Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.928
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 385-393, 2024 Apr 15.
Article Zh | MEDLINE | ID: mdl-38660903

OBJECTIVES: To investigate the effect of chaperone-mediated autophagy (CMA) on the damage of mouse microglial BV2 cells induce by unconjugated bilirubin (UCB). METHODS: The BV2 cell experiments were divided into two parts. (1) For the CMA activation experiment: control group (treated with an equal volume of dimethyl sulfoxide), QX77 group (treated with 20 µmol/L QX77 for 24 hours), UCB group (treated with 40 µmol/L UCB for 24 hours), and UCB+QX77 group (treated with both 20 µmol/L QX77 and 40 µmol/L UCB for 24 hours). (2) For the cell transfection experiment: LAMP2A silencing control group (treated with an equal volume of dimethyl sulfoxide), LAMP2A silencing control+UCB group (treated with 40 µmol/L UCB for 24 hours), LAMP2A silencing group (treated with an equal volume of dimethyl sulfoxide), and LAMP2A silencing+UCB group (treated with 40 µmol/L UCB for 24 hours). The cell viability was assessed using the modified MTT method. The expression levels of p65, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), and cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by Western blot. The relative mRNA expression levels of the inflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were determined by real-time quantitative polymerase chain reaction. Levels of IL-6 and TNF-α in the cell culture supernatant were measured using ELISA. The co-localization of heat shock cognate protein 70 with p65 and NLRP3 was detected by immunofluorescence. RESULTS: Compared to the UCB group, the cell viability in the UCB+QX77 group increased, and the expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as the mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α decreased (P<0.05). Compared to the control group, there was co-localization of heat shock cognate protein 70 with p65 and NLRP3 in both the UCB and UCB+QX77 groups. After silencing the LAMP2A gene, compared to the LAMP2A silencing control+UCB group, the LAMP2A silencing+UCB group showed increased expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as increased mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α (P<0.05). CONCLUSIONS: CMA is inhibited in UCB-induced BV2 cell damage, and activating CMA may reduce p65 and NLRP3 protein levels, suppress inflammatory responses, and counteract bilirubin neurotoxicity.


Bilirubin , Chaperone-Mediated Autophagy , Microglia , Animals , Mice , Microglia/metabolism , Chaperone-Mediated Autophagy/physiology , Chaperone-Mediated Autophagy/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured , Cell Survival
2.
Neuromolecular Med ; 26(1): 16, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668900

Toll-like receptor (TLR) 7 plays an important role in recognizing virus-derived nucleic acids. TLR7 signaling in astrocytes and microglia is critical for activating immune responses against neurotrophic viruses. Neurons express TLR7, similar to glial cells; however, the role of neuronal TLR7 has not yet been fully elucidated. This study sought to determine whether resiquimod, the TLR7/8 agonist, induces the expression of inflammatory chemokines in SH-SY5Y human neuroblastoma cells. Immunofluorescence microscopy revealed that TLR7 was constitutively expressed in SH-SY5Y cells. Stimulation with resiquimod induced C-C motif chemokine ligand 2 (CCL2) expression, accompanied by the activation of nuclear factor-kappa B (NF-κB) in SH-SY5Y cells. Resiquimod increased mRNA levels of C-X-C motif chemokine ligand 8 (CXCL8) and CXCL10, while the increase was slight at the protein level. Knockdown of NF-κB p65 eliminated resiquimod-induced CCL2 production. This study provides novel evidence that resiquimod has promising therapeutic potential against central nervous system viral infections through its immunostimulatory effects on neurons.


Chemokine CCL2 , Chemokine CXCL10 , Imidazoles , Interleukin-8 , Toll-Like Receptor 7 , Transcription Factor RelA , Humans , Cell Line, Tumor , Chemokine CCL2/genetics , Chemokine CCL2/biosynthesis , Chemokine CXCL10/genetics , Chemokine CXCL10/biosynthesis , Imidazoles/pharmacology , Interleukin-8/genetics , Interleukin-8/biosynthesis , Neuroblastoma , Neurons/drug effects , Neurons/metabolism , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
3.
Gene ; 916: 148446, 2024 Jul 20.
Article En | MEDLINE | ID: mdl-38583816

