Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35140183

RESUMEN

Aminoacylated transfer RNAs, which harbor a covalent linkage between amino acids and RNA, are a universally conserved feature of life. Because they are essential substrates for ribosomal translation, aminoacylated oligonucleotides must have been present in the RNA world prior to the evolution of the ribosome. One possibility we are exploring is that the aminoacyl ester linkage served another function before being recruited for ribosomal protein synthesis. The nonenzymatic assembly of ribozymes from short RNA oligomers under realistic conditions remains a key challenge in demonstrating a plausible pathway from prebiotic chemistry to the RNA world. Here, we show that aminoacylated RNAs can undergo template-directed assembly into chimeric amino acid-RNA polymers that are active ribozymes. We demonstrate that such chimeric polymers can retain the enzymatic function of their all-RNA counterparts by generating chimeric hammerhead, RNA ligase, and aminoacyl transferase ribozymes. Amino acids with diverse side chains form linkages that are well tolerated within the RNA backbone and, in the case of an aminoacyl transferase, even in its catalytic center, potentially bringing novel functionalities to ribozyme catalysis. Our work suggests that aminoacylation chemistry may have played a role in primordial ribozyme assembly. Increasing the efficiency of this process provides an evolutionary rationale for the emergence of sequence and amino acid-specific aminoacyl-RNA synthetase ribozymes, which could then have generated the substrates for ribosomal protein synthesis.


Asunto(s)
ARN Catalítico/metabolismo , Aminoacilación de ARN de Transferencia/fisiología , Secuencia de Bases , ADN , Conformación de Ácido Nucleico , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
2.
PLoS Genet ; 17(7): e1009675, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34324497

RESUMEN

Emerging evidence indicates that tRNA-derived small RNAs (tsRNAs) are involved in fine-tuning gene expression and become dysregulated in various cancers. We recently showed that the 22nt LeuCAG3´tsRNA from the 3´ end of tRNALeu is required for efficient translation of a ribosomal protein mRNA and ribosome biogenesis. Inactivation of this 3´tsRNA induced apoptosis in rapidly dividing cells and suppressed the growth of a patient-derived orthotopic hepatocellular carcinoma in mice. The mechanism involved in the generation of the 3´tsRNAs remains elusive and it is unclear if the 3´-ends of 3´tsRNAs are aminoacylated. Here we report an enzymatic method utilizing exonuclease T to determine the 3´charging status of tRNAs and tsRNAs. Our results showed that the LeuCAG3´tsRNA, and two other 3´tsRNAs are fully aminoacylated. When the leucyl-tRNA synthetase (LARS1) was inhibited, there was no change in the total tRNALeu concentration but a reduction in both the charged tRNALeu and LeuCAG3´tsRNA, suggesting the 3´tsRNAs are fully charged and originated solely from the charged mature tRNA. Altering LARS1 expression or the expression of various tRNALeu mutants were also shown to affect the generation of the LeuCAG3´tsRNA further suggesting they are created in a highly regulated process. The fact that the 3´tsRNAs are aminoacylated and their production is regulated provides additional insights into their importance in post-transcriptional gene regulation that includes coordinating the production of the protein synthetic machinery.


Asunto(s)
ARN de Transferencia/biosíntesis , ARN de Transferencia/genética , Aminoacilación de ARN de Transferencia/genética , Aminoácidos/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Leucina/genética , Leucina/metabolismo , Procesamiento Postranscripcional del ARN , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas , Aminoacilación de ARN de Transferencia/fisiología
3.
Biochemistry ; 60(6): 477-488, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33523633

RESUMEN

Aminoacylated tRNAs are the substrates for ribosomal protein synthesis in all branches of life, implying an ancient origin for aminoacylation chemistry. In the 1970s, Orgel and colleagues reported potentially prebiotic routes to aminoacylated nucleotides and their RNA-templated condensation to form amino acid-bridged dinucleotides. However, it is unclear whether such reactions would have aided or impeded non-enzymatic RNA replication. Determining whether aminoacylated RNAs could have been advantageous in evolution prior to the emergence of protein synthesis remains a key challenge. We therefore tested the ability of aminoacylated RNA to participate in both templated primer extension and ligation reactions. We find that at low magnesium concentrations that favor fatty acid-based protocells, these reactions proceed orders of magnitude more rapidly than when initiated from the cis-diol of unmodified RNA. We further demonstrate that amino acid-bridged RNAs can act as templates in a subsequent round of copying. Our results suggest that aminoacylation facilitated non-enzymatic RNA replication, thus outlining a potentially primordial functional link between aminoacylation chemistry and RNA replication.


