Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 975
1.
BMC Endocr Disord ; 24(1): 68, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734621

BACKGROUND: To date, although most thyroid carcinoma (THCA) achieves an excellent prognosis, some patients experience a rapid progression episode, even with differentiated THCA. Nodal metastasis is an unfavorable predictor. Exploring the underlying mechanism may bring a deep insight into THCA. METHODS: A total of 108 THCA from Chinese patients with next-generation sequencing (NGS) were recruited. It was used to explore the gene alteration spectrum of THCA and identify gene alterations related to nodal metastasis in papillary thyroid carcinoma (PTC). The Cancer Genome Atlas THCA cohort was further studied to elucidate the relationship between specific gene alterations and tumor microenvironment. A pathway enrichment analysis was used to explore the underlying mechanism. RESULTS: Gene alteration was frequent in THCA. BRAF, RET, POLE, ATM, and BRCA1 were the five most common altered genes. RET variation was positively related to nodal metastasis in PTC. RET variation is associated with immune cell infiltration levels, including CD8 naïve, CD4 T and CD8 T cells, etc. Moreover, Step 3 and Step 4 of the cancer immunity cycle (CIC) were activated, whereas Step 6 was suppressed in PTC with RET variation. A pathway enrichment analysis showed that RET variation was associated with several immune-related pathways. CONCLUSION: RET variation is positively related to nodal metastasis in Chinese PTC, and anti-tumor immune response may play a role in nodal metastasis triggered by RET variation.


High-Throughput Nucleotide Sequencing , Lymphatic Metastasis , Proto-Oncogene Proteins c-ret , Thyroid Cancer, Papillary , Thyroid Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/immunology , Proto-Oncogene Proteins c-ret/genetics , Female , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Male , Middle Aged , Adult , Prognosis , Biomarkers, Tumor/genetics , Follow-Up Studies
2.
Endocr Relat Cancer ; 31(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38657656

Anaplastic thyroid cancer (ATC) is of the most aggressive thyroid cancer. While ATC is rare, it accounts for a disproportionately high number of thyroid cancer-related deaths. Here, we developed an ATC xenotransplant model in zebrafish larvae, where we can study tumorigenesis and therapeutic response in vivo. Using both mouse (T4888M) and human (C643)-derived fluorescently labeled ATC cell lines, we show these cell lines display different engraftment rates, mass volume, proliferation, cell death, angiogenic potential, and neutrophil and macrophage recruitment and infiltration. Next, using a PIP-FUCCI reporter to track proliferation in vivo, we observed cells in each phase of the cell cycle. Additionally, we performed long-term non-invasive intravital microscopy over 48 h to understand cellular dynamics in the tumor microenvironment at the single-cell level. Lastly, we tested two drug treatments, AZD2014 and a combination therapy of dabrafenib and trametinib, to show our model could be used as an effective screening platform for new therapeutic compounds for ATC. Altogether, we show that zebrafish xenotransplants make a great model to study thyroid carcinogenesis and the tumor microenvironment, while also being a suitable model to test new therapeutics in vivo.


Thyroid Carcinoma, Anaplastic , Tumor Microenvironment , Zebrafish , Animals , Tumor Microenvironment/immunology , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/immunology , Humans , Cell Line, Tumor , Disease Models, Animal , Immunity, Innate , Thyroid Neoplasms/immunology , Thyroid Neoplasms/pathology , Mice , Pyridones/pharmacology , Pyridones/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Imidazoles/pharmacology , Imidazoles/therapeutic use
3.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 89-94, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650151

The association between the cuproptosis-related genes and the immune infiltration and their prognostic value in thyroid carcinoma is still unexplored. Bioinformatics analyses were performed with data obtained from the TCGA dataset. The aberrantly expressed genes were selected. KEGG and GO analyses were conducted to explore the enriched pathways of the up-regulated or down-regulated genes in thyroid carcinoma. Totally 1495 genes were differentially expressed (691 up-regulated, 804 down-regulated) in thyroid carcinoma (p<0.05). The 10 cuproptosis-related RNAs (DLD, LIAS, LIPT1, FDX1, DLAT, MTF1, PDHA1, CDKN2A, GLS and PDHB) were also demonstrated to be aberrantly expressed in thyroid carcinoma patients tissues. FDX1 expression was correlated with the overall survival in thyroid carcinoma patients (HR=0.4995, 95% CI: 0.2688-0.9285, p=0.0282). Further multivariate cox regression analysis revealed that DLD (HR=24.8869, 95% CI: 4.48772-138.01181, p=0.00024), and LIAS (HR=7.74092, 95% CI: 1.12194-53.40898, p=0.03783) were associated with the survival of thyroid carcinoma patients. The immune infiltration analysis demonstrated that significant correlation between the 10 cuproptosis-related genes and immune infiltration in thyroid carcinoma (p<0.01). We presented the expression profiles of dysregulated genes in thyroid carcinoma. The findings of our study highlighted the potential of cuproptosis-related genes as prognostic biomarkers for thyroid carcinoma.


Gene Expression Regulation, Neoplastic , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology , Thyroid Neoplasms/mortality , Thyroid Neoplasms/pathology , Prognosis , Female , Male , Middle Aged , Gene Expression Profiling , Biomarkers, Tumor/genetics , Kaplan-Meier Estimate , Proportional Hazards Models , Computational Biology/methods
4.
Int Immunopharmacol ; 133: 112102, 2024 May 30.
Article En | MEDLINE | ID: mdl-38652971

Anaplastic thyroid carcinoma (ATC) is the most aggressive subtype of thyroid cancer with few effective therapies. Though immunotherapies such as targeting PD-1/PD-L1 axis have benefited patients with solid tumor, the druggable immune checkpoints are quite limited in ATC. In our study, we focused on the anti-tumor potential of sialic acid-binding Ig-like lectins (Siglecs) in ATC. Through screening by integrating microarray datasets including 216 thyroid-cancer tissues and single-cell RNA-sequencing, SIGLEC family members CD33, SIGLEC1, SIGLEC10 and SIGLEC15 were significantly overexpressed in ATC, among which SIGLEC15 increased highest and mainly expressed on cancer cells. SIGLEC15high ATC cells are characterized by high expression of serine protease PRSS23 and cancer stem cell marker CD44. Compared with SIGLEC15low cancer cells, SIGLEC15high ATC cells exhibited higher interaction frequency with tumor microenvironment cells. Further study showed that SIGLEC15high cancer cells mainly interacted with T cells by immunosuppressive signals such as MIF-TNFRSF14 and CXCL12-CXCR4. Notably, treatment of anti-SIGLEC15 antibody profoundly increased the cytotoxic ability of CD8+ T cells in a co-culture model and zebrafish-derived ATC xenografts. Consistently, administration of anti-SIGLEC15 antibody significantly inhibited tumor growth and prolonged mouse survival in an immunocompetent model of murine ATC, which was associated with increase of M1/M2, natural killer (NK) cells and CD8+ T cells, and decrease of myeloid-derived suppressor cells (MDSCs). SIGLEC15 inhibited T cell activation by reducing NFAT1, NFAT2, and NF-κB signals. Blocking SIGLEC15 increased the secretion of IFN-γ and IL-2 in vitro and in vivo. In conclusion, our finding demonstrates that SIGLEC15 is an emerging and promising target for immunotherapy in ATC.


Immunotherapy , Lectins , Thyroid Carcinoma, Anaplastic , Humans , Animals , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/immunology , Thyroid Carcinoma, Anaplastic/genetics , Immunotherapy/methods , Mice , Cell Line, Tumor , Lectins/genetics , Lectins/metabolism , Thyroid Neoplasms/therapy , Thyroid Neoplasms/immunology , Thyroid Neoplasms/genetics , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , Xenograft Model Antitumor Assays , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Immunoglobulins , Membrane Proteins
5.
Biosci Rep ; 44(5)2024 May 29.
Article En | MEDLINE | ID: mdl-38639057

The vitamin D receptor (VDR) is a transcription factor that mediates a variety of biological functions of 1,25-dihydroxyvitamin D3. Although there is growing evidence of cytological and animal studies supporting the suppressive role of VDR in cancers, the conclusion is still controversial in human cancers and no systematic pan-cancer analysis of VDR is available. We explored the relationships between VDR expression and prognosis, immune infiltration, tumor microenvironment, or gene set enrichment analysis (GSEA) in 33 types of human cancers based on multiple public databases and R software. Meanwhile, the expression and role of VDR were experimentally validated in papillary thyroid cancer (PTC). VDR expression decreased in 8 types and increased in 12 types of cancer compared with normal tissues. Increased expression of VDR was associated with either good or poor prognosis in 13 cancer types. VDR expression was positively correlated with the infiltration of cancer-associated fibroblasts, macrophages, or neutrophils in 20, 12, and 10 cancer types respectively and this correlation was experimentally validated in PTC. Increased VDR expression was associated with increased percentage of stromal or immune components in tumor microenvironment (TME) in 24 cancer types. VDR positively and negatively correlated genes were enriched in immune cell function and energy metabolism pathways, respectively, in the top 9 highly lethal tumors. Additionally, VDR expression was increased in PTC and inhibited cell proliferation and migration. In conclusion, VDR is a potential prognostic biomarker and positively correlated with immune infiltration as well as stromal or immune components in TME in multiple human cancers.


Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Receptors, Calcitriol , Thyroid Cancer, Papillary , Tumor Microenvironment , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Humans , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Thyroid Neoplasms/immunology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Databases, Genetic
6.
Int Immunopharmacol ; 133: 112050, 2024 May 30.
Article En | MEDLINE | ID: mdl-38636370

Thyroid cancer (THCA) is the most common endocrine malignancy worldwide and has been rising at the fastest rate in recent years. Long-stranded non-coding RNAs (lncRNAs) and N6-methyladenosine (m6A) have been associated with immunotherapy efficacy and cancer prognosis. However, how m6A-associated lncRNAs (mrlncRNAs) affect the prognosis of patients with thyroid cancer is unclear. Therefore, this study utilized The Cancer Genome Atlas (TCGA) database to provide thyroid cancer-related transcriptomic data and related clinical data. The R program was used to identify m6A-related lncRNAs, and a risk model consisting of two lncRNAs (LINC02471 and DOCK9-DT) was obtained using least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Kaplan-Meier survival analysis and transient subject operating characteristics (ROC) were used for analysis. The results showed a substantial association between immune cell infiltration and risk scores. Independent analyses confirmed that the expression of LINC02471 and DOCK9-DT was significantly higher in thyroid cancer tissues than in normal tissues, suggesting that they may be useful biomarkers for thyroid cancer.


Adenosine , Biomarkers, Tumor , RNA, Long Noncoding , Thyroid Neoplasms , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Biomarkers, Tumor/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology , Adenosine/analogs & derivatives , Adenosine/metabolism , Gene Expression Regulation, Neoplastic , Prognosis , Male , Female , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Middle Aged
7.
JCI Insight ; 9(8)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38478516

Both anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) originate from thyroid follicular epithelial cells, but ATC has a significantly worse prognosis and shows resistance to conventional therapies. However, clinical trials found that immunotherapy works better in ATC than late-stage PTC. Here, we used single-cell RNA sequencing (scRNA-Seq) to generate a single-cell atlas of thyroid cancer. Differences in ATC and PTC tumor microenvironment components (including malignant cells, stromal cells, and immune cells) leading to the polarized prognoses were identified. Intriguingly, we found that CXCL13+ T lymphocytes were enriched in ATC samples and might promote the development of early tertiary lymphoid structure (TLS). Last, murine experiments and scRNA-Seq analysis of a treated patient's tumor demonstrated that famitinib plus anti-PD-1 antibody could advance TLS in thyroid cancer. We displayed the cellular landscape of ATC and PTC, finding that CXCL13+ T cells and early TLS might make ATC more sensitive to immunotherapy.


Chemokine CXCL13 , Immunotherapy , Thyroid Cancer, Papillary , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/immunology , Animals , Mice , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Thyroid Neoplasms/therapy , Thyroid Neoplasms/genetics , Immunotherapy/methods , Chemokine CXCL13/metabolism , Chemokine CXCL13/genetics , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Single-Cell Analysis , Prognosis , T-Lymphocytes/immunology , Female , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Male
8.
Head Neck ; 46(6): 1486-1499, 2024 Jun.
Article En | MEDLINE | ID: mdl-38380767

The tumor immune microenvironment of thyroid cancer is the heterogeneous histological space in which tumor cells coexist with host cells. Published data from this review were identified by search and selection database of Pubmed, Elsevier, and Science Direct. Searching was made in two steps using different keywords. In thyroid pathology, the inflammatory response is very important, and might have a key role finding new diagnostic and therapeutic methods, particularly in thyroid cancer. Different immune cells may be more or less present in different types of thyroid cancer and may even have different functions, hence the importance of knowing their presence in different thyroid tumor pathologies. Cancer-related inflammation could be a useful target for new diagnostic and therapeutic strategies by analyzing peritumoral and intratumoral immune cells in different types of thyroid tumors. Moreover, novel strategies for thyroid cancer treatments, such as monoclonal antibodies targeting checkpoint inhibitors, are emerging as promising alternatives.


Thyroid Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Thyroid Neoplasms/therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use
9.
Oral Oncol ; 148: 106654, 2024 Jan.
Article En | MEDLINE | ID: mdl-38061122

BACKGROUND: The mechanism promoting papillary thyroid carcinoma (PTC) metastasis remains unclear. We aimed to investigate the potential metastatic mechanisms at a single-cell resolution. METHODS: We performed single-cell RNA-seq (scRNA-seq) profiling of thyroid tumour (TT), adjacent normal thyroid (NT) and lymph node metastasized tumour (LN) from a young female with PTC. Validation of our results was conducted in 31 tumours with metastasis and 30 without metastasis. RESULTS: ScRNA-seq analysis generated data on 38,215 genes and 0.14 billion transcripts from 28,839 cells, classified into 18 clusters, each annotated to represent 10 cell types. PTC cells were found to originate from epithelial cells. Epithelial cells and macrophages emerged as the strongest signal emitters and receivers, respectively. After reclustering epithelial cells and macrophages, our analysis, incorporating gene set variation analysis (GSVA), SCENIC analysis, and pseudotime trajectory analysis, indicated that subcluster 0 of epithelial cells (EP_0) showed a more malignant phenotype, and subclusters 3 and 4 of macrophages (M_3 and M_4) demonstrated heightened activity. Further analysis suggested that EP_0 may suppress the activity of M_3 and M_4 via MIF - (CD74 + CXCR4) in the MIF pathway. After analysing the expression of the 4 genes in the MIF pathway in both the TCGA cohort and our cohort (n = 61), CD74 was identified as significantly overexpressed in PTC tumours particularly those with lymph node metastasis. CONCLUSION: Our study revealed that PTC may facilitate lymph node metastasis by inhibiting macrophages via MIF signalling. It is suggested that malignant PTC cells may suppress the immune activity of macrophages by consistently releasing signals to them via MIF-(CD74 + CXCR4).


Macrophage Migration-Inhibitory Factors , Macrophages , Thyroid Cancer, Papillary , Thyroid Neoplasms , Female , Humans , Intramolecular Oxidoreductases/metabolism , Lymphatic Metastasis/genetics , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Macrophages/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Single-Cell Gene Expression Analysis , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/immunology , Thyroid Neoplasms/pathology
10.
Horm Metab Res ; 54(12): 852-858, 2022 Dec.
Article En | MEDLINE | ID: mdl-36427494

One feature of papillary thyroid cancer (PTC) is the frequently present somatic BRAFV600E mutation. PTCs are also characterized by a lymphocytic infiltration, which may correlate with an improved clinical outcome. The objective of the study was the characterization of BRAFV600E specific anti-immunity in PTC patients and correlation analyses with the clinical outcome. Fourteen HLA A2 positive PTC patients were included into the study of whom tumor tissue samples were also available. Of those, 8 PTC patients revealed a somatic BRAFV600E mutation. All PTC patients were also MHC class II typed. Tetramer analyses for detection of MHC class I and MHC class II-restricted, BRAFV600E epitope-specific T cells using unstimulated and peptide-stimulated T cells were performed; correlation analyses between MHC phenotypes, T cell immunity, and the clinical course were performed. In regard to unstimulated T cells, a significantly higher amount of BRAFV600E epitope specific T cells was detected compared to a control tetramer. Importantly, after overnight peptide stimulation a significantly higher number of BRAFV600E positive and BRAF WT epitope-specific T cells could be seen. In regard to the clinical course, however, no significant differences were seen, neither in the context of the initial tumor size, nor in the context of lymph node metastases or peripheral metastastic spread. In conclusion, we clearly demonstrated a BRAF-specific tumor immunity in PTC-patients which is, however, independent of a BRAFV600E status of the PTC patients.


Proto-Oncogene Proteins B-raf , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Disease Progression , Epitopes, T-Lymphocyte/immunology , Genes, MHC Class II/immunology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/immunology , T-Lymphocytes/immunology , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology , Thyroid Neoplasms/pathology , Mutation , Immunity/genetics
11.
Comput Math Methods Med ; 2022: 3585626, 2022.
Article En | MEDLINE | ID: mdl-35265169

Thyroid cancer (TC) is one of the widely diagnosed carcinomas in women before the age of 30. Nevertheless, there is currently a lack of specific biomarkers for predicting the prognosis of TC. Long noncoding RNAs (lncRNAs) were important regulators in human cancer progression as previously described. Unfortunately, there is little known on these lncRNAs' functions and molecular mechanisms in TC. In our literature, we found that LOC554202 (MIR31HG) was upregulated in TC samples and correlated with clinicopathological features, including M stage, N stage, and lymph nodes examined status in TC. In addition, we found that LOC554202 overexpression was evidently correlated with high immune infiltrate levels of CD8+ T cells, macrophage, neutrophil, myeloid dendritic cells, and B cells in TC. Knockdown of LOC554202 impeded TC cell proliferation and cycle progression. We found that LOC554202 had an association with metabolic pathways, vesicle-mediated transport, tricarboxylic acid cycle, Hedgehog signaling pathway, and Hippo signaling pathway in TC. Reducing LOC554202 hindered TC cell proliferation and cycle progression. Finally, we found that LOC554202 participated in modulating the expression of the regulators of Hippo signaling and TCA pathway, such as CCND2, CCND3, SDHC, SDHD, SUCLA2, and SUCLG1. We thought that this study would largely enhance our understanding of LOC554202's functional roles in human TC progression and immune response.


Lymphocytes, Tumor-Infiltrating/immunology , RNA, Long Noncoding/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology , Biomarkers, Tumor/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Citric Acid Cycle/genetics , Computational Biology , Cyclin D2/genetics , Cyclin D3/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Lymphocytes, Tumor-Infiltrating/pathology , Prognosis , RNA, Long Noncoding/antagonists & inhibitors , Thyroid Neoplasms/pathology , Up-Regulation
12.
J Immunother Cancer ; 10(1)2022 01.
Article En | MEDLINE | ID: mdl-35101946

BACKGROUND: Hormones are identified as key biological variables in tumor immunity. However, previous researches mainly focused on the immune effect of steroid hormones, while the roles that thyroid-stimulating hormone (TSH) played in the antitumor response were far from clear. METHODS: The source of TSH was determined using single-cell transcriptomic, histologic, quantitative PCR, and ELISA analysis. The influence of TSH on tumor proliferation, invasion, and immune evasion was evaluated in multiple cell lines of thyroid cancer, glioma, and breast cancer. Then transcriptomic sequencing and cellular experiments were used to identify signaling pathways. TSH receptor (TSHR) inhibitor was injected into homograft mouse tumor models with or without anti-programmed cell death protein-1 antibody. RESULTS: Monocyte-derived dendritic cells (moDCs) highly expressed TSHα and TSHß2 and were the primary source of TSH in the tumor microenvironment. TSH released by moDCs promoted proliferation and invasion of tumors with high TSHR expressions, such as thyroid cancers and glioma. TSH also induced tumor programmed death-ligand 1 (PD-L1) expression through the TSHR-AC-PKA-JNK-c-JUN pathway. TSHR inhibitors reversed tumor immune evasion by inhibiting PD-L1 expression in tumor and myeloid cells and enhancing Teff activation. CONCLUSIONS: TSH-TSHR axis promotes tumor evasion in thyroid cancers and glioma. TSH suppression therapy is an effective therapeutic strategy for combination in immune checkpoint blockades.


Breast Neoplasms/immunology , Glioma/immunology , Receptors, Thyrotropin/immunology , Thyroid Neoplasms/immunology , Thyrotropin/immunology , Tumor Escape , Animals , Cell Line , Dendritic Cells/immunology , Female , Humans , Immune Checkpoint Inhibitors , Mice, Inbred C57BL , Receptors, Thyrotropin/genetics , Thyrotropin/genetics , Tumor Microenvironment
13.
Future Oncol ; 18(3): 333-348, 2022 Jan.
Article En | MEDLINE | ID: mdl-34756116

Background: Papillary thyroid carcinoma (PTC) is one of the most common endocrine malignancies and has a favorable prognosis. However, optimal treatments and prognostic markers have not been clearly identified. Methods: Gene expression data from primary PTC were downloaded from the Gene Expression Omnibus database and subjected to two analyses of differentially expressed genes (DEGs), followed by intersecting individual and integrated DEGs analyses as well as gene set enrichment analysis. Analysis of data from Sequence Read Archive and The Cancer Genome Atlas, immunohistochemistry and qRT-PCR of TFF3 were performed to validate the results. Finally, the relationship between gene expression and disease-free survival as well as immune cell infiltration were investigated. Results: Six critical DEGs and several tumor-enriched signaling pathways were identified. Immunohistochemistry and qRT-PCR validated the low expression of TFF3 in PTC. TFF3 and FCGBP are coexpressed in PTC, and patients with lower gene expression had worse disease-free survival but higher immune cell infiltration. Conclusion: TFF3 was significantly underexpressed and may function with FCGBP synergistically in PTC.


Lay abstract Thyroid cancers are some of the most common endocrine malignancies. However, the optimal treatments and prognostic markers have not been clearly identified. We identified six critical differentially expressed genes and several tumor-enriched signaling pathways in papillary thyroid carcinoma, and found that TFF3 was the most underexpressed gene, as validated by experiment. In addition, TFF3 and FCGBP worked synergistically and may mark prognosis and tumor immune cell infiltration, which may benefit patients with papillary thyroid carcinoma by providing early indication and prompting further basic investigation.


Biomarkers, Tumor/genetics , Neoplasm Recurrence, Local/epidemiology , Thyroid Cancer, Papillary/mortality , Thyroid Neoplasms/mortality , Trefoil Factor-3/genetics , Adult , Biomarkers, Tumor/analysis , Cell Adhesion Molecules/analysis , Cell Adhesion Molecules/genetics , Datasets as Topic , Disease-Free Survival , Female , Follow-Up Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Recurrence, Local/genetics , Risk Assessment/methods , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/surgery , Thyroid Gland/immunology , Thyroid Gland/pathology , Thyroid Gland/surgery , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology , Thyroid Neoplasms/surgery , Thyroidectomy , Trefoil Factor-3/analysis , Tumor Microenvironment/immunology
14.
Bioengineered ; 12(2): 12854-12866, 2021 12.
Article En | MEDLINE | ID: mdl-34898340

Stromal and immune cells are major components of tumor microenvironment (TME) and affect the growth and development of thyroid carcinoma (THCA). However, data on the exact mechanisms that define the relationship between the TME and THCA remain scant. We calculated stromal and immune cells scores and the proportion of tumor-infiltrating immune cells (TICs) by CIBERSORT and ESTIMATE based on the THCA gene expression data from the Cancer Genome Atlas (TCGA). In addition, we evaluated differentially expressed genes (DEGs) from high- and low-score groups and performed functional enrichment analysis. Furthermore, our data show a significant correlation between plasma complement factor B (CFB) and PTC development and prognosis. Gene Set Enrichment Analysis (GSEA) demonstrated that the CFB was mainly enriched in immune response pathways. The expression of CFB was positively correlated with T cells CD8, Macrophages M1, Plasma cells, T cells CD4 memory activated, T cells follicular helper and T cells regulatory (Tregs), whereas negatively correlated with Eosinophils, Macrophages M0, Macrophages M2, Mast cells resting, T cells CD4 memory resting in the TME. Finally, the expression level of CFB was verified by other cohorts from Gene Expression Omnibus (GEO) database and quantitative Real-Time PCR (qRT-PCR) analyses, which was consistent with the results of bioinformatic analysis. Taken together, our data demonstrated that the CFB could be a prognostic marker for THCA and its expression influences the infiltration of immune cells.


Complement Factor B/metabolism , Thyroid Neoplasms/blood , Thyroid Neoplasms/diagnosis , Databases, Factual , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Prognosis , Proportional Hazards Models , Protein Interaction Maps/genetics , Stromal Cells/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology
15.
Front Immunol ; 12: 784975, 2021.
Article En | MEDLINE | ID: mdl-34925365

Hashimoto's thyroiditis (HT) is an autoimmune disease, and its incidence continues to rise. Although scientists have studied this disease for many years and discovered the potential effects of various proteins in it, the specific pathogenesis is still not fully comprehended. To understand HT and translate this knowledge to clinical applications, we took the mass spectrometric analysis on thyroid tissue fine-needle puncture from HT patients and healthy people in an attempt to make a further understanding of the pathogenesis of HT. A total of 44 proteins with differential expression were identified in HT patients, and these proteins play vital roles in cell adhesion, cell metabolism, and thyroxine synthesis. Combining patient clinical trial sample information, we further compared the transient changes of gene expression regulation in HT and papillary thyroid carcinoma (PTC) samples. More importantly, we developed patient-derived HT and PTC organoids as a promising new preclinical model to verify these potential markers. Our data revealed a marked characteristic of HT organoid in upregulating chemokines that include C-C motif chemokine ligand (CCL) 2 and CCL3, which play a key role in the pathogenesis of HT. Overall, our research has enriched everyone's understanding of the pathogenesis of HT and provides a certain reference for the treatment of the disease.


Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Hashimoto Disease/immunology , Thyroid Cancer, Papillary/immunology , Thyroid Neoplasms/immunology , Adult , Biomarkers/analysis , Biomarkers/metabolism , Chemokine CCL2/analysis , Chemokine CCL3/analysis , Female , Hashimoto Disease/pathology , Humans , Male , Middle Aged , Organoids , Primary Cell Culture/methods , Proteomics , Thyroid Cancer, Papillary/pathology , Thyroid Gland/immunology , Thyroid Gland/pathology , Thyroid Neoplasms/pathology
16.
Bioengineered ; 12(2): 9251-9265, 2021 12.
Article En | MEDLINE | ID: mdl-34723715

Thyroid carcinoma is one of the most common endocrine malignancies, in which papillary thyroid carcinoma (PTC) is the main pathotype. ANXA1 plays a significant role in many cancer types, but how it works in PTC has not been identified. MYC is a common transcript factor involved in tumorigenesis, development, invasion, and metastasis. The relation between ANXA1 and MYC has not been proved in PTC. In this study, firstly, we analyzed the expression and prognostic value of ANXA1 in pan-cancer using the data from the UCSC database. Then we explore the role of ANXA1 in PTC, including expression, prognostic value, and immune infiltration. In addition, we evaluated the relation between ANXA1 and the transcription factor MYC. Finally, we identified the expression of ANXA1 and MYC and then evaluated their function associated with proliferation and apoptosis in PTC cell lines by CCK8 proliferation and flow cytometry apoptosis experiment. We found that ANXA1 is up-regulated in PTC comparing with normal patients. High expression of ANXA1 was associated with adverse overall survival of PTC. ANXA1 may be regulated by MYC to promote the proliferation of PTC. MYC may regulate the expression of ANXA and thus affect the proliferation of PTC.


Annexin A1/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Annexin A1/metabolism , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Ontology , Humans , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thyroid Cancer, Papillary/immunology , Thyroid Neoplasms/immunology , Up-Regulation/genetics
17.
Genes (Basel) ; 12(10)2021 09 28.
Article En | MEDLINE | ID: mdl-34680929

Medullary thyroid cancer (MTC) is a rare malignancy that arises from calcitonin-producing C-cells. Curative treatment for patients with metastatic MTC is challenging. Identifying the mechanisms by which cancer cells inhibit the activity of immune cells provides an opportunity to develop new therapies that restore anticancer activity. Little is known about the immunological phenomena underlying MTC. Here, we examined the expression profile of 395 genes associated with MTC. The study included 51 patients diagnosed with MTC at a single center. Bioinformatical analysis revealed that CD276 expression in MTC cells was at least three-fold higher than that in normal tissue. The expression of CD276 showed a weak but statistically significant positive correlation with tumor diameter, but we did not find a significant association between CD276 expression and other histopathological clinical factors, or the response to initial therapy. A search of published data identified the monoclonal antibody (inhibitor) enoblituzumab as a potential drug for patients diagnosed with MTC overexpressing CD276.


B7 Antigens/genetics , Biomarkers, Tumor/genetics , Carcinoma, Neuroendocrine/immunology , Immunotherapy/methods , Thyroid Neoplasms/immunology , Adult , Aged , Aged, 80 and over , B7 Antigens/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Computational Biology/methods , Female , Humans , Male , Middle Aged , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Tumor Burden
18.
Int Immunopharmacol ; 101(Pt A): 108156, 2021 Dec.
Article En | MEDLINE | ID: mdl-34624650

BACKGROUND: Ferroptosis is an iron-dependent and regulated cell death that has been widely reported in a variety of malignancies. The overall survival of papillary thyroid cancer (PTC) is excellent, but the identification of patients with poor prognosis still faces challenges. Nevertheless, whether ferroptosis-related genes (FRGs) can be used to screen high-risk patients is not clear. METHODS: We obtained the clinical data of patients with PTC and FRGs from the UCSC Xena platform and the FerrDb respectively. Differentially expressed genes (DEGs) of FRGs were obtained from the entire The Cancer Genome Atlas (TCGA). Subsequently, the entire TCGA dataset was randomly split into two subsets: training and test datasets. Based on DEGs, we constructed a predictive model which was tested in the test dataset and the entire TCGA dataset to predict progression-free survival (PFS). Patients were categorized into high- or low-risk groups based on their median risk score. We analyzed differences in some aspects, including pathway enrichment analysis, single-sample Gene Set Enrichment Analysis (ssGSEA), tumor microenvironment (TME), human leukocyte antigen (HLA) genes, and tumor mutation burden (TMB) analyses, between high-risk and low-risk groups. RESULTS: A predictive model with three FRGs (HSPA5, AURKA, and TSC22D3) was constructed. Patients in the high-risk group had worse PFS compared with patients in the low-risk group. Functional analysis results revealed that ssGSEA, immune cell infiltration, TME, HLA, and TMB were closely associated with ferroptosis. CONCLUSION: The prognostic model constructed in this study can effectively predict PFS for patients with PTC.


Biomarkers, Tumor/genetics , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic/immunology , Thyroid Cancer, Papillary/mortality , Thyroid Neoplasms/mortality , Aurora Kinase A/genetics , Datasets as Topic , Endoplasmic Reticulum Chaperone BiP/genetics , Female , Ferroptosis/immunology , Follow-Up Studies , Gene Expression Profiling , Humans , Male , Middle Aged , Prognosis , Progression-Free Survival , Risk Assessment/methods , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/immunology , Thyroid Cancer, Papillary/therapy , Thyroid Gland/immunology , Thyroid Gland/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology , Thyroid Neoplasms/therapy , Transcription Factors/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
19.
Front Immunol ; 12: 728381, 2021.
Article En | MEDLINE | ID: mdl-34539667

Carcinomas evade the host immune system by negatively modulating CD4+ and CD8+ T effector lymphocytes through forkhead box protein 3 (FOXP3) positive T regulatory cells' increased activity. Furthermore, interaction of the programmed cell death 1 (PD1) molecule and its ligand programmed cell death ligand 1 (PDL1) inhibits the antitumor activity of PD1+ T lymphocytes. Immunotherapy has become a powerful strategy for tailored cancer patients' treatment both in adult and pediatric patients aiming to generate potent antitumor responses. Nevertheless, immunotherapies can generate autoimmune responses. This study aimed to investigate the potential effect of the transformation-related protein 53 (p53) reactivation by a peptide-based inhibitor of the MDM2/MDM4 heterodimer (Pep3) on the immune response in a solid cancer, i.e., thyroid carcinoma frequently presenting with thyroid autoimmunity. In peripheral blood mononuclear cell of thyroid cancer patients, Pep3 treatment alters percentages of CD8+ and CD4+ T regulatory and CD8+ and CD4+ T effector cells and favors an anticancer immune response. Of note that reduced frequencies of activated CD8+ and CD4+ T effector cells do not support autoimmunity progression. In evaluating PD1 expression under p53 activation, a significant decrease of activated CD4+PD1+ cells was detected in thyroid cancer patients, suggesting a defective regulation in the initial activation stage, therefore generating a protective condition toward autoimmune progression.


Antineoplastic Agents/pharmacology , Autoantibodies/blood , Autoimmunity/drug effects , Leukocytes, Mononuclear/drug effects , Peptides/pharmacology , T-Lymphocytes, Regulatory/drug effects , Thyroid Neoplasms/drug therapy , Tumor Suppressor Protein p53/metabolism , Adult , Biomarkers/blood , Case-Control Studies , Cells, Cultured , Female , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Phenotype , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Thyroid Neoplasms/immunology , Thyroid Neoplasms/metabolism
20.
Diagn Pathol ; 16(1): 84, 2021 Aug 31.
Article En | MEDLINE | ID: mdl-34465342

BACKGROUND: The incidence of papillary thyroid carcinoma (PTC) has been steadily increasing over the past decades. Hashimoto's thyroiditis (HT) is the most common autoimmune disease, and is related to the pathogenesis of PTC. Programmed death-1 (PD-1) is currently used for the treatment of PTC, but there are very few studies on the clinical value of PD-1 in the diagnosis and targeted therapy of PTC. METHODS: The expression of T, B, NK cells and PD-1 in the peripheral blood of 132 patients with PTC (PTC group), 48 patients with nodular goiter (NG group) and 63 healthy subjects (HP group) were detected by flow cytometry. The expression of plasma T3, T4, FT3, FT4, TSH, TGAb and TPO was detected by chemiluminescence immunoassay. Among 132 PTC, 49 PTC&HT and 83 PTC&noHT were included. Among 48 NG, 10 NG&HT and 38 NG&noHT were included. The expressions of programmed death- ligand1(PD-L1) in tumor tissues of PTC group and thyroid tissues of NG group, PD-1 and CD3 in tumor infiltration lymphocyte (TIL) were detected by immunohistochemistry. RESULTS: The expression of FT3, TGAb, CD3+PD-1+, CD3+CD4+PD-1+ and CD3+CD8+PD-1+ in PTC and NG was significantly higher than that in the HP group. Moreover, CD3+PD-1+, CD3+CD4+PD-1+ and CD3+CD8+PD-1+ expression had significant differences between the PTC group and the NG group. In addition, the expression of TGAb, TPO, CD3+PD-1+, CD3+CD4+PD-1+ and CD3+CD8+PD-1+ in PTC&HT group was significantly higher than that in the PTC&noHT group. While, the expression of B cells, CD3+PD-1+, CD3+CD4+PD-1+ and CD3+CD8+PD-1+ in PTC&HT group was higher than that in NG&HT group. PD-1 showed a significant correlation with PTC lymph node metastasis. CD3+PD-1+ and CD3+CD4+PD-1+ was higher in N1 stage than in N0 stage. Immunohistochemical results showed that the expression of PD-1, CD3 and PD-L1 in PTC was significantly higher than that in NG. CONCLUSIONS: T cell exhaustion might act as a biomarker for the differential diagnosis of PTC and NG. Patients with PTC&HT have obvious T cell exhaustion and increased expression of PD-1, PD-L1.Targeting the PD-1/PD-L1 pathway could be a new approach to prevent malignant transformation from HT to PTC&HT in the future.


Goiter, Nodular/immunology , Hashimoto Disease/immunology , Lymphocytes, Tumor-Infiltrating/immunology , T-Lymphocyte Subsets/immunology , Thyroid Cancer, Papillary/immunology , Thyroid Neoplasms/immunology , Adult , Aged , Aged, 80 and over , B7-H1 Antigen/blood , Case-Control Studies , Cell Proliferation , Female , Goiter, Nodular/blood , Goiter, Nodular/pathology , Hashimoto Disease/blood , Hashimoto Disease/pathology , Humans , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Phenotype , Programmed Cell Death 1 Receptor/blood , T-Lymphocyte Subsets/metabolism , Thyroid Cancer, Papillary/blood , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/blood , Thyroid Neoplasms/pathology , Tumor Microenvironment , Young Adult
...