serum and a serum-free culture recipe. RESULTS: The results showed that primary human thyrocytes expressed thyroid-specific genes at higher levels in the Transwell system than in the monolayer culture. Hormones were detected in the Transwell system even in the absence of serum. The age of the donor was negatively related to the hormone production of thyrocytes in vitro. Intriguingly, primary human thyrocytes cultured without serum secreted higher levels of free triiodothyronine (FT3) than free thyroxine (FT4). CONCLUSION: This study confirmed that primary human thyrocytes could maintain the function of hormone production and secretion in the Transwell system, thus providing a useful tool to study thyroid function in vitro.


Asunto(s)
Células Epiteliales Tiroideas , Glándula Tiroides , Humanos , Glándula Tiroides/metabolismo , Células Epiteliales Tiroideas/metabolismo , Células Cultivadas , Hormonas Tiroideas/metabolismo , Triyodotironina/farmacología , Tiroxina , Tirotropina/metabolismo
11.
J Trace Elem Med Biol ; 78: 127151, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36948046

RESUMEN

BACKGROUND: Hexavalent chromium known as oxidizing agent is able to form reactive oxygen species. Aronia melanocarpa and Hypericum perforatum are two plants known for their antioxidant effects. Our study aimed to establish if CrVI induces apoptosis and structural changes in thyrocytes and if its effect can be counteracted by the administration of both extracts. MATERIALS AND METHODS: Wistar rats divided in five groups: C - distilled water (DW), Cr - 75 mg/L CrVI in DW for 3 months, Cr 2 - 75 mg/L CrVI in DW for 3 months followed by 1 month DW, CrA - 3 months 75 mg/L CrVI in DW and 1 month Aronia 2.5% extract, CrH - 3 months 75 mg/L CrVI in DW and 1 month Hypericum 2.5% extract. Histological assessment and qRT-PCR for evaluation of BAX and Bcl2 protein levels performed on thyroid samples. RESULTS: The Cr and Cr2 groups were those with altered cytoarchitecture: increase in the diameter of many thyroid follicles, a decrease in their number, a decrease in the height of the follicular cells. The histological examination of the CrH group revealed almost recovery of structural architecture. The BAX gene levels were higher in the Cr and Cr2 groups indicating the apoptotic activity of chromium. In extract receiving groups the BAX gene expressions were significantly lower, but the lowest level presented the CrH group. Bcl2 gene expression levels indicate antiapoptotic activity being elevated in the Cr group, followed by CrA, Cr2, and CrH groups. The BAX/Bcl2 ratio which significantly increased in the case of the Cr and Cr2 group compared to the groups that were administered the two plant extracts. CONCLUSION: The results obtained in this study confirm that CrVI has toxic effects on thyroid endocrine cells and H. perforatum has stronger antioxidant properties against the action of hexavalent chromium in thyrocytes than A. melanocarpa.


Asunto(s)
Hypericum , Photinia , Células Epiteliales Tiroideas , Ratas , Animales , Photinia/metabolismo , Hypericum/metabolismo , Ratas Wistar , Proteína X Asociada a bcl-2 , Células Epiteliales Tiroideas/metabolismo , Antioxidantes/metabolismo , Cromo/farmacología , Cromo/análisis , Agua
12.
Mol Biol Rep ; 50(4): 3633-3640, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36807042

RESUMEN

BACKGROUND: Hashimoto thyroiditis (HT) is considered the most common autoimmune thyroid disease. A growing body of evidence suggests that HT incidence correlates with excessive iodine intake. We should probe the effects of excessive iodine intake in HT development and its possible mechanism. METHODS AND RESULTS: The study recruited 20 patients: 10 with HT and 10 with nodular goiter. We detected the expression of an apoptosis-related protein caspase-3 by immunohistochemistry. In vitro study, we explored the proliferation and apoptosis status in thyroid follicular cells (TFCs) stimulated with different iodine concentrations by MTT and flow cytometry. Then we performed RNA sequence analysis of Nthy-ori3-1 cells treated for 48 h with KI to probe the underlying mechanism. Finally, we used RT-PCR and siRNA interference to verify the results. We identified apoptosis in thyroid tissue obtained from HT patients coincides with the increase of caspase-3 levels. In vitro study, iodine suppressed proliferation of TFCs and promoted TFCs apoptosis in a dose-dependent manner with regulating caspase-3 activation. HIF-1α-NDRG1 mediated hypoxia pathway activation promoted the transmission of essential apoptosis signals in TFCs. CONCLUSION: Our study confirmed that excessive iodine adsorption activates the HIF-1α-mediated hypoxia pathway to promote apoptosis of TFCs, which may be an important risk factor contributing to HT development.