Asunto(s)
Aminoacilación de ARN de Transferencia/fisiología , Aminoacilación/fisiología , Fosfatos de Dinucleósidos/metabolismo , Conformación de Ácido Nucleico , Nucleótidos/metabolismo , ARN/metabolismo , Moldes Genéticos , Aminoacilación de ARN de Transferencia/genética
4.
Methods Mol Biol ; 2001: 299-315, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134577

RESUMEN

Flexizymes, highly flexible tRNA aminoacylation ribozymes, have enabled charging of virtually any amino acid (including non-proteogenic ones) onto tRNA molecules. Coupling to a custom-made in vitro translation system, namely the flexible in vitro translation (FIT) system, has unveiled the remarkable tolerance of the ribosome toward molecules, remote from what nature has selected to carry out its elaborate functions. Among the very diverse molecules and chemistries that have been ribosomally incorporated, a plethora of entities capable of mediating intramolecular cyclization have revolutionized the design and discovery of macrocyclic peptides. These macrocyclization reactions (which can be spontaneous, chemical, or enzymatic) have all served as tools for the discovery of peptides with natural-like structures and properties. Coupling of the FIT system and mRNA display techniques, known as the random non-standard peptide integrated discovery (RaPID) system, has in turn allowed for the simultaneous screening of trillions of macrocyclic peptides against challenging biological targets. The macrocyclization methodologies are chosen depending on the structural and functional characteristics of the desired molecule. Thus, they can emanate from the peptide's N-terminus or its side chains, attributing flexibility or rigidity, or even result in the installation of fluorescent probes.


Asunto(s)
Aminoácidos/química , Compuestos Macrocíclicos/química , Péptidos Cíclicos/química , ARN Catalítico/química , ARN Catalítico/metabolismo , ARN de Transferencia/metabolismo , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Química Farmacéutica , Ciclización , Descubrimiento de Drogas , Código Genético , Compuestos Macrocíclicos/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Péptidos Cíclicos/metabolismo , ARN Catalítico/genética , Ribosomas/enzimología , Ribosomas/metabolismo , Aminoacilación de ARN de Transferencia/fisiología
5.
Biochim Biophys Acta Gene Regul Mech ; 1861(4): 387-400, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29155070

RESUMEN

Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.


Asunto(s)
Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/fisiología , Citosol/enzimología , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia/fisiología , Aminoacil-ARNt Sintetasas/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Transporte Biológico , Citocinas/biosíntesis , Células Eucariotas/enzimología , VIH/fisiología , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Membrana/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Proteínas de Neoplasias/fisiología , Neovascularización Fisiológica/fisiología , Fagocitosis/fisiología , Células Procariotas/enzimología , Isoformas de Proteínas/fisiología , Virus del Sarcoma de Rous/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Especificidad de la Especie , Vertebrados/genética , Vertebrados/metabolismo
6.
Methods Cell Biol ; 122: 415-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24857741

RESUMEN

Nuclear-cytoplasmic tRNA transport involves multiple pathways that are segregated by the involvement of distinct proteins. The tRNA export process begins in the nucleolus, where the functionality of newly produced tRNAs are tested by aminoacylation, and ends with the delivery of the exported aminoacyl tRNAs to the eukaryotic elongation factor eEF-1A for utilization in protein synthesis in the cytoplasm. Recent studies have identified a number of proteins that participate in nuclear tRNA export in both yeast and mammals. However, genetic and biochemical evidence suggest that additional components, which have yet to be identified, also participate in nuclear-cytoplasmic tRNA trafficking. Here we review key strategies that have led to the identification and characterization of proteins that are involved in the nuclear tRNA export process in yeasts and mammals. The approaches described will greatly facilitate the identification and delineation of the roles of new proteins involved in nuclear export of tRNAs to the cytoplasm.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Región Organizadora del Nucléolo/genética , Transporte de ARN/fisiología , ARN de Transferencia/genética , Aminoacilación de ARN de Transferencia/fisiología , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Genes Reporteros/genética , Genes Supresores , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Carioferinas/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , Factor 1 de Elongación Peptídica/genética , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , beta Carioferinas/metabolismo
7.
RNA Biol ; 11(10): 1313-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25603118

RESUMEN

Eumetazoan mitochondrial tRNAs possess structures (identity elements) that require the specific recognition by their cognate nuclear-encoded aminoacyl-tRNA synthetases. The AGA (arginine) codon of the standard genetic code has been reassigned to serine/glycine/termination in eumetazoan organelles and is translated in some organisms by a mitochondrially encoded tRNA(Ser)UCU. One mechanism to prevent mistranslation of the AGA codon as arginine would require a set of tRNA identity elements distinct from those possessed by the cytoplasmic tRNAArg in which the major identity elements permit the arginylation of all 5 encoded isoacceptors. We have performed comparative in vitro aminoacylation using an insect mitochondrial arginyl-tRNA synthetase and tRNAArgUCG structural variants. The established identity elements are sufficient to maintain the fidelity of tRNASerUCU reassignment. tRNAs having a UCU anticodon cannot be arginylated but can be converted to arginine acceptance by identity element transplantation. We have examined the evolutionary distribution and functionality of these tRNA elements within metazoan taxa. We conclude that the identity elements that have evolved for the recognition of mitochondrial tRNAArgUCG by the nuclear encoded mitochondrial arginyl-tRNA synthetases of eumetazoans have been extensively, but not universally conserved, throughout this clade. They ensure that the AGR codon reassignment in eumetazoan mitochondria is not compromised by misaminoacylation. In contrast, in other metazoans, such as Porifera, whose mitochondrial translation is dictated by the universal genetic code, recognition of the 2 encoded tRNAArgUCG/UCU isoacceptors is achieved through structural features that resemble those employed by the yeast cytoplasmic system.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Anticodón/genética , Evolución Biológica , Mitocondrias/genética , ARN de Transferencia de Arginina/metabolismo , Aminoacilación de ARN de Transferencia/fisiología , Aminoacil-ARNt Sintetasas/genética , Animales , Secuencia de Bases , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Escarabajos , Código Genético , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia de Arginina/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 288(45): 32539-32552, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24072705

RESUMEN

The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNA(Gln) biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNA(Glu) and tRNA(Gln), determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNA(Gln) biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.


Asunto(s)
Apicoplastos/enzimología , Glutamato-ARNt Ligasa/metabolismo , Plasmodium berghei/enzimología , Plasmodium falciparum/enzimología , Biosíntesis de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Aminoacilación de ARN de Transferencia/fisiología , Apicoplastos/genética , Glutamato-ARNt Ligasa/genética , Humanos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(52): 21040-5, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22167803

RESUMEN

For efficient aminoacylation, tRNAs carry the conserved 3'-terminal sequence C-C-A, which is synthesized by highly specific tRNA nucleotidyltransferases (CCA-adding enzymes). In several prokaryotes, this function is accomplished by separate enzymes for CC- and A-addition. As A-adding enzymes carry an N-terminal catalytic core identical to that of CCA-adding enzymes, it is unclear why their activity is restricted. Here, it is shown that C-terminal deletion variants of A-adding enzymes acquire full and precise CCA-incorporating activity. The deleted region seems to be responsible for tRNA primer selection, restricting the enzyme's specificity to tRNAs ending with CC. The data suggest that A-adding enzymes carry an intrinsic CCA-adding activity that can be reactivated by the introduction of deletions in the C-terminal domain. Furthermore, a unique subtype of CCA-adding enzymes could be identified that evolved out of A-adding enzymes, suggesting that mutations and deletions in nucleotidyltransferases can lead to altered and even more complex activities, as a simple A-incorporation is converted into sequence-specific addition of C and A residues. Such activity-modifying events may have had an important role in the evolution of tRNA nucleotidyltransferases.


Asunto(s)
Deinococcus/enzimología , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Aminoacilación de ARN de Transferencia/genética , Secuencia de Aminoácidos , Bacillus/enzimología , Clonación Molecular , Análisis por Conglomerados , Biología Computacional , Cartilla de ADN/genética , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Proteínas Recombinantes de Fusión/genética , Alineación de Secuencia , Especificidad de la Especie , Thermus thermophilus/enzimología , Aminoacilación de ARN de Transferencia/fisiología
10.
Nature ; 462(7272): 522-6, 2009 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19940929

RESUMEN

Translational fidelity, essential for protein and cell function, requires accurate transfer RNA (tRNA) aminoacylation. Purified aminoacyl-tRNA synthetases exhibit a fidelity of one error per 10,000 to 100,000 couplings. The accuracy of tRNA aminoacylation in vivo is uncertain, however, and might be considerably lower. Here we show that in mammalian cells, approximately 1% of methionine (Met) residues used in protein synthesis are aminoacylated to non-methionyl-tRNAs. Remarkably, Met-misacylation increases up to tenfold upon exposing cells to live or non-infectious viruses, toll-like receptor ligands or chemically induced oxidative stress. Met is misacylated to specific non-methionyl-tRNA families, and these Met-misacylated tRNAs are used in translation. Met-misacylation is blocked by an inhibitor of cellular oxidases, implicating reactive oxygen species (ROS) as the misacylation trigger. Among six amino acids tested, tRNA misacylation occurs exclusively with Met. As Met residues are known to protect proteins against ROS-mediated damage, we propose that Met-misacylation functions adaptively to increase Met incorporation into proteins to protect cells against oxidative stress. In demonstrating an unexpected conditional aspect of decoding mRNA, our findings illustrate the importance of considering alternative iterations of the genetic code.


Asunto(s)
Inmunidad Innata , Metionina/metabolismo , Estrés Oxidativo/fisiología , Aminoacilación de ARN de Transferencia/fisiología , Adenoviridae/fisiología , Animales , Código Genético , Células HeLa , Humanos , Ligandos , Metionina/genética , Ratones , Modelos Genéticos , NADPH Oxidasas/metabolismo , Orthomyxoviridae/fisiología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especificidad por Sustrato , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Aminoacilación de ARN de Transferencia/efectos de los fármacos
11.
Mol Biol (Mosk) ; 43(2): 230-42, 2009.
Artículo en Ruso | MEDLINE | ID: mdl-19425492

RESUMEN

Aminoacyl-tRNA synthetases (codases) catalyze aminoacylation of a particular tRNA with the corresponding amino acid at the first step of protein biosynthesis. The review considers universal structure-functional characteristics of the largest family of enzymes partitioned into two classes. Modes of tRNA binding and recognition, and additional editing activity, which are responsible for the fidelity of aminoacyl-tRNA synthesis, are discussed. The aaRSs catalytic cores are highly relevant to the ancient metabolic reactions, namely, amino acids and cofactors biosynthesis. Thus, the biosynthetic machinery for producing amino acids had a profound effect on almost every aspect of aminoacylation reaction. The review also deals with secondary functions of synthetases in various processes of cell metabolism. Certain of these functions have to do with complex pathophysiological mechanisms involved in disease production. Their investigation may help to develop new diagnostic techniques and therapies.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Evolución Molecular , Aminoacil-ARN de Transferencia/biosíntesis , Aminoacilación de ARN de Transferencia/fisiología , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/historia , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Aminoacil-ARN de Transferencia/genética
12.
J Biol Chem ; 284(24): 16210-16217, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19386587

RESUMEN

The mitochondrion of the parasitic protozoon Trypanosoma brucei does not encode any tRNAs. This deficiency is compensated for by partial import of nearly all of its cytosolic tRNAs. Most trypanosomal aminoacyl-tRNA synthetases are encoded by single copy genes, suggesting the use of the same enzyme in the cytosol and in the mitochondrion. However, the T. brucei genome encodes two distinct genes for eukaryotic aspartyl-tRNA synthetase (AspRS), although the cell has a single tRNAAsp isoacceptor only. Phylogenetic analysis showed that the two T. brucei AspRSs evolved from a duplication early in kinetoplastid evolution and also revealed that eight other major duplications of AspRS occurred in the eukaryotic domain. RNA interference analysis established that both Tb-AspRS1 and Tb-AspRS2 are essential for growth and required for cytosolic and mitochondrial Asp-tRNAAsp formation, respectively. In vitro charging assays demonstrated that the mitochondrial Tb-AspRS2 aminoacylates both cytosolic and mitochondrial tRNAAsp, whereas the cytosolic Tb-AspRS1 selectively recognizes cytosolic but not mitochondrial tRNAAsp. This indicates that cytosolic and mitochondrial tRNAAsp, although derived from the same nuclear gene, are physically different, most likely due to a mitochondria-specific nucleotide modification. Mitochondrial Tb-AspRS2 defines a novel group of eukaryotic AspRSs with an expanded substrate specificity that are restricted to trypanosomatids and therefore may be exploited as a novel drug target.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , ARN de Transferencia de Aspártico/biosíntesis , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Adenosina Trifosfato/metabolismo , Animales , Citosol/enzimología , Diseño de Fármacos , Mitocondrias/enzimología , Filogenia , Especificidad por Sustrato , Aminoacilación de ARN de Transferencia/fisiología , Trypanosoma brucei brucei/crecimiento & desarrollo
13.
J Biol Chem ; 283(45): 30699-706, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18755686

RESUMEN

Previous studies showed that valyl-tRNA synthetase of Saccharomyces cerevisiae contains an N-terminal polypeptide extension of 97 residues, which is absent from its bacterial relatives, but is conserved in its mammalian homologues. We showed herein that this appended domain and its human counterpart are both nonspecific tRNA-binding domains (K(d) approximately 0.5 microm). Deletion of the appended domain from the yeast enzyme severely impaired its tRNA binding, aminoacylation, and complementation activities. This N-domain-deleted yeast valyl-tRNA synthetase mutant could be rescued by fusion of the equivalent domain from its human homologue. Moreover, fusion of the N-domain of the yeast enzyme or its human counterpart to Escherichia coli glutaminyl-tRNA synthetase enabled the otherwise "inactive" prokaryotic enzyme to function as a yeast enzyme in vivo. Different from the native yeast enzyme, which showed different affinities toward mixed tRNA populations, the fusion enzyme exhibited similar binding affinities for all yeast tRNAs. These results not only underscore the significance of nonspecific tRNA binding in aminoacylation, but also provide insights into the mechanism of the formation of aminoacyl-tRNAs.


Asunto(s)
ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Aminoacilación de ARN de Transferencia/fisiología , Valina-ARNt Ligasa/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Valina-ARNt Ligasa/genética
14.
J Biol Chem ; 282(42): 30856-68, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17690095

RESUMEN

D-amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Aspartyl-tRNA synthetase (AspRS) can misacylate tRNA(Asp) with D-aspartate instead of its usual substrate, L-Asp. We investigate how the preference for L-Asp arises, using molecular dynamics simulations. Asp presents a special problem, having pseudosymmetry broken only by its ammonium group, and AspRS must protect not only against D-Asp, but against an "inverted" orientation where the two substrate carboxylates are swapped. We compare L-Asp and D-Asp, in both orientations, and succinate, where the ammonium group is removed and the ligand has an additional negative charge. All possible ammonium positions on the ligand are thus scanned, providing information on electrostatic interactions. As controls, we simulate a Q199E mutation, obtaining a reduction in binding free energy in agreement with experiment, and we simulate TyrRS, which can misacylate tRNA(Tyr) with D-Tyr. For both TyrRS and AspRS, we obtain a moderate binding free energy difference DeltaDeltaG between the L- and D-amino acids, in agreement with their known ability to misacylate their tRNAs. In contrast, we predict that AspRS is strongly protected against inverted L-Asp binding. For succinate, kinetic measurements reveal a DeltaDeltaG of over 5 kcal/mol, favoring L-Asp. The simulations show how chiral discriminations arises from the structures, with two AspRS conformations acting in different ways and proton uptake by nearby histidines playing a role. A complex network of charges protects AspRS against most binding errors, making the engineering of its specificity a difficult challenge.


Asunto(s)
Aspartato-ARNt Ligasa/química , Ácido D-Aspártico/química , Modelos Químicos , Modelos Moleculares , Compuestos de Amonio Cuaternario/química , ARN de Transferencia de Aspártico/química , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Sitios de Unión/genética , Simulación por Computador , Ácido D-Aspártico/metabolismo , Cinética , Ligandos , Mutación Missense , Unión Proteica/genética , Compuestos de Amonio Cuaternario/farmacología , ARN de Transferencia de Aspártico/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Especificidad por Sustrato/genética , Ácido Succínico/química , Ácido Succínico/metabolismo , Aminoacilación de ARN de Transferencia/fisiología
15.
J Neurosci ; 26(41): 10397-406, 2006 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-17035524

RESUMEN

Charcot-Marie-Tooth disease type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V) are axonal neuropathies characterized by a phenotype that is more severe in the upper extremities. We previously implicated mutations in the gene encoding glycyl-tRNA synthetase (GARS) as the cause of CMT2D and dSMA-V. GARS is a member of the family of aminoacyl-tRNA synthetases responsible for charging tRNA with cognate amino acids; GARS ligates glycine to tRNA(Gly). Here, we present functional analyses of disease-associated GARS mutations and show that there are not any significant mutation-associated changes in GARS expression levels; that the majority of identified GARS mutations modeled in yeast severely impair viability; and that, in most cases, mutant GARS protein mislocalizes in neuronal cells. Indeed, four of the five mutations studied show loss-of-function features in at least one assay, suggesting that tRNA-charging deficits play a role in disease pathogenesis. Finally, we detected endogenous GARS-associated granules in the neurite projections of cultured neurons and in the peripheral nerve axons of normal human tissue. These data are particularly important in light of the recent identification of CMT-associated mutations in another tRNA synthetase gene [YARS (tyrosyl-tRNA synthetase gene)]. Together, these findings suggest that tRNA-charging enzymes play a key role in maintaining peripheral axons.


Asunto(s)
Axones/enzimología , Glicina-ARNt Ligasa/genética , Mutación , Nervios Periféricos/enzimología , Aminoacilación de ARN de Transferencia/fisiología , Animales , Células COS , Línea Celular Tumoral , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/enzimología , Enfermedad de Charcot-Marie-Tooth/genética , Chlorocebus aethiops , Regulación de la Expresión Génica/fisiología , Glicina-ARNt Ligasa/fisiología , Humanos , Ratones
16.
Mol Cell ; 20(4): 613-22, 2005 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-16307924

RESUMEN

Retention of the reading frame in ribosomal complexes after single-round translocation depends on the acylation state of the tRNA. When tRNA lacking a peptidyl group is translocated to the P site, the mRNA slips to allow re-pairing of the tRNA with a nearby out-of-frame codon. Here, we show that this ribosomal activity results from movement of tRNA into the P/E hybrid state. Slippage of mRNA is suppressed by 3' truncation of the translocated tRNA, increased MgCl2 concentration, and mutation C2394A of the 50S E site, and each of these conditions inhibits P/E-state formation. Mutation G2252U of the 50S P site stimulates mRNA slippage, suggesting that decreased affinity of tRNA for the P/P state also destabilizes mRNA in the complex. The effects of G2252U are suppressed by C2394A, further implicating the P/E state in mRNA destabilization. This work uncovers a functional attribute of the P/E state crucial for understanding translation.


Asunto(s)
Anticodón/metabolismo , Codón/metabolismo , Péptidos/metabolismo , Estabilidad del ARN/genética , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Sitios de Unión , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cloruro de Magnesio , Mutación , Conformación de Ácido Nucleico , Extensión de la Cadena Peptídica de Translación , Péptidos/genética , Biosíntesis de Proteínas/fisiología , Transporte de Proteínas/genética , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Aminoacilación de ARN de Transferencia/fisiología
18.
EMBO J ; 24(10): 1842-51, 2005 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-15861125

RESUMEN

The mutation sufY204 mediates suppression of a +1 frameshift mutation in the histidine operon of Salmonella enterica serovar Typhimurium and synthesis of two novel modified nucleosides in tRNA. The sufY204 mutation, which results in an amino-acid substitution in a protein, is, surprisingly, dominant over its wild-type allele and thus it is a "gain of function" mutation. One of the new nucleosides is 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) modified by addition of a C(10)H(17) side chain of unknown structure. Increased amounts of both nucleosides in tRNA are correlated to gene dosage of the sufY204 allele, to an increased efficiency of frameshift suppression, and to a decreased amount of the wobble nucleoside mnm(5)s(2)U34 in tRNA. Purified tRNA(Gln)(cmnm(5)s(2)UUG) in the mutant strain contains a modified nucleoside similar to the novel nucleosides and the level of aminoacylation of tRNA(Gln)(cmnm(5)s(2)UUG) was reduced to 26% compared to that found in the wild type (86%). The results are discussed in relation to the mechanism of reading frame maintenance and the evolution of modified nucleosides in tRNA.


Asunto(s)
Mutación del Sistema de Lectura , Genes Supresores , Nucleósidos/biosíntesis , Operón , Sustitución de Aminoácidos , Operón Lac/genética , Nucleósidos/química , ARN de Transferencia/química , ARN de Transferencia/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Ácido Selénico , Compuestos de Selenio/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Aminoacilación de ARN de Transferencia/genética , Aminoacilación de ARN de Transferencia/fisiología
19.
Biochimie ; 86(1): 21-9, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14987797

RESUMEN

The specificity of transfer RNA aminoacylation by cognate aminoacyl-tRNA synthetase is a crucial step for synthesis of functional proteins. It is established that the aminoacylation identity of a single tRNA or of a family of tRNA isoacceptors is linked to the presence of positive signals (determinants) allowing recognition by cognate synthetases and negative signals (antideterminants) leading to rejection by the noncognate ones. The completion of identity sets was generally tested by transplantation of the corresponding nucleotides into one or several host tRNAs which acquire as a consequence the new aminoacylation specificities. Such transplantation experiments were also useful to detect peculiar structural refinements required for optimal expression of a given aminoacylation identity set within a host tRNA. This study explores expression of the defined yeast aspartate identity set into different tRNA scaffolds of a same specificity, namely the four yeast tRNA(Arg) isoacceptors. The goal was to investigate whether expression of the new identity is similar due to the unique specificity of the host tRNAs or whether it is differently expressed due to their peculiar sequences and structural features. In vitro transcribed native tRNA(Arg) isoacceptors and variants bearing the aspartate identity elements were prepared and their aminoacylation properties established. The four wild-type isoacceptors are active in arginylation with catalytic efficiencies in a 20-fold range and are inactive in aspartylation. While transplanted tRNA(1)(Arg) and tRNA(4)(Arg) are converted into highly efficient substrates for yeast aspartyl-tRNA synthetase, transplanted tRNA(2)(Arg) and tRNA(3)(Arg) remain poorly aspartylated. Search for antideterminants in these two tRNAs reveals idiosyncratic features. Conversion of the single base-pair C6-G67 into G6-C67, the pair present in tRNA(Asp), allows full expression of the aspartate identity in the transplanted tRNA(2)(Arg), but not in tRNA(3)(Arg). It is concluded that the different isoacceptor tRNAs protect themselves from misaminoacylation by idiosyncratic pathways of antidetermination.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia/metabolismo , Anticodón , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Clonación Molecular , Simulación por Computador , Escherichia coli , Modelos Químicos , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Unión Proteica/fisiología , ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/genética , Saccharomyces cerevisiae , Especificidad por Sustrato/genética , Especificidad por Sustrato/fisiología , Thermus thermophilus , Aminoacilación de ARN de Transferencia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA