Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.875
1.
Virulence ; 15(1): 2356692, 2024 Dec.
Article En | MEDLINE | ID: mdl-38797966

The increasing antibiotic resistance poses a significant global health challenge, threatening our ability to combat infectious diseases. The phenomenon of collateral sensitivity, whereby resistance to one antibiotic is accompanied by increased sensitivity to another, offers potential avenues for novel therapeutic interventions against infections unresponsive to classical treatments. In this study, we elucidate the emergence of tobramycin (TOB)-resistant small colony variants (SCVs) due to mutations in the hemL gene, which render S. Typhimurium more susceptible to nitrofurantoin (NIT). Mechanistic studies demonstrate that the collateral sensitivity in TOB-resistant S. Typhimurium SCVs primarily stems from disruptions in haem biosynthesis. This leads to dysfunction in the electron transport chain (ETC) and redox imbalance, ultimately inducing lethal accumulation of reactive oxygen species (ROS). Additionally, the upregulation of nfsA/B expressions facilitates the conversion of NIT prodrug into its active form, promoting ROS-mediated bacterial killing and contributing to this collateral sensitivity pattern. Importantly, alternative NIT therapy demonstrates a significant reduction of bacterial load by more than 2.24-log10 cfu/g in the murine thigh infection and colitis models. Our findings corroborate the collateral sensitivity of S. Typhimurium to nitrofurans as a consequence of evolving resistance to aminoglycosides. This provides a promising approach for treating infections due to aminoglycoside-resistant strains.


Anti-Bacterial Agents , Nitrofurantoin , Salmonella typhimurium , Tobramycin , Nitrofurantoin/pharmacology , Animals , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Tobramycin/pharmacology , Mice , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Mutation , Female , Reactive Oxygen Species/metabolism , Salmonella Infections/microbiology , Salmonella Infections/drug therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Sci Adv ; 10(22): eadl5576, 2024 May 31.
Article En | MEDLINE | ID: mdl-38820163

Despite great progress in the field, chronic Pseudomonas aeruginosa (Pa) infections remain a major cause of mortality in patients with cystic fibrosis (pwCF), necessitating treatment with antibiotics. Pf is a filamentous bacteriophage produced by Pa and acts as a structural element in Pa biofilms. Pf presence has been associated with antibiotic resistance and poor outcomes in pwCF, although the underlying mechanisms are unclear. We have investigated how Pf and sputum biopolymers impede antibiotic diffusion using pwCF sputum and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf in sputum reduces the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.


Anti-Bacterial Agents , Pseudomonas aeruginosa , Sputum , Static Electricity , Sputum/microbiology , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/virology , Humans , Cystic Fibrosis/metabolism , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Tobramycin/pharmacology , Diffusion , Biofilms/drug effects , Bacteriophages
3.
BMC Vet Res ; 20(1): 218, 2024 May 23.
Article En | MEDLINE | ID: mdl-38778405

BACKGROUND: Commercial tobramycin ophthalmic solution is frequently used empirically to treat ocular disorders in equines, despite being primarily formulated for use in humans. It has been noted that tobramycin MIC90 concentration (minimal inhibitory concentration to 90% of microbial growth) rapidly declined following topical administration. It is hypothesized that adjustment of the pH of the empirically used tobramycin ophthalmic solution -prepared for human use- with the pH of the tears of donkeys, could increase the bioavailability of the drug and subsequently improve its penetration to the aqueous humor. Therefore, this study aimed to evaluate the impact of pH adjustment of the empirically used tobramycin ophthalmic solution on MIC90 concentration in tears and aqueous humor of donkeys (Equus asinus). The study was conducted on six (n = 6) clinically healthy donkeys. In each donkey, one eye was randomly selected to receive 210 µg tobramycin of the commercial tobramycin (CT) and used as a positive control (C group, n = 6). The other eye (treated eye) received 210 µg of the modified tobramycin ophthalmic solution (MT) (T group, n = 6). Tears and aqueous humor samples were collected 5-, 10-, 15-, 30- min, and 1-, 2-, 4-, and 6 h post-instillation. RESULTS: Modifying the pH of the empirically used commercial tobramycin ophthalmic solution in donkeys at a pH of 8.26 enhanced the drug's bioavailability. The MIC90 of the most hazardous bacteria isolated from equines' eyes such as Pseudomonas aeruginosa (MIC90 = 128 µg/ml) and Staphylococcus aureus (MIC90 = 256 µg/ml) was covered early (5 min post-instillation) and over a longer period in donkey tears (239-342 min) and aqueous humor (238-330 min) with the modified tobramycin solution. CONCLUSIONS: Adjustment of the pH of the commercial tobramycin ophthalmic solution, empirically used by veterinarians to treat donkeys' ophthalmic infections at a pH of 8.26, isotonic with the donkeys' tears pH, resulting in higher concentrations of tobramycin in tears and aqueous humor for a longer time.


Anti-Bacterial Agents , Aqueous Humor , Equidae , Microbial Sensitivity Tests , Ophthalmic Solutions , Tears , Tobramycin , Animals , Tobramycin/pharmacology , Tobramycin/administration & dosage , Tobramycin/pharmacokinetics , Aqueous Humor/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Tears/drug effects , Hydrogen-Ion Concentration
4.
BMC Pulm Med ; 24(1): 213, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698403

INTRODUCTION: Ventilator-associated pneumonia (VAP) presents a significant challenge in intensive care units (ICUs). Nebulized antibiotics, particularly colistin and tobramycin, are commonly prescribed for VAP patients. However, the appropriateness of using inhaled antibiotics for VAP remains a subject of debate among experts. This study aims to provide updated insights on the efficacy of adjunctive inhaled colistin and tobramycin through a comprehensive systematic review and meta-analysis. METHODS: A thorough search was conducted in MEDLINE, EMBASE, LILACS, COCHRANE Central, and clinical trials databases ( www. CLINICALTRIALS: gov ) from inception to June 2023. Randomized controlled trials (RCTs) meeting specific inclusion criteria were selected for analysis. These criteria included mechanically ventilated patients diagnosed with VAP, intervention with inhaled Colistin and Tobramycin compared to intravenous antibiotics, and reported outcomes such as clinical cure, microbiological eradication, mortality, or adverse events. RESULTS: The initial search yielded 106 records, from which only seven RCTs fulfilled the predefined inclusion criteria. The meta-analysis revealed a higher likelihood of achieving both clinical and microbiological cure in the groups receiving tobramycin or colistin compared to the control group. The relative risk (RR) for clinical cure was 1.23 (95% CI: 1.04, 1.45), and for microbiological cure, it was 1.64 (95% CI: 1.31, 2.06). However, there were no significant differences in mortality or the probability of adverse events between the groups. CONCLUSION: Adjunctive inhaled tobramycin or colistin may have a positive impact on the clinical and microbiological cure rates of VAP. However, the overall quality of evidence is low, indicating a high level of uncertainty. These findings underscore the need for further rigorous and well-designed studies to enhance the quality of evidence and provide more robust guidance for clinical decision-making in the management of VAP.


Anti-Bacterial Agents , Colistin , Pneumonia, Ventilator-Associated , Tobramycin , Humans , Pneumonia, Ventilator-Associated/drug therapy , Tobramycin/administration & dosage , Colistin/administration & dosage , Administration, Inhalation , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Randomized Controlled Trials as Topic , Intensive Care Units , Treatment Outcome , Respiration, Artificial
5.
Appl Microbiol Biotechnol ; 108(1): 304, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38643456

Tobramycin is an essential and extensively used broad-spectrum aminoglycoside antibiotic obtained through alkaline hydrolysis of carbamoyltobramycin, one of the fermentation products of Streptoalloteichus tenebrarius. To simplify the composition of fermentation products from industrial strain, the main byproduct apramycin was blocked by gene disruption and constructed a mutant mainly producing carbamoyltobramycin. The generation of antibiotics is significantly affected by the secondary metabolism of actinomycetes which could be controlled by modifying the pathway-specific regulatory proteins within the cluster. Within the tobramycin biosynthesis cluster, a transcriptional regulatory factor TobR belonging to the Lrp/AsnC family was identified. Based on the sequence and structural characteristics, tobR might encode a pathway-specific transcriptional regulatory factor during biosynthesis. Knockout and overexpression strains of tobR were constructed to investigate its role in carbamoyltobramycin production. Results showed that knockout of TobR increased carbamoyltobramycin biosynthesis by 22.35%, whereas its overexpression decreased carbamoyltobramycin production by 10.23%. In vitro electrophoretic mobility shift assay (EMSA) experiments confirmed that TobR interacts with DNA at the adjacent tobO promoter position. Strains overexpressing tobO with ermEp* promoter exhibited 36.36% increase, and tobO with kasOp* promoter exhibited 22.84% increase in carbamoyltobramycin titer. When the overexpressing of tobO and the knockout of tobR were combined, the production of carbamoyltobramycin was further enhanced. In the shake-flask fermentation, the titer reached 3.76 g/L, which was 42.42% higher than that of starting strain. Understanding the role of Lrp/AsnC family transcription regulators would be useful for other antibiotic biosynthesis in other actinomycetes. KEY POINTS: • The transcriptional regulator TobR belonging to the Lrp/AsnC family was identified.  • An oxygenase TobO was identified within the tobramycin biosynthesis cluster. • TobO and TobR have significant effects on the synthesis of carbamoyltobramycin.


Actinobacteria , Actinomycetales , Metabolic Engineering , Anti-Bacterial Agents , Tobramycin
6.
Transpl Int ; 37: 12579, 2024.
Article En | MEDLINE | ID: mdl-38605938

Inhaled tobramycin treatment has been associated with nephrotoxicity in some case reports, but limited data are available about serum levels and its possible systemic absorption in lung transplant recipients (LTR). We conducted a single-center, observational and retrospective study of all adult (>18 years old) LTR treated with inhaled tobramycin for at least 3 days between June 2019 and February 2022. Trough serum levels were collected and >2 µg/mL was considered a high drug level. The primary outcome assessed the presence of detectable trough levels, while the secondary outcome focused on the occurrence of acute kidney injury (AKI) in individuals with detectable trough levels. Thirty-four patients, with a median age of 60 years, were enrolled. The primary indications for treatment were donor bronchial aspirate bacterial isolation (18 patients) and tracheobronchitis (15 patients). In total, 28 patients (82%) exhibited detectable serum levels, with 9 (26%) presenting high levels (>2 µg/mL). Furthermore, 9 patients (26%) developed acute kidney injury during the treatment course. Median trough tobramycin levels were significantly elevated in invasively mechanically ventilated patients compared to non-ventilated individuals (2.5 µg/mL vs. 0.48 µg/mL) (p < 0.001). Inhaled tobramycin administration in LTRs, particularly in those requiring invasive mechanical ventilation, may result in substantial systemic absorption.


Acute Kidney Injury , Tobramycin , Adult , Humans , Middle Aged , Adolescent , Tobramycin/adverse effects , Anti-Bacterial Agents/adverse effects , Cohort Studies , Retrospective Studies , Transplant Recipients , Acute Kidney Injury/chemically induced , Lung , Administration, Inhalation
7.
Int J Antimicrob Agents ; 63(6): 107161, 2024 Jun.
Article En | MEDLINE | ID: mdl-38561094

OBJECTIVE: Hypermutable Pseudomonas aeruginosa strains are highly prevalent in chronic lung infections of patients with cystic fibrosis (CF). Acute exacerbations of these infections have limited treatment options. This study aimed to investigate inhaled aztreonam and tobramycin against clinical hypermutable P. aeruginosa strains using the CDC dynamic in vitro biofilm reactor (CBR), mechanism-based mathematical modelling (MBM) and genomic studies. METHODS: Two CF multidrug-resistant strains were investigated in a 168 h CBR (n = 2 biological replicates). Regimens were inhaled aztreonam (75 mg 8-hourly) and tobramycin (300 mg 12-hourly) in monotherapies and combination. The simulated pharmacokinetic profiles of aztreonam and tobramycin (t1/2 = 3 h) were based on published lung fluid concentrations in patients with CF. Total viable and resistant counts were determined for planktonic and biofilm bacteria. MBM of total and resistant bacterial counts and whole genome sequencing were completed. RESULTS: Both isolates showed reproducible bacterial regrowth and resistance amplification for the monotherapies by 168 h. The combination performed synergistically, with minimal resistant subpopulations compared to the respective monotherapies at 168 h. Mechanistic synergy appropriately described the antibacterial effects of the combination regimen in the MBM. Genomic analysis of colonies recovered from monotherapy regimens indicated noncanonical resistance mechanisms were likely responsible for treatment failure. CONCLUSION: The combination of aztreonam and tobramycin was required to suppress the regrowth and resistance of planktonic and biofilm bacteria in all biological replicates of both hypermutable multidrug-resistant P. aeruginosa CF isolates. The developed MBM could be utilised for future investigations of this promising inhaled combination.


Anti-Bacterial Agents , Aztreonam , Biofilms , Cystic Fibrosis , Drug Synergism , Pseudomonas Infections , Pseudomonas aeruginosa , Tobramycin , Whole Genome Sequencing , Tobramycin/administration & dosage , Tobramycin/pharmacology , Aztreonam/pharmacology , Aztreonam/administration & dosage , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Biofilms/drug effects , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Administration, Inhalation , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Models, Theoretical , Drug Therapy, Combination
8.
BMC Ophthalmol ; 24(1): 197, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671418

OBJECTIVE: Evaluation of clinical efficacy and safety of tobramycin/dexamethasone eye ointment in treating persistent corneal epithelial dysfunction (PED) after cataract surgery. METHODS: 26 cases diagnosed as PED after cataract surgery accept the tobramycin/dexamethasone ophthalmic ointment and intense pulse light treatment in the Xiamen University of Xiamen eye center between September 2016 and April 2022 were retrospectively analyzed, mainly including clinical manifestations, characteristics of morphological changes imaged by in vivo confocal microscopy, meibomian glands infrared photography, lipid layer thickness (LLT), management and therapeutic effects. RESULTS: There were 26 eyes, include 8(35%) males and 15(65%) females with an average age of 69.6 ± 5.2 years(50 to 78 years). The mean hospitalization time was (18.4 ± 7.5) days after cataract surgery. Twenty patients had meibomian gland dysfunction. Infrared photography revealed varying loss in the meibomian glands, with a mean score of 3.8 ± 1.2 for gland loss. The mean LLT was 61.6 ± 8.4 nm. After treatment, 20 patients were cured, and 3 received amniotic membrane transplantation. After treatment, the uncorrected visual acuity (UCVA) and best-corrected vision activity (BCVA) improved (P < 0.001), and there was no significant difference in intraocular pressure (IOP) before and after treatment (P > 0.05). CONCLUSIONS: The early manifestation of PED after surgery is punctate staining of the corneal epithelium. Tobramycin and dexamethasone eye ointment bandages have a good repair effect. The meibomian gland massage combined with intense pulse light treatment can effectively shorten the course of the disease.


Dexamethasone , Epithelium, Corneal , Glucocorticoids , Tobramycin , Visual Acuity , Humans , Female , Male , Aged , Middle Aged , Dexamethasone/therapeutic use , Dexamethasone/administration & dosage , Retrospective Studies , Epithelium, Corneal/pathology , Visual Acuity/physiology , Tobramycin/therapeutic use , Glucocorticoids/therapeutic use , Cataract Extraction/adverse effects , Corneal Diseases/etiology , Corneal Diseases/therapy , Corneal Diseases/diagnosis , Corneal Diseases/physiopathology , Anti-Bacterial Agents/therapeutic use , Microscopy, Confocal , Postoperative Complications , Ointments
9.
Microb Pathog ; 191: 106663, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679246

Quorum sensing (QS) has a central role in biofilm lifestyle and antimicrobial resistance, and disrupting these signaling pathways is a promising strategy to control bacterial pathogenicity and virulence. In this study, the efficacy of three structurally related benzaldehydes (4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde)) in disrupting the las and pqs systems of Pseudomonas aeruginosa was investigated using bioreporter strains and computational simulations. Additionally, these benzaldehydes were combined with tobramycin and ciprofloxacin antibiotics to evaluate their ability to increase antibiotic efficacy in preventing and eradicating P. aeruginosa biofilms. To this end, the total biomass, metabolic activity and culturability of the biofilm cells were determined. In vitro assays results indicated that the aromatic aldehydes have potential to inhibit the las and pqs systems by > 80 %. Molecular docking studies supported these findings, revealing the aldehydes binding in the same pocket as the natural ligands or receptor proteins (LasR, PQSA, PQSE, PQSR). Benzaldehydes were shown to act as virulence factor attenuators, with vanillin achieving a 48 % reduction in pyocyanin production. The benzaldehyde-tobramycin combination led not only to a 60 % reduction in biomass production but also to a 90 % reduction in the metabolic activity of established biofilms. A similar result was observed when benzaldehydes were combined with ciprofloxacin. 4-Hydroxybenzaldehyde demonstrated relevant action in increasing biofilm susceptibility to ciprofloxacin, resulting in a 65 % reduction in biomass. This study discloses, for the first time, that the benzaldehydes studied are potent QS inhibitors and also enhancers of antibiotics antibiofilm activity against P. aeruginosa.


Anti-Bacterial Agents , Bacterial Proteins , Benzaldehydes , Biofilms , Ciprofloxacin , Molecular Docking Simulation , Pseudomonas aeruginosa , Quorum Sensing , Tobramycin , Biofilms/drug effects , Quorum Sensing/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Benzaldehydes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tobramycin/pharmacology , Ciprofloxacin/pharmacology , Bacterial Proteins/metabolism , Virulence Factors/metabolism , Microbial Sensitivity Tests , Drug Synergism , Pyocyanine/metabolism , Trans-Activators/metabolism , Trans-Activators/antagonists & inhibitors
10.
Nat Commun ; 15(1): 2333, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38485998

Antibiotic heteroresistance is a phenotype in which a susceptible bacterial population includes a small subpopulation of cells that are more resistant than the main population. Such resistance can arise by tandem amplification of DNA regions containing resistance genes that in single copy are not sufficient to confer resistance. However, tandem amplifications often carry fitness costs, manifested as reduced growth rates. Here, we investigated if and how these fitness costs can be genetically ameliorated. We evolved four clinical isolates of three bacterial species that show heteroresistance to tobramycin, gentamicin and tetracyclines at increasing antibiotic concentrations above the minimal inhibitory concentration (MIC) of the main susceptible population. This led to a rapid enrichment of resistant cells with up to an 80-fold increase in the resistance gene copy number, an increased MIC, and severely reduced growth rates. When further evolved in the presence of antibiotic, these strains acquired compensatory resistance mutations and showed a reduction in copy number while maintaining high-level resistance. A deterministic model indicated that the loss of amplified units was driven mainly by their fitness costs and that the compensatory mutations did not affect the loss rate of the gene amplifications. Our findings suggest that heteroresistance mediated by copy number changes can facilitate and precede the evolution towards stable resistance.


Anti-Bacterial Agents , Tobramycin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Gene Amplification , Gentamicins , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
11.
Nat Commun ; 15(1): 2584, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519499

Mutations in mexZ, encoding a negative regulator of the expression of the mexXY efflux pump genes, are frequently acquired by Pseudomonas aeruginosa at early stages of lung infection. Although traditionally related to resistance to the first-line drug tobramycin, mexZ mutations are associated with low-level aminoglycoside resistance when determined in the laboratory, suggesting that their selection during infection may not be necessarily, or only, related to tobramycin therapy. Here, we show that mexZ-mutated bacteria tend to accumulate inside the epithelial barrier of a human airway infection model, thus colonising the epithelium while being protected against diverse antibiotics. This phenotype is mediated by overexpression of lecA, a quorum sensing-controlled gene, encoding a lectin involved in P. aeruginosa tissue invasiveness. We find that lecA overexpression is caused by a disrupted equilibrium between the overproduced MexXY and another efflux pump, MexAB, which extrudes quorum sensing signals. Our results indicate that mexZ mutations affect the expression of quorum sensing-regulated pathways, thus promoting tissue invasiveness and protecting bacteria from the action of antibiotics within patients, something unnoticeable using standard laboratory tests.


Anti-Bacterial Agents , Pseudomonas Infections , Humans , Anti-Bacterial Agents/therapeutic use , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Tobramycin/pharmacology , Tobramycin/metabolism , Mutation , Bacterial Proteins/metabolism , Microbial Sensitivity Tests
12.
NPJ Biofilms Microbiomes ; 10(1): 16, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429317

Pseudomonas aeruginosa is an important cause of lower respiratory tract infections, such as ventilator-associated bacterial pneumonia (VABP). Using inhaled antibiotics to treat VABP can achieve high drug concentrations at the infection site while minimizing systemic toxicities. Despite the theoretical advantages, clinical trials have failed to show a benefit for inhaled antibiotic therapy in treating VABP. A potential reason for this discordance is the presence of biofilm-embedded bacteria in lower respiratory tract infections. Drug selection and dosing are often based on data from bacteria grown planktonically. In the present study, an in vitro air-liquid interface pharmacokinetic/pharmacodynamic biofilm model was optimized to evaluate the activity of simulated epithelial lining fluid exposures of inhaled and intravenous doses of polymyxin B and tobramycin against two P. aeruginosa strains. Antibiotic activity was also determined against the P. aeruginosa strains grown planktonically. Our study revealed that inhaled antibiotic exposures were more active than their intravenous counterparts across biofilm and planktonic populations. Inhaled exposures of polymyxin B and tobramycin exhibited comparable activity against planktonic P. aeruginosa. Although inhaled polymyxin B exposures were initially more active against P. aeruginosa biofilms (through 6 h), tobramycin was more active by the end of the experiment (48 h). Together, these data slightly favor the use of inhaled tobramycin for VABP caused by biofilm-forming P. aeruginosa that are not resistant to either antibiotic. The optimized in vitro air-liquid interface pharmacokinetic/pharmacodynamic biofilm model may be beneficial for the development of novel anti-biofilm agents or to optimize antibiotic dosing for infections such as VABP.


Pseudomonas Infections , Respiratory Tract Infections , Humans , Anti-Bacterial Agents , Pseudomonas aeruginosa , Polymyxin B/pharmacology , Tobramycin/pharmacology , Pseudomonas Infections/drug therapy , Biofilms
13.
Arch Microbiol ; 206(4): 154, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38478112

Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.


Ciprofloxacin , Klebsiella pneumoniae , Humans , Ciprofloxacin/pharmacology , Klebsiella pneumoniae/genetics , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Anti-Bacterial Agents/pharmacology , Aminoglycosides/pharmacology , Tobramycin/pharmacology , Microbial Sensitivity Tests
14.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L574-L588, 2024 May 01.
Article En | MEDLINE | ID: mdl-38440830

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.


Cystic Fibrosis , Pseudomonas Infections , Pseudomonas aeruginosa , Tobramycin , Cystic Fibrosis/microbiology , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis/drug therapy , Animals , Tobramycin/pharmacology , Humans , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/pathology , Mice , Mice, Inbred C57BL , Interleukin-8/metabolism , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/microbiology , Lung/pathology , Lung/metabolism , Lung/microbiology , Lung/drug effects , Neutrophils/metabolism , Neutrophils/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Bronchoalveolar Lavage Fluid
15.
Pediatr Pulmonol ; 59(6): 1740-1746, 2024 Jun.
Article En | MEDLINE | ID: mdl-38501330

BACKGROUND: People with cystic fibrosis (PwCF) are frequently hospitalized for treatment of pulmonary exacerbation. The Cystic Fibrosis Foundation Pulmonary Guidelines support the use of intravenous aminoglycosides with therapeutic drug monitoring for the treatment of pulmonary exacerbation due to Pseudomonas aeruginosa. Serum intravenous tobramycin concentrations are commonly collected by peripheral venipuncture (PV). Discomfort associated with collection of samples by PV prompts collection via PICC, but the accuracy of intravenous tobramycin serum levels collected by PICC has not been documented in adult PwCF. The primary study objective was to evaluate the difference between intravenous tobramycin serum levels collected by PV and PICC in adult PwCF. METHODS: The authors conducted a prospective case-control study of adult PwCF admitted to University of Utah Health for a pulmonary exacerbation receiving tobramycin by a single lumen PICC. The authors compared tobramycin peak and random serum levels collected by PV and PICC using a detailed flush and waste protocol. RESULTS: The authors analyzed a total of 19 patients with peripheral and PICC samples. The mean tobramycin peak collected by PV (27.2 mcg/mL) was similar to the mean peak collected by PICC (26.9 mcg/mL) (paired samples Wilcoxon signed-rank test, p = .94). The correlation coefficient was 0.88 (95% CI = 0.85-0.91, p < .001). CONCLUSION: Tobramycin serum samples collected by PICC appear to be similar in value to PV collections. Collecting aminoglycoside levels by PICC rather than PV may reduce patient discomfort and improve quality of life. Additional multicenter studies are needed to confirm these results.


Anti-Bacterial Agents , Cystic Fibrosis , Pseudomonas Infections , Tobramycin , Humans , Cystic Fibrosis/blood , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Male , Female , Prospective Studies , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Tobramycin/blood , Tobramycin/administration & dosage , Adult , Case-Control Studies , Pseudomonas Infections/drug therapy , Pseudomonas Infections/blood , Pseudomonas Infections/complications , Catheterization, Peripheral , Young Adult , Drug Monitoring/methods , Aminoglycosides/blood , Aminoglycosides/administration & dosage , Aminoglycosides/therapeutic use , Adolescent , Pseudomonas aeruginosa/drug effects
16.
Future Microbiol ; 19: 317-334, 2024 03.
Article En | MEDLINE | ID: mdl-38440893

Aims: This work describes the encapsulation of ceftazidime and tobramycin in zein nanoparticles (ZNPs) and the characterization of their antibacterial and antibiofilm activities against Gram-negative bacteria. Materials & methods: ZNPs were synthesized by nanoprecipitation. Cytotoxicity was assessed by MTT assay and antibacterial and antibiofilm assays were performed by broth microdilution and violet crystal techniques. Results: ZNPs containing ceftazidime (CAZ-ZNPs) and tobramycin (TOB-ZNPs) showed drug encapsulation and thermal stability. Encapsulation of the drugs reduced their cytotoxicity 9-25-fold. Antibacterial activity, inhibition and eradication of biofilm by CAZ-ZNPs and TOB-ZNPs were observed. There was potentiation when CAZ-ZNPs and TOB-ZNPs were combined. Conclusion: CAZ-ZNPs and TOB-ZNPs present ideal physical characteristics for in vivo studies of antibacterial and antibiofilm activities.


A nanotechnology product was developed to treat diseases caused by bacteria. This prototype showed the ideal characteristics and could be administered by ingestion through the mouth, aspiration through the nose or injection into the veins. The prototype did not harm or kill human cells. It killed the bacteria and prevented the formation of a type of protection against antibiotics that bacteria can produce, called a biofilm. Nanotechnology products are a promising alternative for the treatment of bacterial infections.


Nanoparticles , Zein , Ceftazidime/pharmacology , Tobramycin/pharmacology , Zein/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria , Microbial Sensitivity Tests
17.
Antimicrob Agents Chemother ; 68(4): e0153923, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38470195

Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.


Amikacin , Peptides, Cyclic , Pseudomonas Infections , Animals , Mice , Amikacin/pharmacology , Pseudomonas aeruginosa , Membrane Potentials , Anti-Bacterial Agents/pharmacology , Aminoglycosides/pharmacology , Tobramycin/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests
18.
Angew Chem Int Ed Engl ; 63(21): e202316678, 2024 May 21.
Article En | MEDLINE | ID: mdl-38500260

Electrochemical aptamer-based sensors support the high-frequency, real-time monitoring of molecules-of-interest in vivo. Achieving this requires methods for correcting the sensor drift seen during in vivo placements. While this correction ensures EAB sensor measurements remain accurate, as drift progresses it reduces the signal-to-noise ratio and precision. Here, we show that enzymatic cleavage of the sensor's target-recognizing DNA aptamer is a major source of this signal loss. To demonstrate this, we deployed a tobramycin-detecting EAB sensor analog fabricated with the DNase-resistant "xenonucleic acid" 2'O-methyl-RNA in a live rat. In contrast to the sensor employing the equivalent DNA aptamer, the 2'O-methyl-RNA aptamer sensor lost very little signal and had improved signal-to-noise. We further characterized the EAB sensor drift using unstructured DNA or 2'O-methyl-RNA oligonucleotides. While the two devices drift similarly in vitro in whole blood, the in vivo drift of the 2'O-methyl-RNA-employing device is less compared to the DNA-employing device. Studies of the electron transfer kinetics suggested that the greater drift of the latter sensor arises due to enzymatic DNA degradation. These findings, coupled with advances in the selection of aptamers employing XNA, suggest a means of improving EAB sensor stability when they are used to perform molecular monitoring in the living body.


Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods , Animals , Rats , Tobramycin/analysis
19.
Biomater Sci ; 12(9): 2331-2340, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38488889

Pseudomonas aeruginosa (PA) is one of the most common multidrug-resistant pathogens found in clinics, often manifesting as biofilms. However, due to the emergence of superbugs in hospitals and the overuse of antibiotics, the prevention and treatment of PA infections have become increasingly challenging. Utilizing DNA nanostructures for packaging and delivering antibiotics presents an intervention strategy with significant potential. Nevertheless, construction of functional DNA nanostructures with multiple functionalities and enhanced stability in physiological settings remains challenging. In this study, the authors propose a magnesium-free assembly method that utilizes tobramycin (Tob) as a mediator to assemble DNA nanostructures, allowing for the functionalization of DNA nanostructures by combining DNA and antibiotics. Additionally, our study incorporates maleimide-modified DNA into the nanostructures to act as a targeting moiety specifically directed towards the pili of PA. The targeting ability of the constructed functional DNA nanostructure significantly improves the local concentration of Tob, thereby reducing the side effects of antibiotics. Our results demonstrate the successful construction of a maleimide-decorated Tob/DNA nanotube (NTTob-Mal) for the treatment of PA-infected lung inflammation. The stability and biocompatibility of NTTob-Mal are confirmed, highlighting its potential for clinical applications. Furthermore, its specificity in recognizing and adhering to PA has been validated. In vitro experiments have shown its efficacy in inhibiting PA biofilm formation, and in a murine model, NTTob-Mal has exhibited significant therapeutic effectiveness against PA-induced pneumonia. In summary, the proposed antibiotic drug-mediated DNA nanostructure assembly approach holds promise as a novel strategy for targeted treatment of PA infections.


Anti-Bacterial Agents , DNA , Nanostructures , Pneumonia , Pseudomonas Infections , Pseudomonas aeruginosa , Tobramycin , Pseudomonas aeruginosa/drug effects , Tobramycin/pharmacology , Tobramycin/administration & dosage , Tobramycin/chemistry , Animals , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Nanostructures/chemistry , Nanostructures/administration & dosage , Mice , DNA/chemistry , DNA/administration & dosage , Pneumonia/drug therapy , Pneumonia/microbiology , Humans , Biofilms/drug effects , Microbial Sensitivity Tests
20.
Am J Sports Med ; 52(4): 956-960, 2024 Mar.
Article En | MEDLINE | ID: mdl-38305039

BACKGROUND: Approximately 100,000 anterior cruciate ligament (ACL) reconstructions (ACLRs) occur annually in the United States, and postoperative surgical-site infection is a relatively rare but devastating complication, often leading to graft failure or septic arthritis of the knee, necessitating repeat surgery. Wrapping allografts in vancomycin-soaked gauze has been adopted as a common sterilization technique in the operating room to reduce surgical-site infection; however, identifying effective alternatives to vancomycin has not been extensively pursued. HYPOTHESIS: Tobramycin would be as effective as vancomycin in reducing the concentrations of Staphylococcus epidermidis bacteria on tendon allografts. STUDY DESIGN: Controlled laboratory study. METHODS: S. epidermidis strain ATCC 12228 was inoculated onto the human cadaveric gracilis tendon. The tendons were wrapped in sterile gauze saturated with tobramycin or vancomycin at various experimental concentrations. Bacteria remaining on the tendon were dislodged, serially diluted, and plated for colony counting. Statistical analysis was performed utilizing 2-way analysis of variance testing. Results were considered statistically significant when P < .05. RESULTS: Vancomycin (P = .0001) and tobramycin (P < .0001) reduced bacterial concentration. Tobramycin was found to produce a statistically significant reduction in bacterial concentration at concentrations as low as 0.1 mg/mL (P < .0001 and P = .01 at 10 and 20 minutes), while vancomycin produced a statistically significant reduction at a concentration as low as 2.5 mg/mL (P < .0001 at both 10 and 20 minutes). CONCLUSION: This study demonstrates that tobramycin is as effective as vancomycin in bacterial concentration reduction but can achieve this reduction level at lower doses. Further studies clarifying the biomechanical and cytotoxic effects of tobramycin on tendon tissue are indicated to solidify its use as a clinical alternative to vancomycin in ACLR. CLINICAL RELEVANCE: These results will begin establishing tobramycin as an alternative to vancomycin in ACL graft decontamination. Because of relatively frequent shortages of vancomycin, establishing tobramycin as an alternative agent is a useful option for the orthopaedic surgeon.


Anterior Cruciate Ligament Injuries , Vancomycin , Humans , Vancomycin/pharmacology , Anterior Cruciate Ligament/surgery , Tobramycin/pharmacology , Decontamination , Anterior Cruciate Ligament Injuries/surgery , Surgical Wound Infection/prevention & control , Allografts
...