Mesenchymal stem cells (MSCs) have high priority in clinical applications for treatment of immune disorders because of their immunomodulatory function. A lot of researches have currently been undertaken to enhance the stemness capacities of the cells and pick an excellent type of MSCs for clinical approaches. This study aims to assess the immunomodulatory related MicroRNAs (miRNAs) expression as well as their target genes in both adipose derived stem cells (Ad-SCs) and dental pulp derived stem cell (DP-SCs) in the presence or lack of Crocin (saffron plant's bioactive compound). For this purpose, first MSCs were extracted from adipose and dental pulp tissues, and then their mesenchymal nature was confirmed using flow cytometry and differentiation tests. Following the cell treatment with an optimal-non-toxic dose of Crocin (Obtained by MTT test), the expression of 4 selected immunomodulatory-related micro-RNAs (Mir-126, -21, -23, and-155) and their target genes (PI3K/ Akt 1 and 2/ NFKB and RELA) were assessed by RT-PCR. Our findings revealed that miRNA-23 and miRNA-126 were up-regulated in both types of cells treated with Crocin, while in the other side, miRNA-21 and miRNA-155 were down-regulated in DP-SCs and were up-regulated in Ad-SCs under treatment. Moreover, the real-time PCR results indicated that Crocin could significantly down regulate the expression of PI3K/ Akt1/ Akt2/ NFKB/ RELA genes in DP-SCs and PI3K/Akt2 genes in Ad-SCs and up regulate the expression of Akt1/ NFKB/ RELA genes in recent cells. Based on the analysis of the obtained data, the immunoregulatory effects of Crocin were higher in DP-SCs than in Ad-SCs. In conclusion, Crocin could control essential signaling pathways related to the inflammation by regulating the expression of related- miRNAs genes that play a key function in the immune regulation pathways in MSCs. Our findings can give an understanding of the mechanisms by which Crocin enhances the immunomodulatory feature of MSCs. According to the research findings, DP-SCs are probably a better immunomodulator in Crocin treatment than Ad-SCs and it may be helpful for MSCs selection in clinical applications for modulation or treatment of autoimmune disorders.


Carotenoids , Mesenchymal Stem Cells , MicroRNAs , MicroRNAs/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/immunology , Carotenoids/pharmacology , Humans , Cells, Cultured , Gene Expression Regulation/drug effects , Cell Differentiation/drug effects , Immunomodulation/drug effects , Immunomodulation/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism
4.
Nat Commun ; 15(1): 3653, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38688896

Although nontumor components play an essential role in colon cancer (CC) progression, the intercellular communication between CC cells and adjacent colonic epithelial cells (CECs) remains poorly understood. Here, we show that intact mitochondrial genome (mitochondrial DNA, mtDNA) is enriched in serum extracellular vesicles (EVs) from CC patients and positively correlated with tumor stage. Intriguingly, circular mtDNA transferred via tumor cell-derived EVs (EV-mtDNA) enhances mitochondrial respiration and reactive oxygen species (ROS) production in CECs. Moreover, the EV-mtDNA increases TGFß1 expression in CECs, which in turn promotes tumor progression. Mechanistically, the intercellular mtDNA transfer activates the mitochondrial respiratory chain to induce the ROS-driven RelA nuclear translocation in CECs, thereby transcriptionally regulating TGFß1 expression and promoting tumor progression via the TGFß/Smad pathway. Hence, this study highlights EV-mtDNA as a major driver of paracrine metabolic crosstalk between CC cells and adjacent CECs, possibly identifying it as a potential biomarker and therapeutic target for CC.


Colonic Neoplasms , DNA, Mitochondrial , Disease Progression , Epithelial Cells , Extracellular Vesicles , Genome, Mitochondrial , Reactive Oxygen Species , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Reactive Oxygen Species/metabolism , Extracellular Vesicles/metabolism , Animals , Male , Mice , Female , Cell Line, Tumor , Mitochondria/metabolism , Colon/metabolism , Colon/pathology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Gene Expression Regulation, Neoplastic , Signal Transduction , Middle Aged , Metabolic Reprogramming
5.
Exp Cell Res ; 438(2): 114058, 2024 May 15.
Article En | MEDLINE | ID: mdl-38688434

BACKGROUND: Gastric cancer (GC) is a common cancer type with both high incidence and mortality. Recent studies have revealed an important role of circRNA in the development of GC. However, more experiments are needed to reveal the precise molecular mechanisms of circRNA in GC development. METHODS: Bioinformatics analysis was conducted to predict the potential role of circ_PABPC1 in GC and the target proteins of circ_PABPC1. Quantitative RT-PCR, Western blot and immunohistochemistry assays were conducted to detect the levels of circ_PABPC1, NF-κB p65, NF-κB p65 (Ser536) and ILK. MTT, Edu staining, cell scratch-wound and trans-well assays were carried out to detect cell proliferation, migration and invasion. The interaction between ILK and circ_PABPC1 was confirmed by RNA immunoprecipitation (RIP), RNA pull-down and fluorescence in situ hybridization assays. Genetically modified GC cells were injected into mice to evaluate the tumor growth performance. RESULTS: This study found that the high expression of circ_PABPC1 was associated with a poor prognosis of GC. The up-regulation of circ_PABPC1 promoted the proliferation, migration and invasion of GC cells. Circ_PABPC1 bound to ILK protein, thereby preventing the degradation of ILK. ILK mediated the effect of circ_PABPC1 on GC cells through activating NF-κB. CONCLUSION: circ_PABPC1 promotes the malignancy of GC cells through binding to ILK to activate NF-κB signaling pathway.


Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , NF-kappa B , Protein Serine-Threonine Kinases , RNA, Circular , Signal Transduction , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Cell Proliferation/genetics , Animals , Mice , NF-kappa B/metabolism , NF-kappa B/genetics , Cell Movement/genetics , Cell Line, Tumor , Mice, Nude , Male , Prognosis , Female , Mice, Inbred BALB C , Neoplasm Invasiveness , Middle Aged , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
6.
Virol J ; 21(1): 93, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658979

African swine fever virus (ASFV) is a highly contagious and fatal hemorrhagic disease of domestic pigs, which poses a major threat to the swine industry worldwide. Studies have shown that indigenous African pigs tolerate ASFV infection better than European pigs. The porcine v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) encoding a p65 kD protein, a major subunit of the NF-kB transcription factor, plays important roles in controlling both innate and adaptive immunity during infection with ASFV. In the present study, RelA genes from ASFV-surviving and symptomatic pigs were sequenced and found to contain polymorphisms revealing two discrete RelA amino acid sequences. One was found in the surviving pigs, and the other in symptomatic pigs. In total, 16 nonsynonymous SNPs (nsSNPs) resulting in codon changes were identified using bioinformatics software (SIFT and Polyphen v2) and web-based tools (MutPre and PredictSNP). Seven nsSNPs (P374-S, T448-S, P462-R, V464-P, Q478-H, L495-E, and P499-Q) were predicted to alter RelA protein function and stability, while 5 of these (P374-S, T448-S, P462-R, L495-E, and Q499-P) were predicted as disease-related SNPs.Additionally, the inflammatory cytokine levels of IFN-α, IL-10, and TNF-α at both the protein and the mRNA transcript levels were measured using ELISA and Real-Time PCR, respectively. The resulting data was used in correlation analysis to assess the association between cytokine levels and the RelA gene expression. Higher levels of IFN-α and detectable levels of IL-10 protein and RelA mRNA were observed in surviving pigs compared to healthy (non-infected). A positive correlation of IFN-α cytokine levels with RelA mRNA expression was also obtained. In conclusion, 7 polymorphic events in the coding region of the RelA gene may contribute to the tolerance of ASFV in pigs.


African Swine Fever Virus , African Swine Fever , Polymorphism, Single Nucleotide , Transcription Factor RelA , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , Swine , Transcription Factor RelA/genetics , African Swine Fever/virology , African Swine Fever/genetics , African Swine Fever/immunology , Disease Resistance/genetics , Up-Regulation , Transcription, Genetic , Sequence Analysis, DNA , Sus scrofa/genetics , Sus scrofa/virology
7.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Article En | MEDLINE | ID: mdl-38508315

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Interferon Regulatory Factor-7 , NF-kappa B , Animals , Humans , Mice , HEK293 Cells , Inflammation/genetics , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Sendai virus/physiology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology , Virus Replication , Mutation , Gene Expression Regulation/genetics , Murine hepatitis virus/physiology , Coronavirus Infections/immunology , Respirovirus Infections/immunology
8.
Pathol Res Pract ; 255: 155168, 2024 Mar.
Article En | MEDLINE | ID: mdl-38367599

OBJECTIVE: To explore the biological function of RELA proto-oncogene, NF-kB subunit (RELA) in hepatocellular carcinoma (HCC) progression, and its potential regulatory effects on the regulators of m6A modification. METHODS AND MATERIALS: GEPIA, UALCAN and Human Protein Atlas databases were applied to analyze the expression characteristics of RELA in HCC tissues and non-cancer liver tissues, and its relationship with clinicopathologic indicators and prognosis. Quantitative real-time PCR (qRT-PCR) was used to examine the expression level of RELA mRNA in HCC cells. Cell counting kit-8 (CCK-8) assay, EdU assay and flow cytometry were used to examine cell growth and apoptosis. PROMO database was applied to predict the binding sequence between RELA and methyltransferase like protein 3 (METTL3) promoter region, and this prediction was verified by dual luciferase reporter gene experiment and chromatin immunoprecipitation assay. The effect of RELA on METTL3 expression was examined by Western blot and qRT-PCT, and the regulatory effects of RELA on the other m6A regulators were evaluated by qRT-PCR. RESULTS: RELA was highly expressed in HCC tissues and cell lines, and was closely associated with adverse clinicopathologic indicators and poor prognosis of patients. Overexpression of RELA promoted the growth of HCC cells and inhibited apoptosis; Knocking down RELA had the opposite effects. Overexpression of RELA promoted METTL3 transcription. Knockdown or overexpression of METTL3 reversed the effects of overexpression or knockdown of RELA on HCC cell growth and apoptosis, respectively. RELA also promoted the expression of a series of m6A regulators at mRNA expression level in HCC cell lines. CONCLUSION: RELA promotes the transcription of METTL3 by binding to METTL3 promoter region, thus promoting the malignancy of HCC cells. This study suggests NF-κB signaling contributes the dysregulation of m6A modification in HCC tumorigenesis.


Adenine , Carcinoma, Hepatocellular , Liver Neoplasms , Transcription Factor RelA , Humans , Adenine/analogs & derivatives , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Liver Neoplasms/genetics , Methyltransferases/genetics , RNA, Messenger , Transcription Factor RelA/genetics
9.
Nucleic Acids Res ; 52(4): 1527-1543, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38272542

The NF-κB protein p65/RelA plays a pivotal role in coordinating gene expression in response to diverse stimuli, including viral infections. At the chromatin level, p65/RelA regulates gene transcription and alternative splicing through promoter enrichment and genomic exon occupancy, respectively. The intricate ways in which p65/RelA simultaneously governs these functions across various genes remain to be fully elucidated. In this study, we employed the HTLV-1 Tax oncoprotein, a potent activator of NF-κB, to investigate its influence on the three-dimensional organization of the genome, a key factor in gene regulation. We discovered that Tax restructures the 3D genomic landscape, bringing together genes based on their regulation and splicing patterns. Notably, we found that the Tax-induced gene-gene contact between the two master genes NFKBIA and RELA is associated with their respective changes in gene expression and alternative splicing. Through dCas9-mediated approaches, we demonstrated that NFKBIA-RELA interaction is required for alternative splicing regulation and is caused by an intragenic enrichment of p65/RelA on RELA. Our findings shed light on new regulatory mechanisms upon HTLV-1 Tax and underscore the integral role of p65/RelA in coordinated regulation of NF-κB-responsive genes at both transcriptional and splicing levels in the context of the 3D genome.


The NF-κB pathway is essential for coordinating gene expression in response to various stimuli, including viral infections. Most studies have focused on the role of NF-κB in transcriptional regulation. In the present study, the impact of the potent NF-κB activator HTLV-1 Tax oncoprotein on the three-dimensional organization of the genome was investigated. Tax-mediated NF-κB activation was found to restructure the 3D genomic landscape in cells and to bring genes together in multigene complexes that are coordinately regulated either transcriptionally or through alternative splicing by NF-κB. Induced coordinate changes in transcription and alternative splicing included the two master genes of NF-κB pathway NFKBIA and RELA. The findings have significant implications for understanding cell fate determination and disease development associated with HTLV-1 infection, as well as chronic NF-κB activation in various human inflammatory diseases and cancer.


Chromatin Assembly and Disassembly , Gene Expression Regulation , NF-kappa B p50 Subunit , Alternative Splicing/genetics , Chromatin Assembly and Disassembly/genetics , Gene Products, tax/genetics , Gene Products, tax/metabolism , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Transcriptional Activation , Humans , NF-kappa B p50 Subunit/metabolism
10.
Exp Dermatol ; 33(1): e15015, 2024 Jan.
Article En | MEDLINE | ID: mdl-38284203

IMP-3 expression is a poor prognostic factor of melanomas and it promotes melanoma cell migration and invasion by a pathway modulating HMGA2 mRNA expression. We tried to identify other putative targets of IMP-3. We identified putative IMP-3-binding RNAs, including AKT1, MAPK3, RB1 and RELA, by RNA immunoprecipitation coupled with next-generation sequencing. IMP-3 overexpression increased AKT and RELA levels in MeWo cells. siRNAs against AKT1 and RELA inhibited MeWo/Full-length IMP-3 cell migration. IMP-3 knockdown of A2058 cells decreased AKT1 and RELA expression and lowered migration ability. Co-transfection of A2058 cells with AKT1- or RELA-expressing plasmids with IMP-3 siRNA restored the inhibitory effects of IMP-3 knockdown on migration. HMGA2 did not influence AKT1 and RELA expression in melanoma cells. Human melanoma samples with high IMP-3 levels also showed high HMGA2, AKT1 and RELA expression. Our results show that IMP-3 enhances melanoma cell migration through the regulation of the AKT1 and RELA axis.


Melanoma , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Transcription Factor RelA , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Melanoma/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
Immun Inflamm Dis ; 12(1): e1147, 2024 Jan.
Article En | MEDLINE | ID: mdl-38270298

BACKGROUND: Nexrutine is an herbal extract derived from Phellodendron amurense, known for its anti-inflammatory, antidiarrheal, and hemostatic properties. However, its effect on ulcerative colitis (UC) remains unclear. METHODS: A mouse model of UC was induced by 3% dextran sulfate sodium, while human colonic epithelial cells NCM-460 were exposed to lipopolysaccharide. Both models were treated with Nexrutine at 300 or 600 mg/kg, with Mesalazine applied as a positive control regimen. The disease activity index (DAI) of mice was calculated, and the pathological injury scores were assessed through hematoxylin and eosin staining. The viability of NCM-460 cells was determined using the CCK-8 method. Inflammatory cytokines were detected using ELISA kits. Expression of mucin 3 (MUC3), Claudin-1, and tight junction protein (ZO-1) was detected to analyze mucosal barrier integrity. Target genes of Nexrutine were predicted using bioinformatics tools. Expression of RELA proto-oncogene (RELA) was analyzed using qPCR and western blot assays. RESULTS: The Nexrutine treatments significantly alleviated DAI of mice, mitigated pathological changes in their colon tissues, decreased the production of pro-inflammatory cytokines, enhanced the barrier integrity-related proteins, and increased NCM-460 cell viability in vitro. RELA, identified as a target gene of Nexrutine, showed elevated levels in UC models but was substantially suppressed by Nexrutine treatment. Adenovirus-mediated RELA upregulation in mice or the overexpression plasmid of RELA in cells counteracted the effects of Nexrutine treatments, exacerbating UC-related symptoms. CONCLUSION: This study demonstrates that Nexrutine alleviates inflammatory mucosal barrier damage in UC by suppressing RELA transcription.


Colitis, Ulcerative , Plant Extracts , Humans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Mesalamine , Cytokines , Inflammation/drug therapy , Transcription Factor RelA/genetics
12.
Neuropathology ; 44(2): 167-172, 2024 Apr.
Article En | MEDLINE | ID: mdl-37855183

Ependymomas (EPN) are central nervous system neoplasms that exhibit an ependymal phenotype. In particular, supratentorial EPN (ST-EPN) must be differentiated from more aggressive entities such as glioblastoma, IDH-wildtype. This task is frequently addressed with the use of immunohistochemistry coupled with clinical presentation and morphological features. Here we describe the case of a young adult presenting with migraine-like symptoms and a temporoinsular-based expansile mass that was first diagnosed as a GBM, mostly based on strong and diffuse oligodendrocyte transcription factor 2 (OLIG2) expression. Molecular characterization revealed a ZFTA::RELA fusion, supporting the diagnosis of ST-EPN, ZFTA fusion-positive. OLIG2 expression is rarely reported in tumors other than GBM and oligodendrocyte-lineage committed neoplasms. The patient was treated with radiotherapy and temozolomide after surgery and was alive and well at follow-up. This report illustrates the need to assess immunostains within a broader clinical, morphological and molecular context to avoid premature exclusion of important differential diagnoses.


Central Nervous System Neoplasms , Ependymoma , Supratentorial Neoplasms , Young Adult , Humans , Transcription Factor RelA/genetics , Oligodendrocyte Transcription Factor 2 , Supratentorial Neoplasms/diagnosis , Supratentorial Neoplasms/genetics , Supratentorial Neoplasms/pathology , Ependymoma/diagnosis , Ependymoma/genetics , Ependymoma/pathology
13.
Apoptosis ; 29(5-6): 849-864, 2024 Jun.
Article En | MEDLINE | ID: mdl-38117373

Sarcopenia manifests as muscle atrophy and loss that is complicated with malignancy. This study explored the mechanism of extracellular vesicles (EVs) in multiple myeloma (MM) with sarcopenia. SP2/0 conditioned medium (CM) was collected to isolate SP2/0-EVs. C2C12 cells were incubated with SP2/0 CM or SP2/0-EVs. ROS, TNF-α, IL-6, MuRF1 and MyHC levels were detected by DCF-DA fluorescent probe, ELISA, and Western blot. GW4869 was used to inhibit EV secretion in SP2/0 to confirm its effect on muscle atrophy. Serum was collected from MM patients with or without sarcopenia to detect RAGE mRNA expression. SP2/0 cells were transfected with RAGE siRNA and C2C12 cells were treated with the isolated si-RAGE-EVs or/and TLR4 agonist. SP2/0 tumor-bearing mouse model was established. Healthy mice and SP2/0-tumor bearing mice were treated with SP2/0-EVs or si-RAGE-EVs. SP2/0 CM or SP2/0-EVs stimulated ROS, inflammatory responses, and myotube atrophy in C2C12 cells. GW4869 blocked EV secretion and the effects of SP2/0 CM. RAGE mRNA expression in serum EVs was increased in MM&Sarcopenia patients and RAGE knockdown in SP2/0-EVs partially nullified SP2/0-EVs' effects. SP2/0-EVs activated the TLR4/NF-κB p65 pathway by translocating RAGE. SP2/0-EVs-derived RAGE elevated ROS production, inflammation, and myotube atrophy in C2C12 cells and caused muscle loss in SP2/0 tumor-bearing mice by activating the TLR4/NF-κB p65 pathway. SP2/0-EVs partially recapitulated muscle loss in healthy mice. SP2/0-EVs-derived RAGE increased ROS production, inflammation, and myotube atrophy in MM through TLR4/NF-κB p65 pathway activation.


Extracellular Vesicles , Inflammation , Multiple Myeloma , Muscular Atrophy , Receptor for Advanced Glycation End Products , Signal Transduction , Toll-Like Receptor 4 , Transcription Factor RelA , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Humans , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/genetics , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/genetics , Cell Line, Tumor , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Male , Female
14.
J Biol Chem ; 299(11): 105308, 2023 11.
Article En | MEDLINE | ID: mdl-37778730

Nuclear factor kappa B (NF-κB) activity is regulated by various posttranslational modifications, of which Ser276 phosphorylation of RelA/p65 is particularly impacted by reactive oxygen species (ROS). This modification is responsible for selective upregulation of a subset of NF-κB targets; however, the precise mechanism remains elusive. ROS have the ability to modify cellular molecules including DNA. One of the most common oxidation products is 8-oxo-7,8-dihydroguanine (8-oxoGua), which is repaired by the 8-oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair pathway. Recently, a new function of OGG1 has been uncovered. OGG1 binds to 8-oxoGua, facilitating the occupancy of NF-κB at promoters and enhancing transcription of pro-inflammatory cytokines and chemokines. In the present study, we demonstrated that an interaction between DNA-bound OGG1 and mitogen-and stress-activated kinase 1 is crucial for RelA/p65 Ser276 phosphorylation. ROS scavenging or OGG1 depletion/inhibition hindered the interaction between mitogen-and stress-activated kinase 1 and RelA/p65, thereby decreasing the level of phospho-Ser276 and leading to significantly lowered expression of ROS-responsive cytokine/chemokine genes, but not that of Nfkbis. Blockade of OGG1 binding to DNA also prevented promoter recruitment of RelA/p65, Pol II, and p-RNAP II in a gene-specific manner. Collectively, the data presented offer new insights into how ROS signaling dictates NF-κB phosphorylation codes and how the promoter-situated substrate-bound OGG1 is exploited by aerobic mammalian cells for timely transcriptional activation of ROS-responsive genes.


DNA Glycosylases , NF-kappa B , Animals , DNA/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Mammals/metabolism , Mitogens , NF-kappa B/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Humans , Mice , Cell Line , Mice, Knockout
15.
Nat Immunol ; 24(9): 1552-1564, 2023 09.
Article En | MEDLINE | ID: mdl-37524800

The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.


NF-kappa B , Transcription Factor RelA , NF-kappa B/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , B-Lymphocytes/metabolism , Binding Sites , Receptors, Antigen/metabolism
16.
J Exp Med ; 220(9)2023 09 04.
Article En | MEDLINE | ID: mdl-37273177

Inborn errors of the NF-κB pathways underlie various clinical phenotypes in humans. Heterozygous germline loss-of-expression and loss-of-function mutations in RELA underlie RELA haploinsufficiency, which results in TNF-dependent chronic mucocutaneous ulceration and autoimmune hematological disorders. We here report six patients from five families with additional autoinflammatory and autoimmune manifestations. These patients are heterozygous for RELA mutations, all of which are in the 3' segment of the gene and create a premature stop codon. Truncated and loss-of-function RelA proteins are expressed in the patients' cells and exert a dominant-negative effect. Enhanced expression of TLR7 and MYD88 mRNA in plasmacytoid dendritic cells (pDCs) and non-pDC myeloid cells results in enhanced TLR7-driven secretion of type I/III interferons (IFNs) and interferon-stimulated gene expression in patient-derived leukocytes. Dominant-negative mutations in RELA thus underlie a novel form of type I interferonopathy with systemic autoinflammatory and autoimmune manifestations due to excessive IFN production, probably triggered by otherwise non-pathogenic TLR ligands.


Autoimmunity , Interferon Type I , Transcription Factor RelA , Humans , Autoimmunity/genetics , Dendritic Cells , Interferon Type I/genetics , Interferon Type I/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
17.
Diabetologia ; 66(8): 1516-1531, 2023 08.
Article En | MEDLINE | ID: mdl-37311878

AIMS/HYPOTHESIS: NF-κB activation unites metabolic and inflammatory responses in many diseases yet less is known about the role that NF-κB plays in normal metabolism. In this study we investigated how RELA impacts the beta cell transcriptional landscape and provides network control over glucoregulation. METHODS: We generated novel mouse lines harbouring beta cell-specific deletion of either the Rela gene, encoding the canonical NF-κB transcription factor p65 (ßp65KO mice), or the Ikbkg gene, encoding the NF-κB essential modulator NEMO (ßNEMOKO mice), as well as ßA20Tg mice that carry beta cell-specific and forced transgenic expression of the NF-κB-negative regulator gene Tnfaip3, which encodes the A20 protein. Mouse studies were complemented by bioinformatics analysis of human islet chromatin accessibility (assay for transposase-accessible chromatin with sequencing [ATAC-seq]), promoter capture Hi-C (pcHi-C) and p65 binding (chromatin immunoprecipitation-sequencing [ChIP-seq]) data to investigate genome-wide control of the human beta cell metabolic programme. RESULTS: Rela deficiency resulted in complete loss of stimulus-dependent inflammatory gene upregulation, consistent with its known role in governing inflammation. However, Rela deletion also rendered mice glucose intolerant because of functional loss of insulin secretion. Glucose intolerance was intrinsic to beta cells as ßp65KO islets failed to secrete insulin ex vivo in response to a glucose challenge and were unable to restore metabolic control when transplanted into secondary chemical-induced hyperglycaemic recipients. Maintenance of glucose tolerance required Rela but was independent of classical NF-κB inflammatory cascades, as blocking NF-κB signalling in vivo by beta cell knockout of Ikbkg (NEMO), or beta cell overexpression of Tnfaip3 (A20), did not cause severe glucose intolerance. Thus, basal p65 activity has an essential and islet-intrinsic role in maintaining normal glucose homeostasis. Genome-wide bioinformatic mapping revealed the presence of p65 binding sites in the promoter regions of specific metabolic genes and in the majority of islet enhancer hubs (~70% of ~1300 hubs), which are responsible for shaping beta cell type-specific gene expression programmes. Indeed, the islet-specific metabolic genes Slc2a2, Capn9 and Pfkm identified within the large network of islet enhancer hub genes showed dysregulated expression in ßp65KO islets. CONCLUSIONS/INTERPRETATION: These data demonstrate an unappreciated role for RELA as a regulator of islet-specific transcriptional programmes necessary for the maintenance of healthy glucose metabolism. These findings have clinical implications for the use of anti-inflammatories, which influence NF-κB activation and are associated with diabetes.


Glucose Intolerance , Transcription Factor RelA , Animals , Humans , Mice , Chromatin , Glucose , NF-kappa B/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
18.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article En | MEDLINE | ID: mdl-37108595

MicroRNA-146b-5p (miR-146b-5p) is up-regulated during and to suppress the inflammation process, although mechanisms involved in the action of miR-146b-5p have not been fully elucidated. This study examined the anti-inflammation effects of miR-146b-5p in lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). An increase in human miR-146b-5p (hsa-miR-146b-5p) expression following the mRNA expression of pro-inflammatory cytokines was observed in LPS-stimulated hDPCs. The expression of hsa-miR-146b-5p and pro-inflammatory cytokines was down-regulated by a nuclear factor-kappa B (NF-κB) inhibitor, and the expression of hsa-miR-146b-5p was also decreased by a JAK1/2 inhibitor. Enforced expression of hsa-miR-146b-5p abolished phosphorylation of NF-κB p65 and down-regulated the expression of pro-inflammatory cytokines and NF-κB signaling components, such as interleukin-1 receptor-associated kinase 1 (IRAK1), tumor necrosis factor receptor-associated factor 6 (TRAF6), and REL-associated protein involved in NF-κB (RELA). Expression of rat miR-146b-5p (rno-miR-146b-5p) and pro-inflammatory cytokine mRNA was also up-regulated in experimentally-induced rat pulpal inflammation in vivo, and rno-miR-146b-5p blocked the mRNA expression of pro-inflammatory mediators and NF-κB signaling components in LPS-stimulated ex vivo cultured rat incisor pulp tissues. These findings suggest that the synthesis of miR-146b-5p is controlled via an NF-κB/IL6/STAT3 signaling cascade, and in turn, miR-146b-5p down-regulates the expression of pro-inflammatory mediators by targeting TRAF6, IRAK1, and RELA in LPS-stimulated hDPCs.


Lipopolysaccharides , MicroRNAs , Humans , Rats , Animals , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Dental Pulp/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
19.
Dig Dis Sci ; 68(7): 3018-3031, 2023 07.
Article En | MEDLINE | ID: mdl-37038032

BACKGROUND/AIMS: Aberrant nuclear factor-κB p65 (NF-κB p65) nuclear import commonly occurs in multiple cancers, including colon cancer. According to BioGRID, we noted that Karyopherin subunit alpha 1 (KPNA1), an important molecular transporter between the nucleus and the cytoplasm, may interact with NF-κB p65. KPNA1 itself is highly expressed in colon adenocarcinoma samples (N = 286) based on The Cancer Genome Atlas (TCGA) database. We aimed to explore the role of KPNA1 in colonic carcinogenesis and to determine whether NF-κB p65 nuclear translocation was involved. METHODS: KPNA1 expressions at mRNA and protein levels were analyzed in colon cancer tissues. The regulatory effect of KPNA1 on malignant biological properties was detected in SW480 and HCT116 colon cancer cells. Coimmunoprecipitation and immunofluorescence were performed to verify the relationship between KPNA1 and NF-κB p65. KPNA1 ubiquitination was also preliminarily investigated. RESULTS: KPNA1 was firstly confirmed as a significantly upregulated gene in our collected clinical colon cancer samples (N = 35). KPNA1 depletion inhibited cell proliferation, induced cell cycle arrest, and diminished migratory and invasive capacity of SW480 and HCT116 cells. Colon cancer cells overexpressing KPNA1 acquired more aggressive behaviors. KPNA1 acted as a transporter to induce the nuclear accumulation of NF-κB p65, thereby activating NF-κB signaling pathway in colon cancer cells. Furthermore, HECT, C2, and WW Domain-Containing E3 Ubiquitin (HECW2) interacted with KPNA1 to induce its ubiquitination. KPNA1 labeled with polyubiquitins was degraded through ubiquitin-proteasome system. CONCLUSION: The present study uncovers a role of KPNA1-NF-κB p65 axis in promoting colonic carcinogenesis.


Adenocarcinoma , Colonic Neoplasms , Humans , Adenocarcinoma/genetics , Carcinogenesis , Colonic Neoplasms/pathology , Karyopherins , NF-kappa B/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Ubiquitin-Protein Ligases , Ubiquitins/metabolism
20.
Redox Biol ; 62: 102704, 2023 06.
Article En | MEDLINE | ID: mdl-37086629

Nuclear factor (NF)-κB plays a pivotal role in the regulation of inflammatory response in macrophages. Berberine (BBR), which is an active constituent isolated from Coptis rhizome, possesses a prominent anti-inflammatory activity. Here we show that BBR changes the global acetylation landscape in LPS-induced protein acetylation of macrophages and reduces the acetylation of NF-κB subunit p65 at site Lys310(p65Lys310), leading to the inhibition of NF-κB translocation and transcriptional activity to suppress the expressions of inflammatory factors. BBR resists the inflammatory response in acute LPS-stimulated mice through downregulation of p65Lys310 acetylation in peritoneal macrophages. In obese mice, BBR alleviates the metabolic disorder and inflammation with the reduced acetylation of p65Lys310 in white adipose tissue. Furthermore, we demonstrate that BBR acts as a regulator of p65Lys310 by inhibiting the expression of p300 in macrophages. Our findings elucidate a new molecular mechanism for the anti-inflammatory effect of BBR via the p300/p65Lys310 axis.


Berberine , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Berberine/pharmacology , Berberine/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Acetylation , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology
...