Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.609
1.
PLoS One ; 19(4): e0297847, 2024.
Article En | MEDLINE | ID: mdl-38635533

The uterine muscular layer, or myometrium, undergoes profound changes in global gene expression during its progression from a quiescent state during pregnancy to a contractile state at the onset of labor. In this study, we investigate the role of SOX family transcription factors in myometrial cells and provide evidence for the role of SOX4 in regulating labor-associated genes. We show that Sox4 has elevated expression in the murine myometrium during a term laboring process and in two mouse models of preterm labor. Additionally, SOX4 differentially affects labor-associated gene promoter activity in cooperation with activator protein 1 (AP-1) dimers. SOX4 exerted no effect on the Gja1 promoter; a JUND-specific activation effect at the Fos promoter; a positive activation effect on the Mmp11 promoter with the AP-1 dimers; and surprisingly, we noted that the reporter expression of the Ptgs2 promoter in the presence of JUND and FOSL2 was repressed by the addition of SOX4. Our data indicate SOX4 may play a diverse role in regulating gene expression in the laboring myometrium in cooperation with AP-1 factors. This study enhances our current understanding of the regulatory network that governs the transcriptional changes associated with the onset of labor and highlights a new molecular player that may contribute to the labor transcriptional program.


Labor, Obstetric , Myometrium , Animals , Female , Mice , Pregnancy , Labor, Obstetric/genetics , Labor, Obstetric/metabolism , Myometrium/metabolism , Promoter Regions, Genetic , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Uterus/metabolism
2.
Sci Adv ; 10(14): eadl5012, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38569033

The ß-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the global COVID-19 pandemic. Coronaviral Envelope (E) proteins are pentameric viroporins that play essential roles in assembly, release, and pathogenesis. We developed a nondisruptive tagging strategy for SARS-CoV-2 E and find that, at steady state, it localizes to the Golgi and to lysosomes. We identify sequences in E, conserved across Coronaviridae, responsible for endoplasmic reticulum-to-Golgi export, and relate this activity to interaction with COP-II via SEC24. Using proximity biotinylation, we identify an ADP ribosylation factor 1/adaptor protein-1 (ARFRP1/AP-1)-dependent pathway allowing Golgi-to-lysosome trafficking of E. We identify sequences in E that bind AP-1, are conserved across ß-coronaviruses, and allow E to be trafficked from Golgi to lysosomes. We show that E acts to deacidify lysosomes and, by developing a trans-complementation assay for SARS-CoV-2 structural proteins, that lysosomal delivery of E and its viroporin activity is necessary for efficient viral replication and release.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Viral Envelope Proteins/metabolism , Transcription Factor AP-1/metabolism , Pandemics , Virus Replication , Lysosomes/metabolism , ADP-Ribosylation Factors/metabolism
3.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38578286

The AP-1 adaptor complex is found in all eukaryotes, but it has been implicated in different pathways in different organisms. To look directly at AP-1 function, we generated stably transduced HeLa cells coexpressing tagged AP-1 and various tagged membrane proteins. Live cell imaging showed that AP-1 is recruited onto tubular carriers trafficking from the Golgi apparatus to the plasma membrane, as well as onto transferrin-containing early/recycling endosomes. Analysis of single AP-1 vesicles showed that they are a heterogeneous population, which starts to sequester cargo 30 min after exit from the ER. Vesicle capture showed that AP-1 vesicles contain transmembrane proteins found at the TGN and early/recycling endosomes, as well as lysosomal hydrolases, but very little of the anterograde adaptor GGA2. Together, our results support a model in which AP-1 retrieves proteins from post-Golgi compartments back to the TGN, analogous to COPI's role in the early secretory pathway. We propose that this is the function of AP-1 in all eukaryotes.


Golgi Apparatus , Membrane Proteins , Protein Transport , Transcription Factor AP-1 , Humans , Adaptor Proteins, Vesicular Transport/metabolism , Cell Membrane/metabolism , Endosomes/genetics , Endosomes/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , HeLa Cells , Membrane Proteins/metabolism , trans-Golgi Network/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
4.
Proc Natl Acad Sci U S A ; 121(18): e2404188121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38657045

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.


Carcinoma, Hepatocellular , Fos-Related Antigen-2 , Liver Neoplasms , Proto-Oncogene Proteins c-fos , Proto-Oncogene Proteins c-jun , Proto-Oncogene Proteins c-myc , Transcription Factor AP-1 , Animals , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-jun/metabolism , Fos-Related Antigen-2/metabolism , Fos-Related Antigen-2/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Hepatocytes/metabolism , Protein Multimerization , Gene Expression Regulation, Neoplastic , Mice, Transgenic
5.
Environ Toxicol ; 39(6): 3500-3511, 2024 Jun.
Article En | MEDLINE | ID: mdl-38456238

Urban Particulate Matter (UPM) induces skin aging and inflammatory responses by regulating skin cells through the transient receptor potential vanilloid 1 (TRPV1). Although oleic acid, an unsaturated free fatty acid (FFA), has some functional activities, its effect on UPM-induced skin damage has not been elucidated. Here, we investigated signaling pathways on how oleic acid is involved in attenuating UPM induced cell damage. UPM treatment increased XRE-promoter luciferase activity and increased translocation of AhR to the nucleus, resulting in the upregulation of CYP1A1 gene. However, oleic acid treatment attenuated the UPM effects on AhR signaling. Furthermore, while UPM induced activation of TRPV1 and MAPKs signaling which activated the downstream molecules NFκB and AP-1, these effects were reduced by cotreatment with oleic acid. UPM-dependent generation of reactive oxygen species (ROS) and reduction of cellular proliferation were also attenuated by the treatment of oleic acid. These data reveal that cell damage induced by UPM treatment occurs through AhR signaling and TRPV1 activation which in turn activates ERK and JNK, ultimately inducing NFκB and AP-1 activation. These effects were reduced by the cotreatment of oleic acid on HaCaT cells. These suggest that oleic acid reduces UPM-induced cell damage through inhibiting both the AhR signaling and activation of TRPV1 and its downstream molecules, leading to a reduction of pro-inflammatory cytokine and recovery of cell proliferation.


Air Pollutants , Oleic Acid , Particulate Matter , Reactive Oxygen Species , Receptors, Aryl Hydrocarbon , Signal Transduction , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Particulate Matter/toxicity , Oleic Acid/pharmacology , Oleic Acid/toxicity , Humans , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/drug effects , Air Pollutants/toxicity , Reactive Oxygen Species/metabolism , Cell Line , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , NF-kappa B/metabolism , HaCaT Cells , Cell Proliferation/drug effects , Transcription Factor AP-1/metabolism
6.
JCI Insight ; 9(5)2024 Mar 08.
Article En | MEDLINE | ID: mdl-38456508

IL-33 is a cytokine central to type 2 immune pathology in chronic airway disease. This cytokine is abundantly expressed in the respiratory epithelium and increased in disease, but how expression is regulated is undefined. Here we show that increased IL33 expression occurs from multiple noncanonical promoters in human chronic obstructive pulmonary disease (COPD), and it facilitates production of alternatively spliced isoforms in airway cells. We found that phorbol 12-myristate 13-acetate (PMA) can activate IL33 promoters through protein kinase C in primary airway cells and lines. Transcription factor (TF) binding arrays combined with RNA interference identified activator protein (AP) TFs as regulators of baseline and induced IL33 promoter activity. ATAC-Seq and ChIP-PCR identified chromatin accessibility and differential TF binding as additional control points for transcription from noncanonical promoters. In support of a role for these TFs in COPD pathogenesis, we found that AP-2 (TFAP2A, TFAP2C) and AP-1 (FOS and JUN) family members are upregulated in human COPD specimens. This study implicates integrative and pioneer TFs in regulating IL33 promoters and alternative splicing in human airway basal cells. Our work reveals a potentially novel approach for targeting IL-33 in development of therapeutics for COPD.


