Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
BMC Genomics ; 25(1): 785, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138417

RESUMEN

To reduce the use of antibiotics and chemicals in aquaculture, an edible herb, Bidens pilosa, has been selected as a multifunctional feed additive. Although there has been considerable research into the effects of B. pilosa on poultry, the wider effects of B. pilosa, particularly on the growth and gut microbiota of fish, remain largely unexplored. We aimed to investigate the interactive effects between the host on growth and the gut microbiota using transcriptomics and the gut microbiota in B. pilosa-fed tilapia. In this study, we added 0.5% and 1% B. pilosa to the diet and observed that the growth performance of tilapia significantly increased over 8 weeks of feeding. Comparative transcriptome analysis was performed on RNA sequence profiles obtained from liver and muscle tissues. Functional enrichment analysis revealed that B. pilosa regulates several pathways and genes involved in amino acid metabolism, lipid metabolism, carbohydrate metabolism, endocrine system, signal transduction, and metabolism of other amino acids. The expression of the selected growth-associated genes was validated by qRT-PCR. The qRT-PCR results indicated that B. pilosa may enhance growth performance by activating the expression of the liver igf1 and muscle igf1rb genes and inhibiting the expression of the muscle negative regulator mstnb. Both the enhancement of liver endocrine IGF1/IGF1Rb signaling and the suppression of muscle autocrine/paracrine MSTN signaling induced the expression of myogenic regulatory factors (MRFs), myod1, myog and mrf4 in muscle to promote muscle growth in tilapia. The predicted function of the gut microbiota showed several significantly different pathways that overlapped with the KEGG enrichment results of differentially expressed genes in the liver transcriptomes. This finding suggested that the gut microbiota may influence liver metabolism through the gut-liver axis in B. pilosa-fed tilapia. In conclusion, dietary B. pilosa can regulate endocrine IGF1 signaling and autocrine/paracrine MSTN signaling to activate the expression of MRFs to promote muscle growth and alter the composition of gut bacteria, which can then affect liver amino acid metabolism, carbohydrate metabolism, endocrine system, lipid metabolism, metabolism of other amino acids, and signal transduction in the host, ultimately enhancing growth performance. Our results suggest that B. pilosa has the potential to be a functional additive that can be used as an alternative to reduce antibiotic use as a growth promoter in aquaculture.


Asunto(s)
Alimentación Animal , Bidens , Microbioma Gastrointestinal , Tilapia , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Tilapia/crecimiento & desarrollo , Tilapia/microbiología , Tilapia/genética , Tilapia/metabolismo , Bidens/metabolismo , Bidens/crecimiento & desarrollo , Perfilación de la Expresión Génica , Transcriptoma , Hígado/metabolismo
2.
PLoS One ; 19(7): e0293775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046994

RESUMEN

Tilapia, a significant aquaculture species globally, relies heavily on feed for its production. While numerous studies have investigated the impact of soybean and seaweed-based diets on tilapia, a comprehensive understanding remains elusive. This review aimed at evaluating and synthesizing the existing literature on these diets' effects, focusing on growth performance, feed utilization, and gut microbiota. A systematic search of databases was conducted using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and a total of 57 studies were included in the qualitative analysis and 24 in the meta-analysis. The results indicated that soybean-based diets, at a 59.4% inclusion level improved the Specific Growth Rate (SGR) of tilapia with an effect size of -2.14 (95% CI: -2.92, -1.37; p < 0.00001; I2 = 99%) and did not improve the feed conversion rate (FCR), as the effect size was 1.80 (95% CI: 0.72, 2.89; p = 0.001; I2 = 100%). For seaweed-based diets, at a 15,9% inclusion level did not improve SGR, with an effect size of -0.74 (95% CI: -1.70, 0.22; p = 0.13; I2 = 99%), and the FCR with an effect size of -0.70 (95% CI: -1.94, 0.54; p = 0.27; I2 = 100%). Regarding the gut microbiota, was noted a lack of studies meeting the inclusion criteria for tilapia. However, findings from studies on other farmed fishes suggested that soybean and seaweed-based diets could have diverse effects on gut microbiota composition and promote the growth of beneficial microbiota. This study suggests that incorporating soybean-based diets at 59.4% inclusion can improve the SGR of tilapia. Seaweed-based diets, while not demonstrating improvement in the analyzed parameters with an inclusion level of 15.9%, have the potential to contribute to the sustainability of the aquaculture industry when incorporated at lower levels.


Asunto(s)
Alimentación Animal , Acuicultura , Microbioma Gastrointestinal , Glycine max , Algas Marinas , Tilapia , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Alimentación Animal/análisis , Tilapia/crecimiento & desarrollo , Tilapia/microbiología , Acuicultura/métodos , Dieta/veterinaria
3.
Front Immunol ; 15: 1442906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011038

RESUMEN

Various types of professional immune cells first emerge in fish and likely represent the primordial form and functions. Recent advancements revealed the direct connection between the central nervous system and the immune system in the mammalian brain. However, the specifics of brain-immune networks in the fish and the underlying mechanisms of teleost's brain against pathogen infection have not been fully elucidated. In this study, we investigated the distribution of markers representing cerebral cells associated with protection and professional lymphocytes in the seven major components of the Nile tilapia brain through RNA-Seq assay and observed the most dominant abundance in the medulla oblongata. The subsequent challenge test revealed the non-specific cytotoxic cells (NCCs) exhibited the strongest response against streptococcal infection of the brain. The presence of NCCs in the brain was then confirmed using immunofluorescence and the cytotoxic effects usually induced by NCCs under infection were determined as well. Collectively, these findings contribute significantly to comprehending the mechanism of fish neuroimmune interaction and enhancing our understanding of its evolutionary development.


Asunto(s)
Enfermedades de los Peces , Bulbo Raquídeo , Infecciones Estreptocócicas , Streptococcus agalactiae , Animales , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/inmunología , Streptococcus agalactiae/fisiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Bulbo Raquídeo/inmunología , Encéfalo/inmunología , Encéfalo/microbiología , Tilapia/inmunología , Tilapia/microbiología , Cíclidos/inmunología , Cíclidos/microbiología
4.
J Proteome Res ; 23(7): 2576-2586, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38860290

RESUMEN

The relationship between antibiotic resistance and bacterial virulence has not yet been fully explored. Here, we use Edwardsiella tarda as the research model to investigate the proteomic change upon oxytetracycline resistance (LTB4-ROTC). Compared to oxytetracycline-sensitive E. tarda (LTB4-S), LTB4-ROTC has 234 differentially expressed proteins, of which the abundance of 84 proteins is downregulated and 15 proteins are enriched to the Type III secretion system, Type VI secretion system, and flagellum pathways. Functional analysis confirms virulent phenotypes, including autoaggregation, biofilm formation, hemolysis, swimming, and swarming, are impaired in LTB4-ROTC. Furthermore, the in vivo bacterial challenge in both tilapia and zebrafish infection models suggests that the virulence of LTB4-ROTC is attenuated. Analysis of immune gene expression shows that LTB4-ROTC induces a stronger immune response in the spleen but a weaker response in the head kidney than that induced by LTB4-S, suggesting it's a potential vaccine candidate. Zebrafish and tilapia were challenged with a sublethal dose of LTB4-ROTC as a live vaccine followed by LTB4-S challenge. The relative percentage of survival of zebrafish is 60% and that of tilapia is 75% after vaccination. Thus, our study suggests that bacteria that acquire antibiotic resistance may attenuate virulence, which can be explored as a potential live vaccine to tackle bacterial infection in aquaculture.


Asunto(s)
Farmacorresistencia Bacteriana , Edwardsiella tarda , Infecciones por Enterobacteriaceae , Oxitetraciclina , Tilapia , Pez Cebra , Edwardsiella tarda/patogenicidad , Edwardsiella tarda/efectos de los fármacos , Edwardsiella tarda/genética , Animales , Oxitetraciclina/farmacología , Virulencia/efectos de los fármacos , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Tilapia/microbiología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteómica/métodos , Vacunas Bacterianas/inmunología
5.
Food Chem ; 455: 139874, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838624

RESUMEN

Molecules of natural origin often possess useful biological activities. For instance, the natural peptide Tilapia Piscidin 4 (TP4) exhibits potent antimicrobial activity against a broad spectrum of pathogens. In this study, we explored the potential application of TP4 as a food preservative, asking whether it can prevent spoilage due to microbial contamination. A preliminary in silico analysis indicated that TP4 should interact strongly with fungal cell membrane components. Hence, we tested the activity of TP4 toward Candida albicans within fruit juice and found that the addition of TP4 could abolish fungal growth. We further determined that the peptide acts via a membranolytic mechanism and displays concentration-dependent killing efficiency. In addition, we showed that TP4 inhibited growth of Rhizopus oryzae in whole fruit (tomato) samples. Based on these findings, we conclude that TP4 should be further evaluated as a potentially safe and green solution to prevent food spoilage.


Asunto(s)
Candida albicans , Conservantes de Alimentos , Rhizopus , Animales , Candida albicans/efectos de los fármacos , Rhizopus/efectos de los fármacos , Rhizopus/crecimiento & desarrollo , Conservantes de Alimentos/farmacología , Conservantes de Alimentos/química , Tilapia/microbiología , Tilapia/crecimiento & desarrollo , Proteínas de Peces/farmacología , Proteínas de Peces/química , Conservación de Alimentos/métodos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Antifúngicos/farmacología , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química
6.
Food Chem ; 455: 139950, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38917654

RESUMEN

To investigate the mechanisms of flavor formation in dry-fermented tilapia sausages, the volatiles, bacterial community, and lipid composition during fermentation were analyzed using gas chromatography-ion mobility spectrometry, 16S high throughput sequencing, and ultra-performance liquid chromatography-mass spectrometer. Pediococcus pentosaceus, Staphylococcus xylosus, and Staphylococcus carnosus became dominant bacteria during the fermentation. A total of 66 volatiles and 293 lipids (48 differential lipids) were identified. PC and PE content decreased. Aldehyde and 1-octen-3-ol content decreased. Most esters and ketones content increased during fermentation. Six metabolic pathways associated with differential lipids were identified by enrichment analysis. Glycerophospholipid metabolism was the main metabolic pathway. Correlation analysis revealed that PC and PE were precursors for volatiles, including PC 16:0/18:2 and PE 18:0/22:6. The dominant bacteria facilitate the hydrolysis of PC and PE, leading to the formation of esters and ketones. This study provides a theoretical basis for the targeted regulation of fermented sausage flavors.


Asunto(s)
Fermentación , Aromatizantes , Lipidómica , Productos de la Carne , Tilapia , Compuestos Orgánicos Volátiles , Animales , Productos de la Carne/análisis , Productos de la Carne/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Aromatizantes/metabolismo , Aromatizantes/química , Tilapia/metabolismo , Tilapia/microbiología , Tilapia/crecimiento & desarrollo , Gusto , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Productos Pesqueros/análisis , Productos Pesqueros/microbiología
7.
Int J Food Microbiol ; 418: 110717, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38701665

RESUMEN

Fish sold at retail markets are often contaminated with harmful bacterial pathogens, posing significant health risks. Despite the growing aquaculture industry in Bangladesh to meet high demand, little attention has been paid to ensuring the safety of fish. The objective of this study was to evaluate the microbiological quality of tilapia and pangas fish sold in retail markets across Dhaka city, Bangladesh. Specifically, the study aimed to compare the quality of fish from traditional wet markets and modern supermarkets, as well as fish samples collected during morning and evening hours. A total of 500 raw cut-fish samples (250 tilapia and 250 pangas) were collected at the point of sale from 32 wet markets and 25 supermarkets. All samples were tested for Escherichia coli, extended-spectrum ß-lactamase-producing E. coli (ESBL-Ec), along with the foodborne pathogens Salmonella, Shigella, Vibrio, and Cryptosporidium spp. Bacterial isolates were characterized using antibiotic susceptibility tests (AST) and the presence of common virulence and antibiotic-resistant genes. Fish samples from retail markets had higher prevalence of tested bacteria including E. coli (92 %), V. cholerae (62 %), ESBL-Ec (48 %), and Salmonella spp. (24 %). There was a significant difference in the prevalence of E. coli (97 % vs. 71 %), ESBL-Ec (58 % vs. 8 %) and Salmonella spp. (28 % vs. 8 %) on the wet market samples compared to supermarket samples (p < 0.005). The mean concentration of E. coli on fish from the wet market was 3.0 ± 0.9 log10 CFU/g, while that from supermarkets was 1.6 ± 0.9 log10 CFU/g. The mean concentration of ESBL-Ec in fish from wet markets and supermarkets were 2.3 ± 0.8 log10 CFU/g and 1.6 ± 0.5 log10 CFU/g, respectively. AST revealed that 46 % of E. coli isolates were multi-drug resistant (MDR), while 4 %, 2 % and 5 % of E. coli, Salmonella spp. and Vibrio spp. isolates, respectively, were resistant to carbapenems. At least 3 % of total E. coli isolates were found to be diarrheagenic, while 40 % of Salmonella isolates harbored pathogenic genes (stn, bcfC, ssaQ, avrA and sodC1), and none of the V. cholerae isolates harbored ctxA and tcpA. Our research shows that raw-cut fish samples from retail markets are contaminated with pathogenic and antibiotic-resistant bacteria, which could be a significant food safety concern. Public health interventions should be implemented to improve food safety and hygiene practices in the retail fish markets.


Asunto(s)
Farmacorresistencia Bacteriana , Alimentos Marinos , Tilapia , Animales , Tilapia/microbiología , Bangladesh/epidemiología , Alimentos Marinos/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Prevalencia , Salmonella/aislamiento & purificación , Salmonella/efectos de los fármacos , Salmonella/genética , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Cryptosporidium/aislamiento & purificación , Cryptosporidium/genética , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Vibrio/aislamiento & purificación , Vibrio/genética , Vibrio/efectos de los fármacos , Peces/microbiología , Shigella/aislamiento & purificación , Shigella/genética , Shigella/efectos de los fármacos
8.
Food Res Int ; 187: 114456, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763686

RESUMEN

Single starter can hardly elevate the gel property of fermented freshwater fish sausage. In this work, in order to improve the physical properties of tilapia sausage, two newly isolated strains of lactic acid bacteria (LAB), Latilactobacillus sakei and Pediococcus acidilactici were used for cooperative fermentation of tilapia sausage, followed by the revelation of their formation mechanisms during cooperative fermentation and their improvement mechanisms after comparison with natural fermentation. Both strains, especially L. sakei possessed good growth, acidification ability, and salt tolerance. The gel strength, hardness, springiness, chewiness, whiteness, acidification, and total plate count significantly elevated during cooperative fermentation with starters. Pediococcus, Acinetobacter, and Macrococcus were abundant before fermentation, while Latilactobacillus quickly occupied the dominant position after fermentation for 18-45 h with the relative abundance over 51.5 %. The influence of each genus on the physical properties was calculated through the time-dimension and group-dimension correlation networks. The results suggested that the increase of Latilactobacillus due to the good growth and metabolism of L. sakei contributed the most to the formation and improvement of gel strength, texture properties, color, acidification, and food safety of tilapia sausage after cooperative fermentation. This study provides a novel analysis method to quantitatively evaluate the microbial contribution on the changes of various properties. The cooperative fermentation of LAB can be used for tilapia sausage fermentation to improve its physical properties.


Asunto(s)
Fermentación , Productos Pesqueros , Microbiología de Alimentos , Tilapia , Animales , Tilapia/microbiología , Productos Pesqueros/microbiología , Concentración de Iones de Hidrógeno , Latilactobacillus sakei/metabolismo , Lactobacillales/metabolismo , Lactobacillales/aislamiento & purificación , Lactobacillales/crecimiento & desarrollo , Pediococcus acidilactici/metabolismo , Alimentos Fermentados/microbiología , Productos de la Carne/microbiología
9.
J Aquat Anim Health ; 36(2): 192-202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38632692

RESUMEN

OBJECTIVE: Acute mortality with clinical symptoms of streptococcal-like infections was observed in red tilapia Oreochromis sp. cultured in floating cages in Prachin Buri Province, Thailand, during May 2023. Herein, we identified an emerging pathogen, Lactococcus garvieae, as the etiological agent. METHODS: After bacterial isolation from the brain and kidney of diseased fish, identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the VITEK 2 system. Sequencing of the 16S ribosomal RNA (rRNA) gene and phylogenetic analysis were applied to confirm bacterial species. Antimicrobial susceptibility testing was conducted. Histopathological findings in the brain, kidney, spleen, liver, and heart were evaluated. RESULT: From 20 fish samples, L. garvieae (n = 18 isolates) and Streptococcus agalactiae (n = 2 isolates) were identified. A phylogenetic tree of the 16S rRNA gene revealed that Thai isolates of either L. garvieae or S. agalactiae clustered with reference piscine isolates from intercontinental locations. Our isolates showed resistance against quinolones while being susceptible to other antimicrobials. Histopathological changes demonstrated severe septicemic conditions, with more invasive lesions-especially in the heart and liver-being apparent in L. garvieae-infected fish compared to S. agalactiae-infected fish. CONCLUSION: This study represents the first reported outbreak of L. garvieae with a concurrent S. agalactiae infection in farmed red tilapia in Thailand.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Grampositivas , Lactococcus , Filogenia , Infecciones Estreptocócicas , Streptococcus agalactiae , Animales , Streptococcus agalactiae/aislamiento & purificación , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/genética , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/epidemiología , Tailandia/epidemiología , Lactococcus/aislamiento & purificación , Lactococcus/clasificación , Lactococcus/genética , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/epidemiología , Infecciones por Bacterias Grampositivas/veterinaria , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/epidemiología , Tilapia/microbiología , Cíclidos , ARN Ribosómico 16S/genética
10.
Food Chem ; 449: 139239, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604034

RESUMEN

Single starter can hardly improve the volatile flavor of fermented fish surimi. In this study, the changes of volatile compounds (VCs) and microbial composition during cooperative fermentation of Latilactobacillus sakei and Pediococcus acidilactici were studied by headspace solid-phase microextraction gas chromatography-mass spectrometry and 16S rRNA gene high-throughput sequencing. During cooperative fermentation, most VCs and the abundance of Latilactobacillus and Lactococcus significantly increased, while Pediococcus, Acinetobacter, and Macrococcus obviously decreased. After evaluation of correlation and abundance of each genus, Latilactobacillus and Lactococcus possessed the highest influence on the formation of volatile flavor during cooperative fermentation. Compared with the natural fermentation, cooperative fermentation with starters significantly enhanced most of pleasant core VCs (odor activity value≥1), but inhibited the production of trimethylamine and methanethiol, mainly resulting from the absolutely highest influence of Latilactobacillus. Cooperative fermentation of starters is an effective method to improve the volatile flavor in the fermented tilapia surimi.


Asunto(s)
Fermentación , Productos Pesqueros , Latilactobacillus sakei , Pediococcus acidilactici , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Animales , Pediococcus acidilactici/metabolismo , Productos Pesqueros/análisis , Productos Pesqueros/microbiología , Latilactobacillus sakei/metabolismo , Tilapia/microbiología , Tilapia/metabolismo , Tilapia/crecimiento & desarrollo , Gusto , Aromatizantes/metabolismo , Aromatizantes/química , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Cromatografía de Gases y Espectrometría de Masas
11.
J Fish Dis ; 47(2): e13884, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37929301

RESUMEN

The mucus layers of fish serve as the main interface between the organism and the environment. They play an important biological and ecological role. The current study focuses on Nile tilapia epidermal mucus reared under different commercial feeds (coded A and B) and environments (biofloc technology and earthen pond systems). Crude protein levels in feed A and B were 30% and 28%, respectively. Water parameters in all culturing systems were suitable for tilapia throughout the study period. The antimicrobial potency of tilapia (n = 5 from each) epidermal mucus was tested in vitro against human and fish pathogenic strains viz. Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Francisella noatunensis, and Aeromonas hydrophila. To determine the antimicrobial activity, zones of inhibition (ZOI) were measured in millimetres and compared with two antibiotics (chloramphenicol and ciprofloxacin). SDS-PAGE analysis was performed on skin mucus samples of tilapia to determine protein quantity and size (molecular weight). Results of tilapia skin mucus (crude and aqueous) revealed a strong antibacterial effect against all the selected pathogenic strains. However, variation has been observed in the mucus potency and ZOI values between the biofloc and pond tilapia mucus. The crude mucus of tilapia fed on feed A and cultured in the pond exhibited strong antibacterial effects and high ZOI values compared to the mucus of biofloc tilapia, aqueous mucus extracts and positive control chloramphenicol (antibiotic). The SDS-PAGE results showed that the high molecular weight proteins were found in the collected epidermal mucus of BFT-B (240 kDa) and EP-B (230 kDa). Several peptides in fish skin mucus may play a crucial role in the protection of fish against disease-causing pathogens. Thus, it can be utilized in the human and veterinary sectors as an 'antimicrobial' for treating various bacterial infections.


Asunto(s)
Antiinfecciosos , Cíclidos , Enfermedades de los Peces , Tilapia , Animales , Alimentación Animal/análisis , Antibacterianos/farmacología , Acuicultura/métodos , Cloranfenicol/análisis , Dieta/veterinaria , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Moco/química , Estanques , Tilapia/microbiología
12.
J Fish Dis ; 47(3): e13904, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38069492

RESUMEN

Vibrio parahaemolyticus (V. parahaemolyticus) is a major pathogen that causes substantial losses in the marine fishery. With the emergence of antibiotic resistance, vaccines have become the most effective approach against V. parahaemolyticus infection. Adhesion factors on the cell surface are pivotal in the colonization and pathogenesis of V. parahaemolyticus within the host, highlighting their potential as vaccine candidates. This study aims to assess the immunogenicity and potential of recombinant V. parahaemolyticus MAM7 (rMAM7) as a vaccine candidate. Initially, we cloned and purified the MAM7 protein of V. parahaemolyticus. Moreover, after 4 weeks of vaccination, the fish were challenged with V. parahaemolyticus. rMAM7 demonstrated a certain protective effect. Immunological analysis revealed that rMAM7 immunization-induced antibody production and significantly increased acid phosphatase (ACP) and alkaline phosphatase (AKP) activity in hybrid tilapia. Furthermore, serum bactericidal tests demonstrated a lower bacterial survival rate in the rMAM7 group compared to PBS and rTrxa. qRT-PCR results indicated that rMAM7 significantly upregulated CD4, CD8 and IgM gene expression, suggesting the induction of Th1 and Th2 responses in hybrid tilapia. Overall, these findings highlight the potential application of MAM7 from V. parahaemolyticus in the development of protein vaccines.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Tilapia , Vacunas , Vibriosis , Vibrio parahaemolyticus , Animales , Tilapia/microbiología , Vibrio parahaemolyticus/fisiología , Enfermedades de los Peces/microbiología , Vibriosis/prevención & control , Vibriosis/veterinaria , Inmunidad
13.
PeerJ ; 11: e16213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842054

RESUMEN

Tilapia species are among the most cultivated fish worldwide due to their biological advantages but face several challenges, including environmental impact and disease outbreaks. Feed additives, such as probiotics, prebiotics, and other microorganisms, have emerged as strategies to protect against pathogens and promote immune system activation and other host responses, with consequent reductions in antibiotic use. Because these additives also influence tilapia's gut microbiota and positively affect the tilapia culture, we assume it is a flexible annex organ capable of being subject to significant modifications without affecting the biological performance of the host. Therefore, we evaluated the effect of probiotics and other additives ingested by tilapia on its gut microbiota through a meta-analysis of several bioprojects studying the tilapia gut microbiota exposed to feed additives (probiotic, prebiotic, biofloc). A total of 221 tilapia gut microbiota samples from 14 bioprojects were evaluated. Alpha and beta diversity metrics showed no differentiation patterns in relation to the control group, either comparing additives as a group or individually. Results also revealed a control group with a wide dispersion pattern even when these fish did not receive additives. After concatenating the information, the tilapia gut core microbiota was represented by four enriched phyla including Proteobacteria (31%), Fusobacteria (23%), Actinobacteria (19%), and Firmicutes (16%), and seven minor phyla Planctomycetes (1%), Chlamydiae (1%), Chloroflexi (1%), Cyanobacteria (1%), Spirochaetes (1%), Deinococcus Thermus (1%), and Verrucomicrobia (1%). Finally, results suggest that the tilapia gut microbiota is a dynamic microbial community that can plastically respond to feed additives exposure with the potential to influence its taxonomic profile allowing a considerable optimal range of variation, probably guaranteeing its physiological function under different circumstances.


Asunto(s)
Microbiota , Probióticos , Tilapia , Animales , Tilapia/microbiología , Prebióticos , Probióticos/farmacología , Bacterias , Acuicultura
14.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37881004

RESUMEN

Aeromonas hydrophila is a major pathogenic species that causes mass mortality in various freshwater fish species including hybrid tilapia, the main fish species in Israeli aquaculture. Our hypothesis was that A. hydrophila infection may cause changes in the microbiota composition of fish internal organs, and therefore we aimed to study the effect of A. hydrophila infection by injection or by net handling on the microbiota compositions of fish intestine, spleen, and liver. Significant differences in the microbiota composition were found between the internal organs of the diseased and the healthy fish in both experimental setups. Fusobacteriota was the most dominant phylum in the microbiota of healthy fish (∼70%, liver). Cetobacterium was the most abundant genus and relatively more abundant in healthy, compared to diseased fish. When A. hydrophila was inoculated by injection, it was the only pathogenic genus in the spleen and liver of the diseased fish. However, in the handling experiment, Vibrio was also detected in the diseased fish, demonstrating coinfection interactions. Based on these experiments, we conclude that indeed, A. hydrophila infection in tilapia causes changes in the microbiota composition of fish internal organs, and that fish net handling may trigger bacterial infection in freshwater aquaculture.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Microbiota , Tilapia , Animales , Tilapia/microbiología , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Aeromonas hydrophila
15.
J Fish Dis ; 46(12): 1391-1401, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37723600

RESUMEN

Streptococcus iniae is a bacterial pathogen that causes streptococcosis, leading to significant losses in fish aquaculture globally. This study reported a newly developed probe-based quantitative polymerase chain reaction (qPCR) method for the detection of S. iniae. The primers and probes were designed to target the lactate oxidase gene. The optimized method demonstrated a detection limit of 20 copies per reaction and was specific to S. iniae, as evidenced by no cross-reactivity when assayed against genetic materials extracted from 23 known aquatic animal pathogens, and fish samples infected with Streptococcus agalactiae or Streptococcus dysgalactiae. To validate the newly developed qPCR protocol with field samples, fish specimens were systematically investigated following the Food and Agriculture Organization of the United Nations & Network of Aquaculture Centres in Asia-Pacific three diagnostic levels approach, which integrated basic and advanced techniques for disease diagnosis, including observation of gross signs (level I), bacterial isolation (level II), qPCR and 16S rDNA sequencing (level III). The result showed that 7/7 affected farms (three Asian seabass farms and four tilapia farms) experiencing clinical signs of streptococcosis were diagnosed positive for S. iniae. qPCR assays using DNA extracted directly from fish tissue detected S. iniae in 11 out of 36 fish samples (30.6%), while 24 out of 36 samples (66.7%) tested positive after an enrichment step, including apparently healthy fish from affected farms. Bacterial isolation of S. iniae was only successful in a proportion of clinically diseased fish but not in healthy-looking fish from the same farm. Overall, the newly developed qPCR protocol combined with enrichment would be a useful tool for the diagnosis and surveillance of S. iniae infections in fish populations, thereby aiding in the disease control and prevention.


Asunto(s)
Enfermedades de los Peces , Infecciones Estreptocócicas , Tilapia , Animales , Streptococcus iniae , Enfermedades de los Peces/microbiología , Streptococcus agalactiae/genética , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Tilapia/microbiología
16.
J Fish Dis ; 46(9): 977-986, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37294673

RESUMEN

Streptococcosis disease caused by Streptococcus agalactiae (Group B Streptococcus, GBS) results in a huge economic loss of tilapia culture. It is urgent to find new antimicrobial agents against streptococcosis. In this study, 20 medicinal plants were evaluated in vitro and in vivo to obtain medicinal plants and potential bioactive compounds against GBS infection. The results showed that the ethanol extracts of 20 medicinal plants had low or no antibacterial properties in vitro, with a minimal inhibitory concentration ≥256 mg/L. Interestingly, in vivo tests showed that 7 medicinal plants could significantly inhibit GBS infection in tilapia, and Sophora flavescens (SF) had the strongest anti-GBS activity in tilapia, reaching 92.68%. SF could significantly reduce the bacterial loads of GBS in different tissues (liver, spleen and brain) of tilapia after treated with different tested concentrations (12.5, 25.0, 50.0 and 100.0 mg/kg) for 24 h. Moreover, 50 mg/kg SF could significantly improve the survival rate of GBS-infected tilapia by inhibiting GBS replication. Furthermore, the expression of antioxidant gene cat, immune-related gene c-type lysozyme and anti-inflammatory cytokine il-10 in liver tissue of GBS-infected tilapia significantly increased after treated with SF for 24 h. Meanwhile, SF significantly reduced the expression of immune-related gene myd88 and pro-inflammatory cytokines il-8 and il-1ß in liver tissue of GBS-infected tilapia. The negative and positive models of UPLC-QE-MS, respectively, identified 27 and 57 components of SF. The major components of SF extract in the negative model were α, α-trehalose, DL-malic acid, D- (-)-fructose and xanthohumol, while in the positive model were oxymatrine, formononetin, (-)-maackiain and xanthohumol. Interestingly, oxymatrine and xanthohumol could significantly inhibit GBS infection in tilapia. Taken together, these results suggest that SF can inhibit GBS infection in tilapia, and it has potential for the development of anti-GBS agents.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Plantas Medicinales , Infecciones Estreptocócicas , Tilapia , Animales , Sophora flavescens , Streptococcus agalactiae/genética , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tilapia/microbiología , Citocinas , Cíclidos/microbiología
17.
Microb Pathog ; 174: 105951, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36528324

RESUMEN

Bacterial consortium containing two bacterial strains such as Paenibacillus polymyxa HGA4C and Bacillus licheniformis HGA8B incorporated in the diet of Oreochromis niloticus at a concentration of 1 × 106 CFU g-1 (PB1) and 1 × 108 CFU g-1 (PB2) revealed the probiotic potentials of the bacterial combination. The probiotic feed enhanced the growth performance, digestive enzymes, and antioxidant enzymes in the liver and intestine. Probiotic mediated growth enhancement was further substantiated by the up-regulation of genes such as GHR-1, GHR-2, IGF-1, and IGF-2 and the up-regulation of immune-related genes viz. TLR-2, IL-10, and TNF-α were also significantly modulated by probiotics supplementation. The intestinal MUC 2 gene expression revealed the mucosal remodification and the disease resistance of the fish challenged with Aeromonas hydrophila (MTCC-1739) was improved by the probiotic supplementation. Based on these results the new probiotic supplementation feed can be possibly marketed to help aquaculture farmers to alleviate many of the problems associated with fish farming.


Asunto(s)
Bacillus licheniformis , Enfermedades de los Peces , Paenibacillus polymyxa , Probióticos , Animales , Alimentación Animal/análisis , Bacillus licheniformis/genética , Bacterias , Dieta , Resistencia a la Enfermedad , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Paenibacillus polymyxa/genética , Transcriptoma , Tilapia/microbiología
18.
Fish Shellfish Immunol ; 131: 929-938, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36343851

RESUMEN

α-Melanocyte-stimulating hormone (α-MSH) is a well-studied neuropeptide controlling skin and hair color. Besides, numerous immunomodulation roles of α-MSH were recorded in humans and mice. However, the regulatory effects of α-MSH in teleost immunity haven't been well elucidated. In this study, several precursor molecules of α-MSH (POMCs) and its receptors (MCRs) in Nile tilapia (Oreochromis niloticus) were characterized, and their expression characteristics and specific functions on antibacterial immunity were determined. Overall, POMCs and MCRs were principally detected in the brain, skin, and liver, and were remarkably promoted post Streptococcus agalactiae infection. However, tiny POMCs and MCRs were observed in tilapia immune organs (head kidney and spleen) or lymphocytes, and no evident immunomodulation effect was detected in vitro. Moreover, the in vivo challenge experiments revealed that α-MSH protects tilapia from bacterial infection by regulating responses in the brain and intestine. This study lays theoretical data for a deeper comprehension of the immunomodulation mechanisms of teleost α-MSH and the evolutional process of the vertebrate melanocortin system.


Asunto(s)
Enfermedades de los Peces , Inmunomodulación , Infecciones Estreptocócicas , Tilapia , alfa-MSH , Animales , alfa-MSH/metabolismo , Secuencia de Aminoácidos , Antibacterianos , Cíclidos/inmunología , Cíclidos/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/química , Regulación de la Expresión Génica , Inmunomodulación/fisiología , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/fisiología , Tilapia/inmunología , Tilapia/microbiología
19.
J Fish Dis ; 45(12): 1857-1871, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36057979

RESUMEN

In recent years, Egyptian tilapia aquaculture has experienced mortality episodes during the summer months. The causative agents responsible for such mortalities have not been clearly identified. A total of 400 fish specimens were collected from affected tilapia farms within five Egyptian governorates. A total of 344 bacterial isolates were identified from the examined fish specimens. Bacterial isolates were grouped into seven genera based on API 20E results. The most prevalent pathogens were Aeromonas spp. (42%), Vibrio spp. (21%), and Streptococcus agalactiae (14.5%). Other emerging infections like, Plesiomonas shigelloides (10%), Staphyloccocus spp. (8%), Pseudomonas oryzihabitans, and Acinetobacter lwoffii (2.3%) were also detected. Sequence analysis of the 16S ribosomal RNA bacterial gene of some isolates, confirmed the phenotypic identification results. The analysis of antibiotic resistance genes revealed the presence of aac(6')-Ib-cr (35.7%), blaCTX gene (23.8%), qnrS (19%), ampC (16.7%), floR (14.3%), sul1, tetA, and van.C1 (2.4%) genes in some isolates. The antimicrobia resistance gene, qac was reported in 46% of screened isolates. Bacterial strains showed variable virulence genes profiles. Aeromonas spp. harboured (act, gcat, aerA, lip, fla, and ser) genes. All Vibrio spp. possessed the hlyA gene, while cylE, hylB, and lmb genes, were detected in S. agalactiae strains. Our findings point to the possible role of the identified bacterial pathogens in tilapia summer mortality syndrome and highlight the risk of the irresponsible use of antibiotics on antimicrobial resistance in aquaculture.


Asunto(s)
Aeromonas , Cíclidos , Enfermedades de los Peces , Tilapia , Animales , Cíclidos/microbiología , Enfermedades de los Peces/microbiología , Streptococcus agalactiae , Antibacterianos/farmacología , Aeromonas/genética , Tilapia/microbiología
20.
Braz J Biol ; 84: e261574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35703630

RESUMEN

In current study, different feeding levels of Moringa oleifera formulated diet was compared to analyze the growth performance, feed conversion ratio, feed conversion efficiency and gut microbiology of Oreochromis niloticus. The study was comprised of four treatment groups including 4%, 8% and 12% Moringa oleifera and one control group which was devoid of Moringa leaves. The experimental trial was conducted at the Zoology laboratory of Pakistan Institute of Applied and Social Sciences, (PIASS) Kasur. The physicochemical parameters of water such as temperature, dissolve oxygen, pH, total dissolved solids and salinity in all aquaria were found non-significantly different from each other. In control condition T1, the average weight gain was 14.89±16.90a grams, while average length gain was 11.52±7.444a cm. However, the total viable count on Eosin methylene blue was 7.4×107, 5.8×107 on Tryptic soy agar and 5.8×107on Nutrient agar. In T2, the average weight gain was 16.22±16.09b grams and average length gain was 12.97±7.79b cm. The total viable count on Eosin methylene blue was 7×107, 5.5×107 on Tryptic soy agar and 5.8×107on Nutrient agar. In T3, the average weight gain was 37.88±27.43c grams, while the average length gain was recorded as 16.48±12.56c cm. However, the total viable count for treatment 3 was 6.4×10 on Eosin methylene blue, 4.8×107 on Tryptic soy agar and 5.2×107on Nutrient agar. In T4, the average weight gain was 44.22±31.67d grams, while the average length gain was 15.25±10.49d cm. The total viable count was 4.3×107on Eosin methylene blue, 3.1×107 on Tryptic soy agar and 3.8×107 on Nutrient agar. The effect of Moringa oleifera on the growth of Oreochromis niloticus was found to be significant and 12% Moringa extract showed maximum length and weight gain and minimum feed conversion ratio with the least microbial count in fish intestine.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Moringa oleifera , Tilapia , Agar/análisis , Animales , Dieta/veterinaria , Eosina Amarillenta-(YS)/análisis , Azul de Metileno/análisis , Tilapia/crecimiento & desarrollo , Tilapia/microbiología , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA