Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.870
1.
Front Cell Infect Microbiol ; 14: 1384284, 2024.
Article En | MEDLINE | ID: mdl-38725451

Japanese spotted fever (JSF) is caused by Rickettsia japonica, mainly vectored by hard ticks. However, whether R. japonica can be transmitted by other arthropods remains unknown. Moreover, it is of interest to investigate whether other Rickettsia species cause spotted fever in endemic areas. In this study, a survey of Rickettsia species was performed in hematophagous arthropods (mosquitoes, tabanids, and ticks) from endemic areas for JSF in Hubei Province, central China. The results showed that the diversity and prevalence of Rickettsia species in mosquitoes are low, suggesting that mosquitoes may not be the vector of zoonotic Rickettsia species. A novel Rickettsia species showed a high prevalence (16.31%, 23/141) in tabanids and was named "Candidatus Rickettsia tabanidii." It is closely related to Rickettsia from fleas and mosquitoes; however, its pathogenicity in humans needs further investigation. Five Rickettsia species were identified in ticks. Rickettsia japonica, the agent of JSF, was detected only in Haemaphysalis longicornis and Haemaphysalis hystricis, suggesting that they may be the major vectors of R. japonica. Notably, two novel species were identified in H. hystricis ticks, one belonging to the spotted fever group and the other potentially belonging to the ancestral group. The latter one named "Candidatus Rickettsia hubeiensis" may provide valuable insight into the evolutionary history of Rickettsia.


Phylogeny , Rickettsia , Spotted Fever Group Rickettsiosis , Animals , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , China/epidemiology , Spotted Fever Group Rickettsiosis/microbiology , Spotted Fever Group Rickettsiosis/epidemiology , Ticks/microbiology , Humans , Arthropods/microbiology , DNA, Bacterial/genetics , Culicidae/microbiology , RNA, Ribosomal, 16S/genetics , Endemic Diseases , Sequence Analysis, DNA , Siphonaptera/microbiology
2.
PLoS One ; 19(5): e0302689, 2024.
Article En | MEDLINE | ID: mdl-38722854

The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020-2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species was A. americanum (24098, 97%) followed by Dermacentor variabilis (370, 2%), D. albipictus (271, 1%), Ixodes scapularis (91, <1%) and A. maculatum (38, <1%). Amblyomma americanum, A. maculatum and D. variabilis were active in Spring and Summer, while D. albipictus and I. scapularis were active in Fall and Winter. Factors associated with numbers of individuals of A. americanum included day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity.


Seasons , Animals , Oklahoma , Kansas , Ticks/growth & development , Ticks/physiology , Ixodes/physiology , Ixodes/growth & development , Female , Dermacentor/physiology , Dermacentor/growth & development , Ixodidae/physiology , Ixodidae/growth & development , Male , Ecosystem , Amblyomma/growth & development , Amblyomma/physiology
3.
PLoS One ; 19(5): e0302874, 2024.
Article En | MEDLINE | ID: mdl-38722910

Lyme disease is the most common wildlife-to-human transmitted disease reported in North America. The study of this disease requires an understanding of the ecology of the complex communities of ticks and host species involved in harboring and transmitting this disease. Much of the ecology of this system is well understood, such as the life cycle of ticks, and how hosts are able to support tick populations and serve as disease reservoirs, but there is much to be explored about how the population dynamics of different host species and communities impact disease risk to humans. In this study, we construct a stage-structured, empirically-informed model with host dynamics to investigate how host population dynamics can affect disease risk to humans. The model describes a tick population and a simplified community of three host species, where primary nymph host populations are made to fluctuate on an annual basis, as commonly observed in host populations. We tested the model under different environmental conditions to examine the effect of environment on the interactions of host dynamics and disease risk. Results show that allowing for host dynamics in the model reduces mean nymphal infection prevalence and increases the maximum annual prevalence of nymphal infection and the density of infected nymphs. Effects of host dynamics on disease measures of nymphal infection prevalence were nonlinear and patterns in the effect of dynamics on amplitude in nymphal infection prevalence varied across environmental conditions. These results highlight the importance of further study of the effect of community dynamics on disease risk. This will involve the construction of further theoretical models and collection of robust field data to inform these models. With a more complete understanding of disease dynamics we can begin to better determine how to predict and manage disease risk using these models.


Lyme Disease , Population Dynamics , Lyme Disease/epidemiology , Animals , Humans , Ixodes/microbiology , Ixodes/physiology , Models, Theoretical , Ticks/microbiology , Ticks/physiology , Models, Biological , Borrelia burgdorferi/physiology , Borrelia burgdorferi/pathogenicity , Host-Parasite Interactions , Nymph
4.
PLoS One ; 19(5): e0303099, 2024.
Article En | MEDLINE | ID: mdl-38723009

Crimean-Congo haemorrhagic fever virus (CCHFV) is a globally significant tick-borne zoonotic pathogen that causes fatal haemorrhagic disease in humans. Despite constituting an ongoing public health threat, limited research exists on the presence of CCHFV among herdsmen, an occupationally exposed population that has prolonged contact with ruminants and ticks. This cross-sectional study, conducted between October 2018 and February 2020 in Kwara State, Nigeria, was aimed at assessing CCHFV seroprevalence among herdsmen and non-herdsmen febrile patients, and identifying the associated risk factors. Blood samples from herdsmen (n = 91) and febrile patients in hospitals (n = 646) were analyzed for anti-CCHFV IgG antibodies and CCHFV S-segment RNA using ELISA and RT-PCR, respectively. Results revealed a remarkably high CCHFV seroprevalence of 92.3% (84/91) among herdsmen compared to 7.1% (46/646) in febrile patients. Occupational risk factors like animal and tick contact, tick bites, and hand crushing of ticks significantly contributed to higher seroprevalence in the herdsmen (p<0.0001). Herdsmen were 156.5 times more likely (p<0.0001) to be exposed to CCHFV than febrile patients. Notably, the odds of exposure were significantly higher (OR = 191.3; p<0.0001) in herdsmen with a history of tick bites. Although CCHFV genome was not detectable in the tested sera, our findings reveal that the virus is endemic among herdsmen in Kwara State, Nigeria. CCHFV should be considered as a probable cause of febrile illness among humans in the study area. Given the nomadic lifestyle of herdsmen, further investigations into CCHF epidemiology in this neglected population are crucial. This study enhances our understanding of CCHFV dynamics and emphasizes the need for targeted interventions in at-risk communities.


Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Occupational Exposure , Humans , Nigeria/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/virology , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Male , Risk Factors , Seroepidemiologic Studies , Adult , Female , Middle Aged , Occupational Exposure/adverse effects , Cross-Sectional Studies , Animals , Young Adult , Fever/epidemiology , Antibodies, Viral/blood , Ticks/virology , Adolescent
5.
Protein Sci ; 33(6): e4999, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723106

Ticks produce chemokine-binding proteins, known as evasins, in their saliva to subvert the host's immune response. Evasins bind to chemokines and thereby inhibit the activation of their cognate chemokine receptors, thus suppressing leukocyte recruitment and inflammation. We recently described subclass A3 evasins, which, like other class A evasins, exclusively target CC chemokines but appear to use a different binding site architecture to control target selectivity among CC chemokines. We now describe the structural basis of chemokine recognition by the class A3 evasin EVA-ACA1001. EVA-ACA1001 binds to almost all human CC chemokines and inhibits receptor activation. Truncation mutants of EVA-ACA1001 showed that, unlike class A1 evasins, both the N- and C-termini of EVA-ACA1001 play minimal roles in chemokine binding. To understand the structural basis of its broad chemokine recognition, we determined the crystal structure of EVA-ACA1001 in complex with the human chemokine CCL16. EVA-ACA1001 forms backbone-backbone interactions with the CC motif of CCL16, a conserved feature of all class A evasin-chemokine complexes. A hydrophobic pocket in EVA-ACA1001, formed by several aromatic side chains and the unique disulfide bond of class A3 evasins, accommodates the residue immediately following the CC motif (the "CC + 1 residue") of CCL16. This interaction is shared with EVA-AAM1001, the only other class A3 evasins characterized to date, suggesting it may represent a common mechanism that accounts for the broad recognition of CC chemokines by class A3 evasins.


Models, Molecular , Humans , Animals , Ticks/chemistry , Ticks/metabolism , Crystallography, X-Ray , Binding Sites , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Arthropod Proteins/genetics , Protein Binding , Chemokines/chemistry , Chemokines/metabolism , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism
6.
Front Cell Infect Microbiol ; 14: 1382228, 2024.
Article En | MEDLINE | ID: mdl-38698904

Background: Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods: We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results: Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions: The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.


Babesia , Camelus , Ehrlichia , Theileria , Ticks , Animals , Kenya/epidemiology , Camelus/parasitology , Camelus/microbiology , Theileria/isolation & purification , Theileria/genetics , Babesia/isolation & purification , Babesia/genetics , Ehrlichia/isolation & purification , Ehrlichia/genetics , Ticks/microbiology , Ticks/parasitology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/parasitology , Anaplasma/isolation & purification , Anaplasma/genetics , Rickettsia/isolation & purification , Rickettsia/genetics , Coxiella/isolation & purification , Coxiella/genetics , Hemolymph/microbiology , Hemolymph/parasitology , Salivary Glands/microbiology , Salivary Glands/parasitology
7.
BMC Vet Res ; 20(1): 190, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734647

Severe fever with thrombocytopenia syndrome (SFTS) is a fatal zoonosis caused by ticks in East Asia. As SFTS virus (SFTSV) is maintained between wildlife and ticks, seroepidemiological studies in wildlife are important to understand the behavior of SFTSV in the environment. Miyazaki Prefecture, Japan, is an SFTS-endemic area, and approximately 100 feral horses, called Misaki horses (Equus caballus), inhabit Cape Toi in Miyazaki Prefecture. While these animals are managed in a wild-like manner, their ages are ascertainable due to individual identification. In the present study, we conducted a seroepidemiological survey of SFTSV in Misaki horses between 2015 and 2023. This study aimed to understand SFTSV infection in horses and its transmission to wildlife. A total of 707 samples from 180 feral horses were used to determine the seroprevalence of SFTSV using enzyme-linked immunosorbent assay (ELISA). Neutralization testing was performed on 118 samples. In addition, SFTS viral RNA was detected in ticks from Cape Toi and feral horses. The overall seroprevalence between 2015 and 2023 was 78.5% (555/707). The lowest seroprevalence was 55% (44/80) in 2016 and the highest was 92% (76/83) in 2018. Seroprevalence was significantly affected by age, with 11% (8/71) in those less than one year of age and 96.7% (435/450) in those four years of age and older (p < 0.0001). The concordance between ELISA and neutralization test results was 88.9% (105/118). SFTS viral RNA was not detected in ticks (n = 516) or feral horses. This study demonstrated that horses can be infected with SFTSV and that age is a significant factor in seroprevalence in wildlife. This study provides insights into SFTSV infection not only in horses but also in wildlife in SFTS-endemic areas.


Horse Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Horses , Seroepidemiologic Studies , Japan/epidemiology , Horse Diseases/epidemiology , Horse Diseases/virology , Horse Diseases/blood , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Severe Fever with Thrombocytopenia Syndrome/virology , Female , Male , Antibodies, Viral/blood , Ticks/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Animals, Wild/virology
8.
Nat Commun ; 15(1): 3988, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734682

Tick-borne bacteria of the genera Ehrlichia and Anaplasma cause several emerging human infectious diseases worldwide. In this study, we conduct an extensive survey for Ehrlichia and Anaplasma infections in the rainforests of the Amazon biome of French Guiana. Through molecular genetics and metagenomics reconstruction, we observe a high indigenous biodiversity of infections circulating among humans, wildlife, and ticks inhabiting these ecosystems. Molecular typing identifies these infections as highly endemic, with a majority of new strains and putative species specific to French Guiana. They are detected in unusual rainforest wild animals, suggesting they have distinctive sylvatic transmission cycles. They also present potential health hazards, as revealed by the detection of Candidatus Anaplasma sparouinense in human red blood cells and that of a new close relative of the human pathogen Ehrlichia ewingii, Candidatus Ehrlichia cajennense, in the tick species that most frequently bite humans in South America. The genome assembly of three new putative species obtained from human, sloth, and tick metagenomes further reveals the presence of major homologs of Ehrlichia and Anaplasma virulence factors. These observations converge to classify health hazards associated with Ehrlichia and Anaplasma infections in the Amazon biome as distinct from those in the Northern Hemisphere.


Anaplasma , Animals, Wild , Ehrlichia , Phylogeny , Rainforest , Ticks , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/pathogenicity , Anaplasma/classification , Ehrlichia/genetics , Ehrlichia/isolation & purification , Ehrlichia/classification , Humans , Animals , Ticks/microbiology , Animals, Wild/microbiology , Anaplasmosis/microbiology , Anaplasmosis/epidemiology , Anaplasmosis/transmission , French Guiana , Ehrlichiosis/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/transmission , Metagenomics/methods , Genome, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
9.
Sci Rep ; 14(1): 10863, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740831

Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.


Cricetulus , Kinins , Neuropeptides , Peristalsis , Animals , Kinins/metabolism , CHO Cells , Neuropeptides/metabolism , Neuropeptides/genetics , Muscles/metabolism , Muscles/physiology , Ticks/metabolism , Ticks/physiology , Rhipicephalus/metabolism , Rhipicephalus/physiology , Rhipicephalus/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/genetics
10.
Parasit Vectors ; 17(1): 227, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755646

Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.


Culicidae , Psychodidae , Ticks , Volatile Organic Compounds , Animals , Volatile Organic Compounds/metabolism , Psychodidae/physiology , Psychodidae/parasitology , Ticks/physiology , Humans , Culicidae/physiology , Behavior, Animal , Vector Borne Diseases/transmission , Female , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Plasmodium falciparum/physiology
11.
Vet Parasitol ; 328: 110190, 2024 Jun.
Article En | MEDLINE | ID: mdl-38714064

In Europe, tick-borne diseases (TBDs) cause significant morbidity and mortality, affecting both human and animal health. Ticks can transmit a wide variety of pathogens (bacteria, viruses, and parasites) and feed on many vertebrate hosts. The incidence and public health burden of TBDs are tending to intensify in Europe due to various factors, mainly anthropogenic and often combined. Early detection of tick-borne pathogens (TBPs), preventive measures and treatment are of great importance to control TBDs and their expansion. However, there are various limitations in terms of the sensitivity and/or specificity of detection and prevention methods, and even in terms of feasibility. Aptamers are single-stranded DNA or RNA that could address these issues as they are able to bind with high affinity and specificity to a wide range of targets (e.g., proteins, small compounds, and cells) due to their unique three-dimensional structure. To date, aptamers have been selected against TBPs such as tick-borne encephalitis virus, Francisella tularensis, and Rickettsia typhi. These studies have demonstrated the benefits of aptamer-based assays for pathogen detection and medical diagnosis. In this review, we address the applications of aptamers to TBDs and discuss their potential for improving prevention measures (use of chemical acaricides, vaccination), diagnosis and therapeutic strategies to control TBDs.


Aptamers, Nucleotide , Tick-Borne Diseases , Tick-Borne Diseases/prevention & control , Tick-Borne Diseases/epidemiology , Animals , Humans , Europe/epidemiology , Ticks/microbiology , Ticks/virology , Tick Control/methods
12.
PLoS Negl Trop Dis ; 18(5): e0012141, 2024 May.
Article En | MEDLINE | ID: mdl-38728365

BACKGROUND: Francisella tularensis, the bacterium that causes tularemia, has been a persistent and widespread pathogen in various regions of the world for centuries. Francisella tularensis can affect humans and various domestic and wild animals. The current study aimed to determine the epidemiological status of tularemia in countries of the WHO Eastern Mediterranean Region (EMRO) through a systematic review and meta-analysis. METHODS: All included studies were identified through a systematic search of online databases, including Scopus, PubMed, Web of Science, and EMBASE, through July 26, 2022, using keywords and suitable combinations. We focused on cross-sectional studies investigating the prevalence of F. tularensis. The weighted pooled prevalence was calculated using a random-effects model. RESULTS: A total of 206 studies were identified, of which 20 were finally included in the analysis. The human seroprevalence of tularemia in WHO-EMRO countries was 6.2% (95% CI, 4.2 9.2). In the subgroup analysis, anti-F. tularensis antibodies were found in 6.92% and 5.5% of the high-risk individuals and Iran, respectively. The pooled prevalence of F. tularensis in environmental samples (water and soil) from the WHO-EMRO countries was 5.8% (9.4% by PCR and 0.5% by culture). In addition, 2.5% (95% CI, 0.2 0.22.7) of ticks in WHO-EMRO countries were positive for F. tularensis. The pooled prevalence of F. tularensis in rodents is 2.0% (1.1% by PCR and 3.7% by serology). In addition, 0.6% of domestic ruminants (0.4% by PCR and 2.4% by serology) were positive for F. tularensis in WHO-EMRO countries. CONCLUSION: According to the results of the present study, tularemia is an endemic but neglected disease in the WHO-EMRO region. However, most studies on tularemia are limited to a few countries in this region. Studies on tularemia in human populations, reservoirs, and vectors have been conducted in all countries in the WHO-EMRO region to obtain more detailed information about the epidemiology of tularemia in these regions.


Francisella tularensis , Tularemia , Tularemia/epidemiology , Tularemia/microbiology , Humans , Animals , Francisella tularensis/isolation & purification , Mediterranean Region/epidemiology , Prevalence , Seroepidemiologic Studies , World Health Organization , Cross-Sectional Studies , Ticks/microbiology
13.
Comp Immunol Microbiol Infect Dis ; 109: 102181, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636298

Ticks and tick-borne pathogens (TTBP) pose a serious threat to animal and human health globally. Anaplasma bovis, an obligatory intracellular bacterium, is one of the more recent species of the Family Anaplasmaceae to be formally described. Owing to its diminutive size, microscopic detection presents a formidable challenge, leading to it being overlooked in laboratory settings lacking advanced equipment or resources, as observed in various regions, including Thailand. This study aimed to undertake a genetic analysis of A. bovis and determine its prevalence in goats and ticks utilizing three genetic markers (16S rRNA, gltA, groEL). A total of 601 goat blood and 118 tick samples were collected from 12 sampling sites throughout Thailand. Two tick species, Haemaphysalis bispinosa (n = 109), and Rhipicephalus microplus (n = 9) were identified. The results herein showed that 13.8 % (83/601) of goats at several farms and 5 % (1/20) of ticks were infected with A. bovis. Among infected ticks, A. bovis and an uncultured Anaplasma sp. which are closely related to A. phagocytophilum-like 1, were detected in each of H. bispinosa ticks. The remaining R. microplus ticks tested positive for the Anaplasma genus. A nucleotide sequence type network showed that A. bovis originated from Nan and Narathiwat were positioned within the same cluster and closely related to China isolates. This observation suggests the potential dispersal of A. bovis over considerable distances, likely facilitated by activities such as live animal trade or the transportation of infected ticks via migratory birds. The authors believe that the findings from this study will provide valuable information about TTBP in animals.


Anaplasma , Anaplasmosis , Goat Diseases , Goats , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S , Animals , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/classification , Thailand/epidemiology , Anaplasmosis/microbiology , Anaplasmosis/epidemiology , Goat Diseases/microbiology , Goat Diseases/epidemiology , RNA, Ribosomal, 16S/genetics , Anaplasma phagocytophilum/genetics , Anaplasma phagocytophilum/isolation & purification , Ticks/microbiology , DNA, Bacterial/genetics
14.
Parasit Vectors ; 17(1): 167, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566227

BACKGROUND: Hyalomma ticks are widely distributed in semi-arid zones in Northwest China. They have been reported to harbor a large number of zoonotic pathogens. METHODS: In this study, a total of 334 Hyalomma asiaticum ticks infesting domestic animals were collected from four locations in Xinjiang, Northwest China, and the bacterial agents in them were investigated. RESULTS: A putative novel Borrelia species was identified in ticks from all four locations, with an overall positive rate of 6.59%. Rickettsia sibirica subsp. mongolitimonae, a human pathogen frequently reported in Europe, was detected for the second time in China. Two Ehrlichia species (Ehrlichia minasensis and Ehrlichia sp.) were identified. Furthermore, two Anaplasma species were characterized in this study: Candidatus Anaplasma camelii and Anaplasma sp. closely related to Candidatus Anaplasma boleense. It is the first report of Candidatus Anaplasma camelii in China. CONCLUSIONS: Six bacterial agents were reported in this study, many of which are possible or validated pathogens for humans and animals. The presence of these bacterial agents may suggest a potential risk for One Health in this area.


Ixodidae , Rickettsia , Tick-Borne Diseases , Ticks , Animals , Humans , Ticks/microbiology , Tick-Borne Diseases/microbiology , Rickettsia/genetics , Ixodidae/microbiology , Ehrlichia , Anaplasma , China
15.
Front Cell Infect Microbiol ; 14: 1334351, 2024.
Article En | MEDLINE | ID: mdl-38567020

Most tick-borne viruses (TBVs) are highly pathogenic and require high biosecurity, which severely limits their study. We found that Sindbis virus (SINV), predominantly transmitted by mosquitoes, can replicate in ticks and be subsequently transmitted, with the potential to serve as a model for studying tick-virus interactions. We found that both larval and nymphal stages of Rhipicephalus haemaphysaloides can be infected with SINV-wild-type (WT) when feeding on infected mice. SINV replicated in two species of ticks (R. haemaphysaloides and Hyalomma asiaticum) after infecting them by microinjection. Injection of ticks with SINV expressing enhanced Green Fluorescent Protein (eGFP) revealed that SINV-eGFP specifically aggregated in the tick midguts for replication. During blood-feeding, SINV-eGFP migrated from the midguts to the salivary glands and was transmitted to a new host. SINV infection caused changes in expression levels of tick genes related to immune responses, substance transport and metabolism, cell growth and death. SINV mainly induced autophagy during the early stage of infection; with increasing time of infection, the level of autophagy decreased, while the level of apoptosis increased. During the early stages of infection, the transcript levels of immune-related genes were significantly upregulated, and then decreased. In addition, SINV induced changes in the transcription levels of some functional genes that play important roles in the interactions between ticks and tick-borne pathogens. These results confirm that the SINV-based transmission model between ticks, viruses, and mammals can be widely used to unravel the interactions between ticks and viruses.


Ticks , Viruses , Animals , Mice , Sindbis Virus/genetics , Mosquito Vectors , Mammals
16.
Biomed Environ Sci ; 37(3): 266-277, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38582991

Objective: The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area, namely, Qunlu Practice Base, Peach Blossom Garden, and Huangtong Animal Husbandry, and whether vectors carry any bacterial pathogens that may cause diseases to humans, to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods: Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit (OPU) analysis, we characterized the species-level microbial community structure of two important vector species, biting midges and ticks, including 33 arthropod samples comprising 3,885 individuals, collected around Poyang Lake. Results: A total of 662 OPUs were classified in biting midges, including 195 known species and 373 potentially new species, and 618 OPUs were classified in ticks, including 217 known species and 326 potentially new species. Surprisingly, OPUs with potentially pathogenicity were detected in both arthropod vectors, with 66 known species of biting midges reported to carry potential pathogens, including Asaia lannensis and Rickettsia bellii, compared to 50 in ticks, such as Acinetobacter lwoffii and Staphylococcus sciuri. We found that Proteobacteria was the most dominant group in both midges and ticks. Furthermore, the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria. Pantoea sp7 was predominant in biting midges, while Coxiella sp1 was enriched in ticks. Meanwhile, Coxiella spp., which may be essential for the survival of Haemaphysalis longicornis Neumann, were detected in all tick samples. The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion: Biting midges and ticks carry large numbers of known and potentially novel bacteria, and carry a wide range of potentially pathogenic bacteria, which may pose a risk of infection to humans and animals. The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.


Ceratopogonidae , Microbiota , Ticks , Animals , Humans , Ticks/microbiology , Ceratopogonidae/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Prospective Studies , Coxiella/genetics
17.
J Parasitol ; 110(2): 155-158, 2024 04 01.
Article En | MEDLINE | ID: mdl-38621699

Eight ticks were found in Comacchio (FE), Italy parasitizing a young black iguana (Ctenosaura similis) that had been accidentally transported in a commercial plant container from Costa Rica. Specimens were identified morphologically as Amblyomma scutatum and then confirmed by the barcoding of the mitochondrial cytochrome c oxidase subunit 1 gene. Amblyomma scutatum is a common tick known to infest reptiles in Central America, Mexico, and Venezuela, but not in Europe. In Italy, the possibility for this tick to become endemic is unlikely because of the absence of its principal hosts. Nevertheless, this finding confirms the high risk of introducing exotic species that is linked with global commerce and therefore the need for veterinary control of shipments.


Ixodidae , Lizards , Tick Infestations , Ticks , Animals , Ixodidae/genetics , Amblyomma , Tick Infestations/epidemiology , Tick Infestations/veterinary , Italy
18.
PLoS One ; 19(4): e0296127, 2024.
Article En | MEDLINE | ID: mdl-38626020

Lyme disease is the most prevalent vector-borne infectious disease in Europe and the USA. Borrelia burgdorferi, as the causative agent of Lyme disease, is transmitted to the mammalian host during the tick blood meal. To adapt to the different encountered environments, Borrelia has adjusted the expression pattern of various, mostly outer surface proteins. The function of most B. burgdorferi outer surface proteins remains unknown. We determined the crystal structure of a previously uncharacterized B. burgdorferi outer surface protein BBK01, known to belong to the paralogous gene family 12 (PFam12) as one of its five members. PFam12 members are shown to be upregulated as the tick starts its blood meal. Structural analysis of BBK01 revealed similarity to the coiled coil domain of structural maintenance of chromosomes (SMC) protein family members, while functional studies indicated that all PFam12 members are non-specific DNA-binding proteins. The residues involved in DNA binding were identified and probed by site-directed mutagenesis. The combination of SMC-like proteins being attached to the outer membrane and exposed to the environment or located in the periplasm, as observed in the case of PFam12 members, and displaying the ability to bind DNA, represents a unique feature previously not observed in bacteria.


Borrelia burgdorferi , Lyme Disease , Ticks , Animals , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Lyme Disease/microbiology , Ticks/genetics , Membrane Proteins/metabolism , DNA/metabolism , Bacterial Outer Membrane Proteins/metabolism , Mammals/genetics
19.
PLoS One ; 19(4): e0299002, 2024.
Article En | MEDLINE | ID: mdl-38626086

Tropical theileriosis is a fatal leukemic-like disease of cattle caused by the tick-transmitted protozoan parasite Theileria annulata. The economics of cattle meat and milk production is severely affected by theileriosis in endemic areas. The hydroxynaphtoquinone buparvaquone (BPQ) is the only available drug currently used to treat clinical theileriosis, whilst BPQ resistance is emerging and spreading in endemic areas. Here, we chronically exposed T. annulata-transformed macrophages in vitro to BPQ and monitored the emergence of drug-resistant parasites. Surviving parasites revealed a significant increase in BPQ IC50 compared to the wild type parasites. Drug resistant parasites from two independent cloned lines had an identical single mutation, M128I, in the gene coding for T. annulata cytochrome B (Tacytb). This in vitro generated mutation has not been reported in resistant field isolates previously, but is reminiscent of the methionine to isoleucine mutation in atovaquone-resistant Plasmodium and Babesia. The M128I mutation did not appear to exert any deleterious effect on parasite fitness (proliferation and differentiation to merozoites). To gain insight into whether drug-resistance could have resulted from altered drug binding to TaCytB we generated in silico a 3D-model of wild type TaCytB and docked BPQ to the predicted 3D-structure. Potential binding sites cluster in four areas of the protein structure including the Q01 site. The bound drug in the Q01 site is expected to pack against an alpha helix, which included M128, suggesting that the change in amino acid in this position may alter drug-binding. The in vitro generated BPQ resistant T. annulata is a useful tool to determine the contribution of the various predicted docking sites to BPQ resistance and will also allow testing novel drugs against theileriosis for their potential to overcome BPQ resistance.


Antiprotozoal Agents , Naphthoquinones , Parasites , Theileria annulata , Theileriasis , Ticks , Animals , Cattle , Theileriasis/drug therapy , Theileriasis/parasitology , Theileria annulata/genetics , Cytochromes b/genetics , Isoleucine/pharmacology , Methionine/pharmacology , Antiprotozoal Agents/pharmacology , Mutation , Racemethionine/pharmacology , Antiparasitic Agents/pharmacology , Ticks/parasitology
20.
Emerg Med Clin North Am ; 42(2): 287-302, 2024 May.
Article En | MEDLINE | ID: mdl-38641392

Ticks are responsible for the vast majority of vector-borne illnesses in the United States. The number of reported tick-borne disease (TBD) cases has more than doubled in the past 20 years. The majority of TBD cases occur in warm weather months in individuals with recent outdoor activities in wooded areas. The risk of contracting a TBD is also highly dependent on geographic location. Between 24 and 48 hours of tick attachment is required for most disease transmission to occur. Only 50% to 70% of patients with a TBD will recall being bitten by a tick, and TBDs are often initially misdiagnosed as a viral illness. Most TBDs are easily treated when diagnosed early in their course.


Ehrlichiosis , Tick-Borne Diseases , Ticks , Animals , Humans , United States/epidemiology , Ehrlichiosis/diagnosis , Ehrlichiosis/therapy , Tick-Borne Diseases/diagnosis , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/therapy
...