Interleukin-33 , Pulmonary Disease, Chronic Obstructive , Humans , Interleukin-33/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-jun/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
7.
Biochemistry ; 63(6): 767-776, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38439718

Interferon regulatory factor 4 (IRF4) is a crucial transcription factor that plays a vital role in lymphocyte development, including in the fate-determining steps in terminal differentiation. It is also implicated in the development of lymphoid tumors such as multiple myeloma and adult T-cell leukemia. IRF4 can form a homodimer and multiple heterocomplexes with other transcription factors such as purine-rich box1 and activator protein 1. Each protein complex binds to specific DNA sequences to regulate a distinct set of genes. However, the precise relationship among these complex formations remains unclear. Herein, we investigated the abilities of IRF4 proteins with functional mutations in the IRF-association domain and autoinhibitory region to form complexes using luciferase reporter assays. The assays allowed us to selectively assess the activity of each complex. Our results revealed that certain IRF-association domain mutants, previously known to have impaired heterocomplex formation, maintained or even enhanced homodimer activity. This discrepancy suggests that the mutated amino acid residues selectively influence homodimer activity. Conversely, a phosphomimetic serine mutation in the autoinhibitory region displayed strong activating effects in all complexes. Furthermore, we observed that partner proteins involved in heterocomplex formation could disrupt the activity of the homodimer, suggesting a potential competition between homocomplexes and heterocomplexes. Our findings provide new insights into the mechanistic function of IRF4.


Gene Expression Regulation , Interferon Regulatory Factors , Base Sequence , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mutation , Transcription Factor AP-1/metabolism , Humans , HEK293 Cells
8.
Int J Biol Macromol ; 266(Pt 1): 130939, 2024 May.
Article En | MEDLINE | ID: mdl-38493816

African swine fever (ASF) is an acute, febrile, highly contagious infection of pigs caused by the African swine fever virus (ASFV). The purpose of this study is to understand the molecular mechanism of ASFV infection and evaluate the effect of DCA on MAPK pathway, so as to provide scientific basis for the development of new antiviral drugs. The transcriptome analysis found that ASFV infection up-regulated the IL-17 and MAPK signaling pathways to facilitate viral replication. Metabolome analysis showed that DCA levels were up-regulated after ASFV infection, and that exogenous DCA could inhibit activation of the MAPK pathway by ASFV infection and thus inhibit viral replication. Dual-luciferase reporter assays were used to screen the genes of ASFV and revealed that I73R could significantly up-regulate the transcription level of AP-1 transcription factor in the MAPK pathway. Confocal microscopy demonstrated that I73R could promote AP-1 entry into the nucleus, and that DCA could inhibit the I73R-mediated nuclear entry of AP-1, inhibiting MAPK pathway, and I73R interacts with AP-1. These results indicated that DCA can inhibit ASFV-mediated activation of the MAPK pathway, thus inhibiting ASFV replication. This study provides a theoretical basis for research on ASF pathogenesis and for antiviral drug development.


African Swine Fever Virus , Deoxycholic Acid , MAP Kinase Signaling System , Virus Replication , Virus Replication/drug effects , Animals , African Swine Fever Virus/drug effects , MAP Kinase Signaling System/drug effects , Swine , Deoxycholic Acid/pharmacology , Transcription Factor AP-1/metabolism , Chlorocebus aethiops , Vero Cells , African Swine Fever/virology , African Swine Fever/metabolism , Antiviral Agents/pharmacology
9.
J Chem Phys ; 160(11)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38506297

Activator protein-1 (AP-1) comprises one of the largest and most evolutionary conserved families of ubiquitous eukaryotic transcription factors that act as a pioneer factor. Diversity in DNA binding interaction of AP-1 through a conserved basic-zipper (bZIP) domain directs in-depth understanding of how AP-1 achieves its DNA binding selectivity and consequently gene regulation specificity. Here, we address the structural and dynamical aspects of the DNA target recognition process of AP-1 using microsecond-long atomistic simulations based on the structure of the human AP-1 FosB/JunD bZIP-DNA complex. Our results show the unique role of DNA shape features in selective base specific interactions, characteristic ion population, and solvation properties of DNA grooves to form the motif sequence specific AP-1-DNA complex. The TpG step at the two terminals of the AP-1 site plays an important role in the structural adjustment of DNA by modifying the helical twist in the AP-1 bound state. We addressed the role of intrinsic motion of the bZIP domain in terms of opening and closing gripper motions of DNA binding helices, in target site recognition and binding of AP-1 factors. Our observations suggest that binding to the cognate motif in DNA is mainly accompanied with the precise adjustment of closing gripper motion of DNA binding helices of the bZIP domain.


DNA , Transcription Factor AP-1 , Humans , Transcription Factor AP-1/metabolism , Nucleotide Motifs , DNA/chemistry , Binding Sites , Protein Binding
10.
BMC Genomics ; 25(1): 272, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38475725

BACKGROUND: Satellite cells are myogenic precursor cells in adult skeletal muscle and play a crucial role in skeletal muscle regeneration, maintenance, and growth. Like embryonic myoblasts, satellite cells have the ability to proliferate, differentiate, and fuse to form multinucleated myofibers. In this study, we aimed to identify additional transcription factors that control gene expression during bovine satellite cell proliferation and differentiation. RESULTS: Using chromatin immunoprecipitation followed by sequencing, we identified 56,973 and 54,470 genomic regions marked with both the histone modifications H3K4me1 and H3K27ac, which were considered active enhancers, and 50,956 and 59,174 genomic regions marked with H3K27me3, which were considered repressed enhancers, in proliferating and differentiating bovine satellite cells, respectively. In addition, we identified 1,216 and 1,171 super-enhancers in proliferating and differentiating bovine satellite cells, respectively. Analyzing these enhancers showed that in proliferating bovine satellite cells, active enhancers were associated with genes stimulating cell proliferation or inhibiting myoblast differentiation whereas repressed enhancers were associated with genes essential for myoblast differentiation, and that in differentiating satellite cells, active enhancers were associated with genes essential for myoblast differentiation or muscle contraction whereas repressed enhancers were associated with genes stimulating cell proliferation or inhibiting myoblast differentiation. Active enhancers in proliferating bovine satellite cells were enriched with binding sites for many transcription factors such as MYF5 and the AP-1 family transcription factors; active enhancers in differentiating bovine satellite cells were enriched with binding sites for many transcription factors such as MYOG and TFAP4; and repressed enhancers in both proliferating and differentiating bovine satellite cells were enriched with binding sites for NF-kB, ZEB-1, and several other transcription factors. The role of TFAP4 in satellite cell or myoblast differentiation was previously unknown, and through gene knockdown and overexpression, we experimentally validated a critical role for TFAP4 in the differentiation and fusion of bovine satellite cells into myofibers. CONCLUSIONS: Satellite cell proliferation and differentiation are controlled by many transcription factors such as AP-1, TFAP4, NF-kB, and ZEB-1 whose roles in these processes were previously unknown in addition to those transcription factors such as MYF5 and MYOG whose roles in these processes are widely known.


Chromatin , Satellite Cells, Skeletal Muscle , Animals , Cattle , Chromatin/metabolism , NF-kappa B/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Cell Differentiation/genetics , Cell Proliferation , Muscle Development/genetics
11.
Sci Adv ; 10(13): eadk4423, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38536911

DNA methyltransferase inhibitor (DNMTi) efficacy in solid tumors is limited. Colon cancer cells exposed to DNMTi accumulate lysine-27 trimethylation on histone H3 (H3K27me3). We propose this Enhancer of Zeste Homolog 2 (EZH2)-dependent repressive modification limits DNMTi efficacy. Here, we show that low-dose DNMTi treatment sensitizes colon cancer cells to select EZH2 inhibitors (EZH2is). Integrative epigenomic analysis reveals that DNMTi-induced H3K27me3 accumulates at genomic regions poised with EZH2. Notably, combined EZH2i and DNMTi alters the epigenomic landscape to transcriptionally up-regulate the calcium-induced nuclear factor of activated T cells (NFAT):activating protein 1 (AP-1) signaling pathway. Blocking this pathway limits transcriptional activating effects of these drugs, including transposable element and innate immune response gene expression involved in viral defense. Analysis of primary human colon cancer specimens reveals positive correlations between DNMTi-, innate immune response-, and calcium signaling-associated transcription profiles. Collectively, we show that compensatory EZH2 activity limits DNMTi efficacy in colon cancer and link NFAT:AP-1 signaling to epigenetic therapy-induced viral mimicry.


Colonic Neoplasms , Enhancer of Zeste Homolog 2 Protein , Histones , Humans , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Histones/metabolism , Methylation , Signal Transduction , Transcription Factor AP-1/metabolism
12.
Arch Biochem Biophys ; 754: 109929, 2024 Apr.
Article En | MEDLINE | ID: mdl-38367794

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although treatment options have improved, a large proportion of patients show low survival rates, highlighting an urgent need for novel therapeutic strategies. The aim of this study was to investigate the efficacy of the new small-molecule compound dihydrocelastrol (DHCE), acquired through the structural modification of celastrol (CE), in the treatment of DLBCL. DHCE showed potent anti-lymphoma efficacy and synergistic effects with doxorubicin. DHCE triggered DLBCL cell apoptosis and G0/G1-phase blockade, thereby hindering angiogenesis. DHCE inhibited B-cell receptor cascade signalling and Jun B and p65 nuclear translocation, thereby suppressing pro-tumourigenic signalling. Finally, DHCE exerted lower toxicity than CE, which showed severe hepatic, renal, and reproductive toxicity in vivo. Our findings support further investigation of the clinical efficacy of DHCE against DLBCL.


Lymphoma, Large B-Cell, Diffuse , Pentacyclic Triterpenes , Transcription Factor AP-1 , Humans , Transcription Factor AP-1/metabolism , Angiogenesis , Signal Transduction , Apoptosis , Lymphoma, Large B-Cell, Diffuse/metabolism , Cell Line, Tumor , Cell Proliferation
13.
Chem Biodivers ; 21(4): e202301791, 2024 Apr.
Article En | MEDLINE | ID: mdl-38415391

Skin is the largest and outermost organ in the human body; it serves as a vital defense mechanism against various external threats. Therefore, it is crucial to maintain its health through protection against harmful substances and adequate moisture levels. This study investigates the anti-inflammatory, antioxidant, and moisturizing properties of Oxyceros horridus Lour. (Oh-EE) in human keratinocytes. Oh-EE demonstrates potent antioxidant activity and effectively protects against oxidative stress induced by external stimuli such as UVB radiation and H2O2. Additionally, it exhibits significant anti-inflammatory effects proven by its ability to downregulate the expression of pro-inflammatory cytokines, namely COX-2 and IL-6. The study also explores the involvement of the AP-1 pathway, highlighting the ability of Oh-EE to suppress the expression of p38 and its upstream regulator, MKK3/6, under UVB-induced conditions. Interestingly, Oh-EE can activate the AP-1 pathway in the absence of external triggers. Furthermore, Oh-EE enhances skin moisture by upregulating the expression of key genes involved in skin hydration, namely HAS3 and FLG. These findings underscore the potential of Oh-EE as a versatile ingredient in skincare formulations, providing a range of skin benefits. Further research is warranted to comprehensively understand the underlying mechanisms through which Oh-EE exerts its effects.


Antioxidants , Ethanol , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Ethanol/pharmacology , Hydrogen Peroxide/pharmacology , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/pharmacology , Keratinocytes , Signal Transduction , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
14.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article En | MEDLINE | ID: mdl-38396960

Active vitamin D derivatives (VDDs)-1α,25-dihydroxyvitamin D3/D2 and their synthetic analogs-are well-known inducers of cell maturation with the potential for differentiation therapy of acute myeloid leukemia (AML). However, their dose-limiting calcemic activity is a significant obstacle to using VDDs as an anticancer treatment. We have shown that different activators of the NF-E2-related factor-2/Antioxidant Response Element (Nrf2/ARE) signaling pathway, such as the phenolic antioxidant carnosic acid (CA) or the multiple sclerosis drug monomethyl fumarate (MMF), synergistically enhance the antileukemic effects of various VDDs applied at low concentrations in vitro and in vivo. This study aimed to investigate whether glutathione, the major cellular antioxidant and the product of the Nrf2/ARE pathway, can mediate the Nrf2-dependent differentiation-enhancing activity of CA and MMF in HL60 human AML cells. We report that glutathione depletion using L-buthionine sulfoximine attenuated the enhancing effects of both Nrf2 activators concomitant with downregulating vitamin D receptor (VDR) target genes and the activator protein-1 (AP-1) family protein c-Jun levels and phosphorylation. On the other hand, adding reduced glutathione ethyl ester to dominant negative Nrf2-expressing cells restored both the suppressed differentiation responses and the downregulated expression of VDR protein, VDR target genes, as well as c-Jun and P-c-Jun levels. Finally, using the transcription factor decoy strategy, we demonstrated that AP-1 is necessary for the enhancement by CA and MMF of 1α,25-dihydroxyvitamin D3-induced VDR and RXRα protein expression, transactivation of the vitamin D response element, and cell differentiation. Collectively, our findings suggest that glutathione mediates, at least in part, the potentiating effect of Nrf2 activators on VDDs-induced differentiation of AML cells, likely through the positive regulation of AP-1.


Abietanes , Leukemia, Myeloid, Acute , Transcription Factor AP-1 , Humans , Transcription Factor AP-1/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Vitamin D/therapeutic use , Vitamins/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Receptors, Calcitriol/metabolism , Cell Differentiation , Signal Transduction , Glutathione/metabolism
15.
Viruses ; 16(2)2024 Feb 14.
Article En | MEDLINE | ID: mdl-38400066

The integration of viral DNA into a host genome is an important step in HIV-1 replication. However, due to the high failure rate of integration, the majority of viral DNA exists in an unintegrated state during HIV-1 infection. In contrast to the robust expression from integrated viral DNA, unintegrated HIV-1 DNA is very poorly transcribed in infected cells, but the molecular machinery responsible for the silencing of unintegrated HIV-1 DNA remains poorly characterized. In this study, we sought to characterize new host factors for the inhibition of expression from unintegrated HIV-1 DNA. A genome-wide CRISPR-Cas9 knockout screening revealed the essential role of phosphatase and tensin homolog (PTEN) in the silencing of unintegrated HIV-1 DNA. PTEN's phosphatase activity negatively regulates the PI3K-Akt pathway to inhibit the transcription from unintegrated HIV-1 DNA. The knockout (KO) of PTEN or inhibition of PTEN's phosphatase activity by point mutagenesis activates Akt by phosphorylation and enhances the transcription from unintegrated HIV-1 DNA. Inhibition of the PI3K-Akt pathway by Akt inhibitor in PTEN-KO cells restores the silencing of unintegrated HIV-1 DNA. Transcriptional factors (NF-κB, Sp1, and AP-1) are important for the activation of unintegrated HIV-1 DNA in PTEN-KO cells. Finally, the knockout of PTEN increases the levels of active epigenetic marks (H3ac and H3K4me3) and the recruitment of PolII on unintegrated HIV-1 DNA chromatin. Our experiments reveal that PTEN targets transcription factors (NF-κB, Sp1, and AP-1) by negatively regulating the PI3K-Akt pathway to promote the silencing of unintegrated HIV-1 DNA.


HIV-1 , NF-kappa B , DNA, Viral/genetics , DNA, Viral/metabolism , HIV-1/physiology , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factor AP-1/metabolism , Transcription, Genetic , Humans
16.
J Microbiol Biotechnol ; 34(4): 911-919, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38379292

Solar UVB irradiation cause skin photoaging by inducing the high expression of matrix metalloproteinase (MMPs) to inhibit the expression of Type1 procollagen synthesis. 1-Kestose, a natural trisaccharide, has been indicated to show a cytoprotective role in UVB radiation-induced-HaCaT cells. However, few studies have confirmed the anti-aging effects. In the present study, we evaluated the anti-photoaging and pathological mechanism of 1-kestose using Human keratinocytes (HaCaT) cells. The results found that 1-kestose pretreatment remarkably reduced UVB-generated reactive oxygen species (ROS) accumulation in HaCaT cells. 1-Kestose suppressed UVB radiation-induced MMPs expressions by blocking MAPK/AP-1 and NF-κB p65 translocation. 1-Kestose pretreatment increased Type 1 procollagen gene expression levels by activating TGF-ß/Smad signaling pathway. Taken together, our results demonstrate that 1-kestose may serve as a potent natural trisaccharide for inflammation and photoaging prevention.


Collagen Type I , Signal Transduction , Skin Aging , Trisaccharides , Ultraviolet Rays , Humans , Collagen Type I/metabolism , Collagen Type I/genetics , HaCaT Cells , Inflammation/metabolism , Keratinocytes/metabolism , Keratinocytes/drug effects , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Skin/metabolism , Skin/drug effects , Skin/radiation effects , Skin Aging/drug effects , Skin Aging/radiation effects , Smad Proteins/metabolism , Transcription Factor AP-1/metabolism , Transforming Growth Factor beta/metabolism , Ultraviolet Rays/adverse effects , Trisaccharides/pharmacology
17.
J Transl Med ; 22(1): 137, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38317144

BACKGROUND: Pulmonary hypertension (PH) is a complex multifactorial vascular pathology characterized by an increased pulmonary arterial pressure, vasoconstriction, remodelling of the pulmonary vasculature, thrombosis in situ and inflammation associated with right-side heart failure. Herein, we explored the potential beneficial effects of treatment with siRNA AP-1 on pulmonary arterial hypertension (PAH), right ventricular dysfunction along with perivascular and interstitial fibrosis in pulmonary artery-PA, right ventricle-RV and lung in an experimental animal model of monocrotaline (MCT)-induced PAH. METHODS: Golden Syrian hamsters were divided into: (1) C group-healthy animals taken as control; (2) MCT group obtained by a single subcutaneous injection of 60 mg/kg MCT at the beginning of the experiment; (3) MCT-siRNA AP-1 group received a one-time subcutaneous dose of MCT and subcutaneous injections containing 100 nM siRNA AP-1, every two weeks. All animal groups received water and standard chow ad libitum for 12 weeks. RESULTS: In comparison with the MCT group, siRNA AP-1 treatment had significant beneficial effects on investigated tissues contributing to: (1) a reduction in TGF-ß1/ET-1/IL-1ß/TNF-α plasma concentrations; (2) a reduced level of cytosolic ROS production in PA, RV and lung and notable improvements regarding the ultrastructure of these tissues; a decrease of inflammatory and fibrotic marker expressions in PA (COL1A/Fibronectin/Vimentin/α-SMA/CTGF/Calponin/MMP-9), RV and lung (COL1A/CTGF/Fibronectin/α-SMA/F-actin/OB-cadherin) and an increase of endothelial marker expressions (CD31/VE-cadherin) in PA; (4) structural and functional recoveries of the PA [reduced Vel, restored vascular reactivity (NA contraction, ACh relaxation)] and RV (enlarged internal cavity diameter in diastole, increased TAPSE and PRVOFs) associated with a decrease in systolic and diastolic blood pressure, and heart rate; (5) a reduced protein expression profile of AP-1S3/ pFAK/FAK/pERK/ERK and a significant decrease in the expression levels of miRNA-145, miRNA-210, miRNA-21, and miRNA-214 along with an increase of miRNA-124 and miRNA-204. CONCLUSIONS: The siRNA AP-1-based therapy led to an improvement of pulmonary arterial and right ventricular function accompanied by a regression of perivascular and interstitial fibrosis in PA, RV and lung and a down-regulation of key inflammatory and fibrotic markers in MCT-treated hamsters.


MicroRNAs , Pulmonary Arterial Hypertension , Rats , Animals , Pulmonary Artery/pathology , Fibronectins , Transcription Factor AP-1/metabolism , Heart Ventricles/pathology , RNA, Small Interfering/metabolism , Rats, Sprague-Dawley , Pulmonary Arterial Hypertension/pathology , Fibrosis , MicroRNAs/metabolism , Disease Models, Animal
18.
Nat Commun ; 15(1): 1038, 2024 Feb 03.
Article En | MEDLINE | ID: mdl-38310103

There are significant commonalities among several pathologies involving fibroblasts, ranging from auto-immune diseases to fibrosis and cancer. Early steps in cancer development and progression are closely linked to fibroblast senescence and transformation into tumor-promoting cancer-associated fibroblasts (CAFs), suppressed by the androgen receptor (AR). Here, we identify ANKRD1 as a mesenchymal-specific transcriptional coregulator under direct AR negative control in human dermal fibroblasts (HDFs) and a key driver of CAF conversion, independent of cellular senescence. ANKRD1 expression in CAFs is associated with poor survival in HNSCC, lung, and cervical SCC patients, and controls a specific gene expression program of myofibroblast CAFs (my-CAFs). ANKRD1 binds to the regulatory region of my-CAF effector genes in concert with AP-1 transcription factors, and promotes c-JUN and FOS association. Targeting ANKRD1 disrupts AP-1 complex formation, reverses CAF activation, and blocks the pro-tumorigenic properties of CAFs in an orthotopic skin cancer model. ANKRD1 thus represents a target for fibroblast-directed therapy in cancer and potentially beyond.


Cancer-Associated Fibroblasts , Skin Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Fibroblasts/metabolism , Muscle Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Skin Neoplasms/pathology , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Tumor Microenvironment
19.
Mediators Inflamm ; 2024: 7887678, 2024.
Article En | MEDLINE | ID: mdl-38304421

Background: The long-term exposure to ultraviolet radiation (UVR) raises oxidative stress and chronic inflammation levels, which in turn has a series of deleterious effects on skin health, such as sunburn, photoaging, and skin cancer. Hence, our study was determined to investigate the effects and mechanisms of epigallocatechin gallate (EGCG) in zebrafish and human skin fibroblasts (HSF) cells to alleviate ultraviolet-induced photoaging. Methods: The 4 days postfertilization (dpf) zebrafish larvae and HSF cells were treated with 10 J/cm2 UVA + 30 mJ/cm2 UVB, or 25, or 50 µM EGCG for 72 hr. The indicators involving in oxidative stress, inflammatory, and photoaging were measured by the kits, ELISA Kits and western blot methods. Results: EGCGs protect against UVR-induced skin damage in zebrafish and HSF cells. EGCG markedly decreased the reactive oxygen species (ROS), malondialdehyde, 8-OHdG levels, increased superoxide dismutase (SOD) activity, and significantly inhibited inflammatory factors levels including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), interleukin-6 (IL-6) in zebrafish, and HSF cells irradiated with UVR. We found that EGCG could reduce UVR-induced p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation and effectively inhibited the activity of the transcriptional factor nuclear factor-κB (NF-κB), thereby reducing the protein-1 (AP-1), TNF-α, IL-1α, IL-6, and matrix metalloproteinase-1 (MMP-1) expressions, which are critical mediators of skin aging cascade causing the photoaging. Conclusion: These results validate that EGCG for protection of photoaging in zebrafish and HSF cells induced by UVR, which is closely related to the regulation of p38 MAPK/NF-κB, AP-1 signaling pathway which relieve oxidative stress, inflammation, and collagen degradation.


Catechin/analogs & derivatives , Mitogen-Activated Protein Kinases , Zebrafish , Animals , Humans , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Interleukin-6/metabolism , Transcription Factor AP-1/metabolism , Ultraviolet Rays/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Skin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Fibroblasts/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Reactive Oxygen Species/metabolism
20.
Int J Biochem Cell Biol ; 169: 106540, 2024 Apr.
Article En | MEDLINE | ID: mdl-38281696

The Brother of the Regulator of Imprinted Sites (BORIS), as a specific indicator of hepatocellular carcinoma, exhibits a significant increase in expression. However, its upstream regulatory network remains enigmatic. Previous research has indicated a strong correlation between the Hippo pathway and the progression of hepatocellular carcinoma. It is well established that the Activator Protein-1 (AP-1) frequently engages in interactions with the Hippo pathway. Thus, we attempt to prove whether Jun and Fos, a major member of the AP-1 family, are involved in the regulation of BORIS expression. Bioinformatics analysis revealed the existence of binding sites for Jun and Fos within the BORIS promoter. Through a series of overexpression and knockdown experiments, we corroborated that Jun and Fos have the capacity to augment BORIS expression, thereby fostering the migration and invasion of hepatocellular carcinoma cells. Moreover, Methylation-Specific PCR and Bisulfite Sequencing PCR assays revealed that Jun and Fos do not have a significant impact on the demethylation of the BORIS promoter. However, luciferase reporter and chromatin immunoprecipitation experiments substantiated that Jun and Fos could directly bind to the BORIS promoter, thereby enhancing its transcription. In conclusion, these results suggest that Jun and Fos can promote the development of hepatocellular carcinoma by directly regulating the expression of BORIS. These findings may provide experimental evidence positioning BORIS as a novel target for the clinical intervention of hepatocellular carcinoma.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Liver Neoplasms/pathology , Cell Line , Promoter Regions, Genetic/genetics
...