Asunto(s)
Enfermedad de Hashimoto , Yodo , Células Epiteliales Tiroideas , Humanos , Apoptosis , Caspasa 3/genética , Enfermedad de Hashimoto/genética , Hipoxia , Células Epiteliales Tiroideas/metabolismo
13.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36362390

RESUMEN

The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences.


Asunto(s)
Hipotiroidismo , Células Epiteliales Tiroideas , Ratones , Humanos , Animales , Tiroglobulina/metabolismo , Hipotiroidismo/metabolismo , Células Epiteliales Tiroideas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas/metabolismo
14.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293065

RESUMEN

Thyroid Nodules (TN) are frequent but mostly benign, and postoperative rate of benign TN attains the values from 70% to 90%. Therefore, there is an urgent need for identification of reliable preoperative diagnosis markers for patients with indeterminate thyroid cytology. In this study, an earlier unexplored design of research on preoperative biomarkers for thyroid malignancies was proposed. Evaluation of reported results of studies addressing the links of thyroid cancer to the circadian clockwork dysfunctions and abnormal activities of Thyroid-Stimulating Hormone (TSH) and its receptor (TSH-R) suggested diagnostic significance of such links. However, there is still a gap in studies of interrelationships between diurnal profiles of expression of circadian clock genes and TSH-R in indeterminate thyroid tissue exposed to different concentrations of TSH. These interrelationships might be investigated in future in vitro experiments on benign and malignant thyrocytes cultivated under normal and challenged TSH levels. Their design requires simultaneous measurement of diurnal profiles of expression of both circadian clock genes and TSH-R. Experimental results might help to bridge previous studies of preoperative biomarkers for thyroid carcinoma exploring diagnostic value of diurnal profiles of serum TSH levels, expression of TSH-R, and expression of circadian clock genes.


Asunto(s)
Relojes Circadianos , Células Epiteliales Tiroideas , Neoplasias de la Tiroides , Humanos , Tirotropina/metabolismo , Relojes Circadianos/genética , Células Epiteliales Tiroideas/metabolismo , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/cirugía , Biomarcadores
15.
Endocr J ; 69(10): 1261-1269, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35675983

RESUMEN

Sulfonation is an important step in the metabolism of dopamine, estrogens, dehydroepiandrosterone, as well as thyroid hormones. However, the regulation of cytosolic sulfotransferases in the thyroid is not well understood. In a DNA microarray analysis of rat thyroid FRTL-5 cells, we found that the mRNA expression of 10 of 48 sulfotransferases was significantly altered by thyroid stimulating hormone (TSH), with that of sulfotransferase family 1A member 1 (SULT1A1) being the most significantly affected. Real-time PCR and Western blot analyses revealed that TSH, forskolin and dibutyryl cyclic AMP significantly suppressed SULT1A1 mRNA and protein levels in a time- and concentration-dependent manner. Moreover, immunofluorescence staining of FRTL-5 cells showed that SULT1A1 is localized in the perinuclear area in the absence of TSH but is spread throughout the cytoplasm with reduced fluorescence intensity in the presence of TSH. Sulfotransferase activity in FRTL-5 cells, measured using 3'-phosphoadenosine-5'-phosphosulfate as a donner and p-nitrophenol as an acceptor substrate, was significantly reduced by TSH. These findings suggest that the expression and activity of SULT1A1 are modulated by TSH in thyrocytes.


Asunto(s)
Células Epiteliales Tiroideas , Tirotropina , Ratas , Animales , Tirotropina/farmacología , Tirotropina/metabolismo , Células Epiteliales Tiroideas/metabolismo , Glándula Tiroides/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , ARN Mensajero/metabolismo
16.
Endocr J ; 69(10): 1217-1225, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35644541

RESUMEN

Solute carrier family 26 member 7 (SLC26A7), identified as a causative gene for congenital hypothyroidism, was found to be a novel iodide transporter expressed on the apical side of the follicular epithelium of the thyroid. We recently showed that TSH suppressed the expression of SLC26A7 and induces its localization to the plasma membrane, where it functions. We also showed that the ability of TSH to induce thyroid hormone synthesis is completely reversed by an autocrine negative-feedback action of thyroglobulin (Tg) stored in the follicular lumen. In the present study, we investigated the potential effect of follicular Tg on SLC26A7 expression and found that follicular Tg significantly suppressed the promoter activity, mRNA level, and protein level of SLC26A7 in rat thyroid FRTL-5 cells. In addition, follicular Tg inhibited the ability of TSH to induce the membrane localization of SLC26A7. In rat thyroid sections, the expression of SLC26A7 was weaker in follicles with a higher concentration of Tg, as evidenced by immunofluorescence staining. These results indicate that Tg stored in the follicular lumen is a feedback suppressor of the expression and membrane localization of SLC26A7, thereby downregulating the transport of iodide into the follicular lumen.


Asunto(s)
Tiroglobulina , Células Epiteliales Tiroideas , Animales , Ratas , Antiportadores/genética , Antiportadores/metabolismo , Yoduros/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Tiroglobulina/genética , Tiroglobulina/metabolismo , Células Epiteliales Tiroideas/metabolismo , Glándula Tiroides/metabolismo , Tirotropina/metabolismo
17.
Cells ; 11(8)2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35455992

RESUMEN

The transcription factor CREB3L1 is expressed in a wide variety of tissues including cartilage, pancreas, and bone. It is located in the endoplasmic reticulum and upon stimulation is transported to the Golgi where is proteolytically cleaved. Then, the N-terminal domain translocates to the nucleus to activate gene expression. In thyroid follicular cells, CREB3L1 is a downstream effector of thyrotropin (TSH), promoting the expression of proteins of the secretory pathway along with an expansion of the Golgi volume. Here, we analyzed the role of CREB3L1 as a TSH-dependent transcriptional regulator of the expression of the sodium/iodide symporter (NIS), a major thyroid protein that mediates iodide uptake. We show that overexpression and inhibition of CREB3L1 induce an increase and decrease in the NIS protein and mRNA levels, respectively. This, in turn, impacts on NIS-mediated iodide uptake. Furthermore, CREB3L1 knockdown hampers the increase the TSH-induced NIS expression levels. Finally, the ability of CREB3L1 to regulate the promoter activity of the NIS-coding gene (Slc5a5) was confirmed. Taken together, our findings highlight the role of CREB3L1 in maintaining the homeostasis of thyroid follicular cells, regulating the adaptation of the secretory pathway as well as the synthesis of thyroid-specific proteins in response to TSH stimulation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Simportadores , Células Epiteliales Tiroideas , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratas , Simportadores/genética , Simportadores/metabolismo , Células Epiteliales Tiroideas/metabolismo , Tirotropina/metabolismo , Tirotropina/farmacología
18.
Nat Commun ; 13(1): 775, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140214

RESUMEN

Hashimoto's thyroiditis (HT) is the most common autoimmune disease characterized by lymphocytic infiltration and thyrocyte destruction. Dissection of the interaction between the thyroidal stromal microenvironment and the infiltrating immune cells might lead to a better understanding of HT pathogenesis. Here we show, using single-cell RNA-sequencing, that three thyroidal stromal cell subsets, ACKR1+ endothelial cells and CCL21+ myofibroblasts and CCL21+ fibroblasts, contribute to the thyroidal tissue microenvironment in HT. These cell types occupy distinct histological locations within the thyroid gland. Our experiments suggest that they might facilitate lymphocyte trafficking from the blood to thyroid tissues, and T cell zone CCL21+ fibroblasts may also promote the formation of tertiary lymphoid organs characteristic to HT. Our study also demonstrates the presence of inflammatory macrophages and dendritic cells expressing high levels of IL-1ß in the thyroid, which may contribute to thyrocyte destruction in HT patients. Our findings thus provide a deeper insight into the cellular interactions that might prompt the pathogenesis of HT.


Asunto(s)
Microambiente Celular/inmunología , Enfermedad de Hashimoto/metabolismo , Linfocitos/metabolismo , Células Epiteliales Tiroideas/metabolismo , Glándula Tiroides/metabolismo , Enfermedades Autoinmunes/metabolismo , Quimiocina CCL21/metabolismo , Citocinas/metabolismo , Sistema del Grupo Sanguíneo Duffy , Células Endoteliales/metabolismo , Humanos , Interleucina-1beta , Células Mieloides , Receptores de Superficie Celular , Glándula Tiroides/patología
19.
Sci Rep ; 12(1): 2144, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140269

RESUMEN

While the signaling pathways and transcription factors involved in the differentiation of thyroid follicular cells, both in embryonic and adult life, are increasingly well understood, the underlying mechanisms and potential crosstalk between the thyroid transcription factors Nkx2.1, Foxe1 and Pax8 and inductive signals remain unclear. Here, we focused on the transcription factor Sox9, which is expressed in Nkx2.1-positive embryonic thyroid precursor cells and is maintained from embryonic development to adulthood, but its function and control are unknown. We show that two of the main signals regulating thyroid differentiation, TSH and TGFß, modulate Sox9 expression. Specifically, TSH stimulates the cAMP/PKA pathway to transcriptionally upregulate Sox9 mRNA and protein expression, a mechanism that is mediated by the binding of CREB to a CRE site within the Sox9 promoter. Contrastingly, TGFß signals through Smad proteins to inhibit TSH-induced Sox9 transcription. Our data also reveal that Sox9 transcription is regulated by the thyroid transcription factors, particularly Pax8. Interestingly, Sox9 significantly increased the transcriptional activation of Pax8 and Foxe1 promoters and, consequently, their expression, but had no effect on Nkx2.1. Our study establishes the involvement of Sox9 in thyroid follicular cell differentiation and broadens our understanding of transcription factor regulation of thyroid function.


Asunto(s)
Factor de Transcripción SOX9/metabolismo , Células Epiteliales Tiroideas/citología , Células Epiteliales Tiroideas/metabolismo , Glándula Tiroides/metabolismo , Tirotropina/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular , Línea Celular , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Ratones , Factor de Transcripción PAX8/genética , Factor de Transcripción PAX8/metabolismo , Regiones Promotoras Genéticas , Factor de Transcripción SOX9/genética , Transducción de Señal , Glándula Tiroides/citología , Glándula Tiroides/embriología , Factor Nuclear Tiroideo 1/genética , Factor Nuclear Tiroideo 1/metabolismo , Tirotropina/farmacología , Transcripción Genética , Factor de Crecimiento Transformador beta/farmacología
20.
Endocr Pathol ; 33(2): 315-326, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34997561

RESUMEN

In this report, we present a high-grade thyroid carcinoma with an NSD3::NUTM1 fusion detected on expanded next-generation sequencing testing. Nuclear protein of the testis (NUT) carcinomas comprise high-grade, aggressive tumors characterized by rearrangements of the NUTM1 gene with various partner genes, most commonly the bromodomain protein genes BRD4 and BRD3. Approximately 10% of NUT carcinomas contain an NSD3::NUTM1 fusion. NUT carcinomas manifest as poorly differentiated or undifferentiated squamous carcinomas, and 33% show areas of mature squamous differentiation. Only exceptionally have NUT carcinomas shown histology discordant from poorly differentiated/undifferentiated squamous carcinoma, and a thyroid NUT carcinoma with histologic thyrocyte differentiation has not been described to date. Our patient's tumor exhibited mixed cytologic features suggestive of squamoid cells or papillary thyroid carcinoma cells. Overt squamous differentiation was absent, and the tumor produced colloid in poorly formed follicles. Immunophenotypically, the carcinoma was consistent with thyrocyte differentiation with expression of monoclonal PAX8, TTF1, and thyroglobulin (the last predominantly in extracellular colloid). There was zero to < 2% reactivity for proteins typically diffusely expressed in NUT carcinoma: p40, p63, and cytokeratins 5/6. NUT protein expression was equivocal, but fluorescence in situ hybridization confirmed a NUTM1 rearrangement. This exceptional case suggests that NUTM1 fusions may occur in an unknown number of aggressive thyroid carcinomas, possibly with distinctive histologic features but with thyrocyte differentiation. Recognition of this entity potentially has significant prognostic implications. Moreover, thyroid carcinomas with NUTM1 fusions may be amenable to treatment with NUT carcinoma-targeted therapy such as a bromodomain and extraterminal domain protein small molecular inhibitor (BETi).


Asunto(s)
Carcinoma de Células Escamosas , Células Epiteliales Tiroideas , Neoplasias de la Tiroides , Proteínas de Ciclo Celular , Coloides , Humanos , Hibridación Fluorescente in Situ , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Células Epiteliales Tiroideas/metabolismo , Neoplasias de la Tiroides/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA