Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
GM Crops Food ; 15(1): 67-84, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38507337

RESUMEN

The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing ShF5H1 under the control of the C4H (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that ShF5H1 overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the ShF5H1 overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.


Asunto(s)
Lignina , Saccharum , Lignina/química , Lignina/metabolismo , Saccharum/genética , Saccharum/química , Saccharum/metabolismo , Oxigenasas de Función Mixta/metabolismo , Transcinamato 4-Monooxigenasa/metabolismo , Etanol/metabolismo
2.
Plant Mol Biol ; 101(3): 235-255, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31254267

RESUMEN

KEY MESSAGE: The core set of biosynthetic genes potentially involved in developmental lignification was identified in the model C4 grass Setaria viridis. Lignin has been recognized as a major recalcitrant factor negatively affecting the processing of plant biomass into bioproducts. However, the efficient manipulation of lignin deposition in order to generate optimized crops for the biorefinery requires a fundamental knowledge of several aspects of lignin metabolism, including regulation, biosynthesis and polymerization. The current availability of an annotated genome for the model grass Setaria viridis allows the genome-wide characterization of genes involved in the metabolic pathway leading to the production of monolignols, the main building blocks of lignin. Here we performed a comprehensive study of monolignol biosynthetic genes as an initial step into the characterization of lignin metabolism in S. viridis. A total of 56 genes encoding bona fide enzymes catalyzing the consecutive ten steps of the monolignol biosynthetic pathway were identified in the S. viridis genome. A combination of comparative phylogenetic studies, high-throughput expression analysis and quantitative RT-PCR analysis was further employed to identify the family members potentially involved in developmental lignification. Accordingly, 14 genes clustered with genes from closely related species with a known function in lignification and showed an expression pattern that correlates with lignin deposition. These genes were considered the "core lignin toolbox" responsible for the constitutive, developmental lignification in S. viridis. These results provide the basis for further understanding lignin deposition in C4 grasses and will ultimately allow the validation of biotechnological strategies to produce crops with enhanced processing properties.


Asunto(s)
Lignina/metabolismo , Poaceae/metabolismo , Biomasa , Vías Biosintéticas , Coenzima A Ligasas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Funciones de Verosimilitud , Metiltransferasas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Filogenia , Plantas Modificadas Genéticamente/metabolismo , Transcinamato 4-Monooxigenasa/metabolismo
3.
J Agric Food Chem ; 63(19): 4902-13, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25921651

RESUMEN

Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin.


Asunto(s)
Ácido Clorogénico/metabolismo , Lípidos/biosíntesis , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Vías Biosintéticas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/enzimología , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Transcinamato 4-Monooxigenasa/genética , Transcinamato 4-Monooxigenasa/metabolismo
4.
PLoS One ; 8(7): e69105, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922685

RESUMEN

Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.


Asunto(s)
Cinamatos/farmacología , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Lignina/biosíntesis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Benzoatos/farmacología , Biomasa , Lignina/química , Peroxidasas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/enzimología , Plantones/efectos de los fármacos , Plantones/metabolismo , Glycine max/efectos de los fármacos , Transcinamato 4-Monooxigenasa/metabolismo
5.
Genet Mol Res ; 12(3): 2618-24, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23479147

RESUMEN

The study of gene expression in plants is fundamental, and understanding the molecular mechanisms involved in important biological processes, such as biochemical pathways or signaling that are used or manipulated in improvement programs, are key for the production of high-quality soybean seeds. Reports related to gene expression of lignin in seeds are scarce in the literature. We studied the expression of the phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, 4-hydroxycinnamate 3-hydroxylase, and cinnamyl alcohol dehydrogenase genes involved in lignin biosynthesis during the development of soybean (Glycine max L. Merrill) seeds. As the endogenous control, the eukaryotic elongation factor 1-beta gene was used in two biological replicates performed in triplicate. Relative quantitative expression of these genes during the R4, R5, R6, and R7 development stages was analyzed. Real-time polymerase chain reaction was used for the gene expression study. The analyses were carried out in an ABI PRISM 7500 thermocycler using the comparative Ct method and SYBR Green to detect amplification. The seed samples at the R4 stage were chosen as calibrators. Increased expression of the cinnamate-4-hydroxylase and PAL genes occurred in soybean seeds at the R5 and R6 development stages. The cinnamyl alcohol dehydrogenase gene was expressed during the final development phases of soybean seeds. In low-lignin soybean cultivars, the higher expression of the PAL gene occurs at development stages R6 and R7. Activation of the genes involved in the lignin biosynthesis pathway occurs at the beginning of soybean seed development.


Asunto(s)
Genes de Plantas , Glycine max/metabolismo , Lignina/biosíntesis , Semillas/metabolismo , Transcripción Genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/genética , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Semillas/crecimiento & desarrollo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Transcinamato 4-Monooxigenasa/genética , Transcinamato 4-Monooxigenasa/metabolismo
6.
J Plant Physiol ; 168(14): 1627-33, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21489652

RESUMEN

The allelopathic effect of caffeic acid was tested on root growth, phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities, hydrogen peroxide (H(2)O(2)) accumulation, lignin content and monomeric composition of soybean (Glycine max) roots. We found that exogenously applied caffeic acid inhibited root growth, decreased the PAL activity and H(2)O(2) content and increased the soluble and cell wall-bound POD activities. The p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) monomers and total lignin (H+G+S) increased in the caffeic acid-exposed roots. When applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), caffeic acid equalized the inhibitory effect of PIP, whereas the application of methylene dioxocinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL) plus caffeic acid decreased lignin production. These results indicate that exogenously applied caffeic acid can be channeled into the phenylpropanoid pathway via the 4CL reaction, resulting in an increase of lignin monomers that solidify the cell wall and inhibit root growth.


Asunto(s)
Antioxidantes/farmacología , Ácidos Cafeicos/farmacología , Glycine max/efectos de los fármacos , Lignina/metabolismo , Benzoatos/farmacología , Pared Celular/enzimología , Pared Celular/metabolismo , Cinamatos/farmacología , Coenzima A Ligasas/antagonistas & inhibidores , Coenzima A Ligasas/metabolismo , Ácidos Cumáricos/farmacología , Inhibidores Enzimáticos/farmacología , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Lignina/análisis , Peroxidasa/efectos de los fármacos , Peroxidasa/metabolismo , Fenilanina Amoníaco-Liasa/efectos de los fármacos , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Glycine max/enzimología , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Transcinamato 4-Monooxigenasa/antagonistas & inhibidores , Transcinamato 4-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA