Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.790
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38724194

NUT carcinoma (NC) is an aggressive cancer with no effective treatment. About 70% of NUT carcinoma is associated with chromosome translocation events that lead to the formation of a BRD4::NUTM1 fusion gene. Because the BRD4::NUTM1 gene is unequivocally cytotoxic when ectopically expressed in cell lines, questions remain on whether the fusion gene can initiate NC. Here, we report the first genetically engineered mouse model for NUT carcinoma that recapitulates the human t(15;19) chromosome translocation in mice. We demonstrated that the mouse t(2;17) syntenic chromosome translocation, forming the Brd4::Nutm1 fusion gene, could induce aggressive carcinomas in mice. The tumors present histopathological and molecular features similar to human NC, with enrichment of undifferentiated cells. Similar to the reports of human NC incidence, Brd4::Nutm1 can induce NC from a broad range of tissues with a strong phenotypical variability. The consistent induction of poorly differentiated carcinoma demonstrated a strong reprogramming activity of BRD4::NUTM1. The new mouse model provided a critical preclinical model for NC that will lead to better understanding and therapy development for NC.


Nuclear Proteins , Oncogene Proteins, Fusion , Transcription Factors , Animals , Mice , Oncogene Proteins, Fusion/genetics , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Disease Models, Animal , Carcinoma/genetics , Carcinoma/metabolism , Translocation, Genetic/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Bromodomain Containing Proteins
2.
Nat Commun ; 15(1): 3844, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714690

Multiple myeloma (MM) is a heterogeneous disease characterized by frequent MYC translocations. Sporadic MYC activation in the germinal center of genetically engineered Vk*MYC mice is sufficient to induce plasma cell tumors in which a variety of secondary mutations are spontaneously acquired and selected over time. Analysis of 119 Vk*MYC myeloma reveals recurrent copy number alterations, structural variations, chromothripsis, driver mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identify frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC. In summary, here we credential the Vk*MYC mouse as a unique resource to explore MM genomic evolution and describe a fully annotated collection of diverse and immortalized murine MM tumors.


Multiple Myeloma , Proto-Oncogene Proteins c-myc , Animals , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Humans , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Transformation, Neoplastic/genetics , Mutation , Signal Transduction/genetics , Mice, Transgenic , NF-kappa B/metabolism , NF-kappa B/genetics , Mutagenesis, Insertional , DNA Copy Number Variations/genetics , Genomics/methods , Translocation, Genetic
3.
Fr J Urol ; 34(2): 102569, 2024 Mar.
Article En | MEDLINE | ID: mdl-38717457

INTRODUCTION: Microphthalmia Transfactor Family (MiTF) translocation renal cell carcinomas (RCCs) represent a rare subtype of renal cell cancers. They are diagnosed in young patients and have a poor prognosis. The aim of our study was to analyze the clinical and pathological features of patients with MiTF RCC. MATERIAL AND METHOD: We performed a retrospective, monocentric, descriptive study including all patients operated for RCC between January 2015 and January 2023. The diagnosis of MiTF RCC was suspected by immunohistochemistry (IHC) and confirmed by fluorescent in situ hybridization (FISH). Survival data according to histological subtype (MiTF versus ccRCC) were analyzed using the Kaplan-Meier method and compared using a log-rank test. The primary endpoint was recurrence-free survival (RFS). A descriptive cohort analysis was performed. RESULTS: Of the 960 patients included, 19 (2%) had FISH-confirmed MiTF tumors. The median age at diagnosis was 42 years [18-75], the sex ratio was 1.11 females for 1 male, and 4 (21%) patients were immediately metastatic. Median RFS was 21months for patients in the MiTF group and was significantly lower than that of ccRCC patients, HR=4.33 [CI95% 2.06; 9.10; P<0.001]. Of the 11 patients with cT1-T2 tumors, 9 (81.8%) were treated with nephron sparing-surgery, with 2 (22.2%) harbored local recurrence. CONCLUSION: Our study shows that patients with MiTF translocation RCC have a significantly lower RFS than non-MiTF RCC patients. Nephron sparing surgery must be weighted by the high risk of recurrence in this particularly young population.


Carcinoma, Renal Cell , Kidney Neoplasms , Microphthalmia-Associated Transcription Factor , Translocation, Genetic , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Kidney Neoplasms/surgery , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/surgery , Male , Female , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Adult , Middle Aged , Retrospective Studies , Aged , Young Adult , Adolescent
4.
Sci Adv ; 10(18): eadl1922, 2024 May 03.
Article En | MEDLINE | ID: mdl-38691604

The most common form of facioscapulohumeral dystrophy (FSHD1) is caused by a partial loss of the D4Z4 macrosatellite repeat array in the subtelomeric region of chromosome 4. Patients with FSHD1 typically carry 1 to 10 D4Z4 repeats, whereas nonaffected individuals have 11 to 150 repeats. The ~150-kilobyte subtelomeric region of the chromosome 10q exhibits a ~99% sequence identity to the 4q, including the D4Z4 array. Nevertheless, contractions of the chr10 array do not cause FSHD or any known disease, as in most people D4Z4 array on chr10 is flanked by the nonfunctional polyadenylation signal, not permitting the DUX4 expression. Here, we attempted to correct the FSHD genotype by a CRISPR-Cas9-induced exchange of the chr4 and chr10 subtelomeric regions. We demonstrated that the induced t(4;10) translocation can generate recombinant genotypes translated into improved FSHD phenotype. FSHD myoblasts with the t(4;10) exhibited reduced expression of the DUX4 targets, restored PAX7 target expression, reduced sensitivity to oxidative stress, and improved differentiation capacity.


Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 4 , Genotype , Homeodomain Proteins , Muscular Dystrophy, Facioscapulohumeral , Phenotype , Telomere , Humans , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 4/genetics , CRISPR-Cas Systems , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Myoblasts/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Telomere/genetics , Telomere/metabolism , Translocation, Genetic
5.
Front Endocrinol (Lausanne) ; 15: 1378635, 2024.
Article En | MEDLINE | ID: mdl-38737550

Objective: The objective of this study is to investigate the factors that influence the live birth rate (LBR) of the first single euploid frozen-thawed blastocyst transfer (FBT) cycles after preimplantation genetic testing for structural rearrangements (PGT-SR) in couples with balanced chromosomal translocations (BCT). Design: Single center, retrospective and observational study. Methods: A total of 336 PGT-SR and the first single euploid FBT cycles between July 2016 and December 2022 were included in this study. The patients were divided into two groups according to the live birth outcomes. The parameters of the study population, controlled ovarian stimulation cycles, and FBT cycles were analyzed. Multivariable binary logistic regression was performed to find the factors that affected the LBR. Results: The percentage of blastocysts at developmental stage Day 5 compared to Day 6 (51.8% vs. 30.8%; P<0.001) and with morphology ≥BB compared to

Cryopreservation , Embryo Transfer , Live Birth , Pregnancy Rate , Preimplantation Diagnosis , Translocation, Genetic , Humans , Female , Pregnancy , Retrospective Studies , Adult , Embryo Transfer/methods , Male , Preimplantation Diagnosis/methods , Birth Rate , Fertilization in Vitro/methods , Pregnancy Outcome , Blastocyst , Ovulation Induction/methods
6.
Genes Chromosomes Cancer ; 63(4): e23235, 2024 Apr.
Article En | MEDLINE | ID: mdl-38656651

In myeloid neoplasms, both fusion genes and gene mutations are well-established events identifying clinicopathological entities. In this study, we present a thus far undescribed t(X;21)(p11.4;q22.12) in five cases with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). The translocation was isolated or accompanied by additional changes. It did not generate any fusion gene or gene deregulation by aberrant juxtaposition with regulatory sequences. Molecular analysis by targeted next-generation sequencing showed that the translocation was accompanied by at least one somatic mutation in TET2, EZH2, RUNX1, ASXL1, SRSF2, ZRSR2, DNMT3A, and NRAS genes. Co-occurrence of deletion of RUNX1 in 21q22 and of BCOR in Xp11 was associated with t(X;21). BCOR haploinsufficiency corresponded to a significant hypo-expression in t(X;21) cases, compared to normal controls and to normal karyotype AML. By contrast, RUNX1 expression was not altered, suggesting a compensatory effect by the remaining allele. Whole transcriptome analysis showed that overexpression of HOXA9 differentiated t(X;21) from both controls and t(8;21)-positive AML. In conclusion, we characterized a new recurrent reciprocal t(X;21)(p11.4;q22.12) chromosome translocation in MDS and AML, generating simultaneous BCOR and RUNX1 deletions rather than a fusion gene at the genomic level.


Core Binding Factor Alpha 2 Subunit , Myelodysplastic Syndromes , Proto-Oncogene Proteins , Repressor Proteins , Translocation, Genetic , Adult , Aged , Female , Humans , Male , Middle Aged , Chromosomes, Human, Pair 21/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics
7.
Sci Rep ; 14(1): 9000, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637641

Long-read genome sequencing (lrGS) is a promising method in genetic diagnostics. Here we investigate the potential of lrGS to detect a disease-associated chromosomal translocation between 17p13 and the 19 centromere. We constructed two sets of phased and non-phased de novo assemblies; (i) based on lrGS only and (ii) hybrid assemblies combining lrGS with optical mapping using lrGS reads with a median coverage of 34X. Variant calling detected both structural variants (SVs) and small variants and the accuracy of the small variant calling was compared with those called with short-read genome sequencing (srGS). The de novo and hybrid assemblies had high quality and contiguity with N50 of 62.85 Mb, enabling a near telomere to telomere assembly with less than a 100 contigs per haplotype. Notably, we successfully identified the centromeric breakpoint of the translocation. A concordance of 92% was observed when comparing small variant calling between srGS and lrGS. In summary, our findings underscore the remarkable potential of lrGS as a comprehensive and accurate solution for the analysis of SVs and small variants. Thus, lrGS could replace a large battery of genetic tests that were used for the diagnosis of a single symptomatic translocation carrier, highlighting the potential of lrGS in the realm of digital karyotyping.


High-Throughput Nucleotide Sequencing , Translocation, Genetic , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Base Sequence , Centromere/genetics
8.
Front Immunol ; 15: 1380641, 2024.
Article En | MEDLINE | ID: mdl-38601144

Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.


B-Lymphocyte Subsets , Mice , Animals , B-Lymphocyte Subsets/metabolism , B-Lymphocytes , Immunoglobulin Light Chains/genetics , Translocation, Genetic , Immunoglobulin M , Cell Count
9.
Rinsho Ketsueki ; 65(3): 147-152, 2024.
Article Ja | MEDLINE | ID: mdl-38569857

A 41-year-old woman with right shoulder pain was found to have multiple tumors with osteolysis and M-proteinemia. Abnormal plasma cells (CD38+, CD138+, Igλ≫κ) were detected in 1.4% of bone marrow nucleated cells, and G-banding analysis revealed a 46,XX,t (8;14), (q24;q32) karyotype in 4 of 20 cells analyzed. A biopsy specimen from an extramedullary lesion had a packed proliferation of aberrant plasmacytoid cells with positive IgH::MYC fusion signals on fluorescence in situ hybridization. The patient was diagnosed with symptomatic multiple myeloma and treated with the BLd regimen, which significantly reduced M protein levels. Extramedullary lesions were initially reduced, but increased again after four cycles. The lesions disappeared with subsequent EPOCH chemotherapy and radiation, and complete remission was confirmed. The patient was then treated with high-dose chemotherapy with autologous peripheral blood stem cell transplantation. Complete remission was maintained for over one year with lenalidomide maintenance therapy. A solitary IgH::MYC chromosomal translocation is extremely rare in multiple myeloma and may be associated with high tumor proliferative capacity, multiple extramedullary lesions, and poor prognosis. Combined therapeutic modalities with novel and conventional chemotherapy and radiation might be a promising treatment strategy for patients with this type of multiple myeloma.


Multiple Myeloma , Female , Humans , Adult , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , In Situ Hybridization, Fluorescence , Translocation, Genetic , Lenalidomide/therapeutic use , Karyotyping
10.
Nat Aging ; 4(4): 510-526, 2024 Apr.
Article En | MEDLINE | ID: mdl-38632351

DNA damage contributes to the aging of hematopoietic stem cells (HSCs), yet the underlying molecular mechanisms are not fully understood. In this study, we identified a heterogeneous functional role of microcephalin (MCPH1) in the nucleus and cytoplasm of mouse HSCs. In the nucleus, MCPH1 maintains genomic stability, whereas in the cytoplasm, it prevents necroptosis by binding with p-RIPK3. Aging triggers MCPH1 translocation from cytosol to nucleus, reducing its cytoplasmic retention and leading to the activation of necroptosis and deterioration of HSC function. Mechanistically, we found that KAT7-mediated lysine acetylation within the NLS motif of MCPH1 in response to DNA damage facilitates its nuclear translocation. Targeted mutation of these lysines inhibits MCPH1 translocation and, consequently, compromises necroptosis. The dysfunction of necroptosis signaling, in turn, improves the function of aged HSCs. In summary, our findings demonstrate that DNA damage-induced redistribution of MCPH1 promotes HSC aging and could have broader implications for aging and aging-related diseases.


DNA Damage , Necroptosis , Animals , Mice , Aging/genetics , DNA Damage/genetics , Genomic Instability , Hematopoietic Stem Cells/physiology , Translocation, Genetic
11.
J Med Case Rep ; 18(1): 167, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38594735

BACKGROUND: Pulmonary inflammatory myofibroblastic tumour (IMT) is a rare condition that usually presents in young individuals and is associated with anaplastic lymphoma kinase (ALK)-translocation. CASE PRESENTATION: We report a case of an 18-year-old Caucasian man with ALK-translocated pulmonary IMT treated with multimodality therapy. The patient presented with breathlessness and was found to have a collapsed left lung. Further investigations revealed an ALK-translocated pulmonary IMT. This is usually treated with an ALK-inhibitor but patient declined after discussing potential side-effects and had repeated rigid bronchoscopic interventions for local disease control. Due to persistent local recurrence, patient received radical external beam radiotherapy (EBRT) with pulse steroids, and one year later started on Ibuprofen, a non-steroidal anti-inflammatory agent (NSAID). Following multimodality treatment, he developed a complete response. He remains treatment-free for the past seven years. Eleven years on from his diagnosis, he remains in remission with a ECOG performance status of zero. CONCLUSIONS: Achieving long-term local control in pulmonary IMT can be challenging. Multimodality treatment is sometimes needed but the overall outlook remains good.


Neoplasms , Protein Kinase Inhibitors , Male , Humans , Adolescent , Anaplastic Lymphoma Kinase/genetics , Protein Kinase Inhibitors/therapeutic use , Translocation, Genetic , Pathologic Complete Response
12.
Cancer Genomics Proteomics ; 21(3): 272-284, 2024.
Article En | MEDLINE | ID: mdl-38670586

BACKGROUND/AIM: Constitutional chromosomal aberrations are rare in hematologic malignancies and their pathogenetic role is mostly poorly understood. We present a comprehensive molecular characterization of a novel constitutional chromosomal translocation found in two siblings - sisters - diagnosed with myelodysplastic syndrome (MDS). MATERIALS AND METHODS: Bone marrow and blood cells from the two patients were examined using G-banding, RNA sequencing, PCR, and Sanger sequencing. RESULTS: We identified a balanced t(17;19)(q21;p13) translocation in both siblings' bone marrow, blood cells, and phytohemagglutinin-stimulated lymphocytes. The translocation generated a MYO1F::WNK4 chimera on the der(19)t(17;19), encoding a chimeric serine/threonine kinase, and a VPS25::MYO1F on the der(17), potentially resulting in an aberrant VPS25 protein. CONCLUSION: The t(17;19)(q21;p13) translocation found in the two sisters probably predisposed them to myelodysplasia. How the MYO1F::WNK4 and/or VPS25::MYO1F chimeras, perhaps especially MYO1F::WNK4 that encodes a chimeric serine/threonine kinase, played a role in MDS pathogenesis, remains incompletely understood.


Myelodysplastic Syndromes , Siblings , Translocation, Genetic , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Female , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 19/genetics , Protein Serine-Threonine Kinases/genetics , Vesicular Transport Proteins/genetics , Oncogene Proteins, Fusion/genetics , Middle Aged
13.
Cancer Genomics Proteomics ; 21(3): 252-259, 2024.
Article En | MEDLINE | ID: mdl-38670591

BACKGROUND/AIM: The term "calcified chondroid mesenchymal neoplasm" was introduced in 2021 to describe a group of tumors characterized by various morphological features, including the formation of cartilage or chondroid matrix. These tumors frequently carry chimeric genes where the 5'-end partner gene is fibronectin 1 and the 3'-end partner gene codes for receptor tyrosine kinase. Our study explores fusion of the genes platelet-derived growth factor receptor alpha (PDGFRA) and ubiquitin-specific peptidase 8 (USP8) in calcified chondroid mesenchymal neoplasm. CASE REPORT: Genetic investigations were conducted on a tumor located in the leg of a 71-year-old woman. G-banding analysis of short-term cultured tumor cells revealed the karyotype 46,XX,t(4;15)(q12;q21)[6]/46,XX[4]. RNA sequencing detected in-frame PDGFRA::USP8 and USP8::PDGFRA chimeric transcripts, which were validated by RT-PCR/Sanger sequencing. The PDGFRA::USP8 chimeric protein is predicted to have cell membrane location and functions as a chimeric ubiquitinyl hydrolase. The USP8::PDGFRA protein was predicted to be nuclear and function as a positive regulator of cellular metabolic process. CONCLUSION: We report, for the first time, a calcified chondroid mesenchymal neoplasm carrying a balanced t(4;15)(q12;q21) chromosomal translocation, resulting in the generation of both PDGFRA::USP8 and USP8::PDGFRA chimeras. The PDGFRA::USP8 protein is located on the cell membrane and functions as a chimeric ubiquitinyl hydrolase, activated by PDGFs. Conversely, USP8::PDGFRA is a nuclear protein regulating metabolic processes.


Receptor, Platelet-Derived Growth Factor alpha , Humans , Female , Aged , Receptor, Platelet-Derived Growth Factor alpha/genetics , Translocation, Genetic , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Calcinosis/genetics , Calcinosis/pathology , Chromosomes, Human, Pair 4/genetics
14.
Theor Appl Genet ; 137(5): 110, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656338

KEY MESSAGE: We developed T1AL·1PS and T1AS·1PL Robertsonian translocations by breakage-fusion mechanism based on wheat-A. cristatum 1P(1A) substitution line with smaller leaf area, shorter plant height, and other excellent agronomic traits Agropyron cristatum, a wild relative of wheat, is a valuable germplasm resource for improving wheat genetic diversity and yield. Our previous study confirmed that the A. cristatum chromosome 1P carries alien genes that reduce plant height and leaf size in wheat. Here, we developed T1AL·1PS and T1AS·1PL Robertsonian translocations (RobTs) by breakage-fusion mechanism based on wheat-A. cristatum 1P (1A) substitution line II-3-1c. Combining molecular markers and cytological analysis, we identified 16 spontaneous RobTs from 911 F2 individuals derived from the cross of Jimai22 and II-3-1c. Fluorescence in situ hybridization (FISH) was applied to detect the fusion structures of the centromeres in wheat and A. cristatum chromosomes. Resequencing results indicated that the chromosomal junction point was located at the physical position of Triticum aestivum chromosome 1A (212.5 Mb) and A. cristatum chromosome 1P (230 Mb). Genomic in situ hybridization (GISH) in pollen mother cells showed that the produced translocation lines could form stable ring bivalent. Introducing chromosome 1PS translocation fragment into wheat significantly increased the number of fertile tillers, grain number per spike, and grain weight and reduced the flag leaf area. However, introducing chromosome 1PL translocation fragment into wheat significantly reduced flag leaf area and plant height with a negative effect on yield components. The pre-breeding of two spontaneous RobTs T1AL·1PS and T1AS·1PL was important for wheat architecture improvement.


Agropyron , Chromosomes, Plant , Plant Breeding , Translocation, Genetic , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/anatomy & histology , Agropyron/genetics , Agropyron/growth & development , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence , Phenotype
16.
J Cell Sci ; 137(7)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38606789

Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.


Butterflies , Mice , Humans , Animals , Sheep/genetics , Butterflies/genetics , Chromosomes/genetics , Meiosis/genetics , Centromere , Translocation, Genetic/genetics , Mammals
17.
J Clin Exp Hematop ; 64(1): 21-31, 2024.
Article En | MEDLINE | ID: mdl-38538317

We characterized 5 B-cell tumors carrying t(14;19)(q32;q13) that creates the IGH::BCL3 fusion gene. The patients' ages ranged between 55 and 88 years. Two patients presented with progression or recurrence of B-cell chronic lymphocytic leukemia (B-CLL)/small lymphocytic lymphoma (SLL), two with diffuse large B-cell lymphoma (DLBCL) of non-germinal center B-like phenotype, and the remaining one with composite angioimmunoblastic T-cell lymphoma and Epstein-Barr virus-positive DLBCL. The presence of t(14;19)(q32;q13) was confirmed by fluorescence in situ hybridization (FISH), showing colocalization of 3' IGH and 3' BCL3 probes on der(14)t(14;19) and 5' BCL3 and 5' IGH probes on der(19)t(14;19). One B-CLL case had t(2;14)(p13;q32)/IGH::BCL11A, and 2 DLBCL cases had t(8;14)(q24;q32) or t(8;11;14)(q24;q11;q32), both of which generated IGH::MYC by FISH, and showed nuclear expression of MYC and BCL3 by immunohistochemistry. The IGH::BCL3 fusion gene was amplified by long-distance polymerase chain reaction in 2 B-CLL/SLL cases and the breakpoints occurred immediately 5' of BCL3 exon 1 and within the switch region associated with IGHA1. The 5 cases shared IGHV preferentially used in B-CLL cells, but the genes were unmutated in 2 B-CLL/SLL cases and significantly mutated in the remaining 3. B-cell tumors with t(14;19)(q32;q13) can be divided into B-CLL/SLL and DLBCL groups, and the anatomy of IGH::BCL3 in the latter may be different from that of the former.


Epstein-Barr Virus Infections , Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Humans , Middle Aged , Aged , Aged, 80 and over , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , In Situ Hybridization, Fluorescence , Translocation, Genetic , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human , Lymphoma, Large B-Cell, Diffuse/genetics , Chromosomes, Human, Pair 14/genetics
19.
Am J Hematol ; 99(6): 1172-1174, 2024 Jun.
Article En | MEDLINE | ID: mdl-38436141

Probability of treatment-free remission (TFR) in CML patients with additional chromosomal abnormalities (ACA) in the Philadelphia-positive clone or variant Philadelphia translocations (ACA/Var-Ph group, blue panel), in those with no cytogenetic abnormality other than the classical Philadelphia translocation (c-Ph group, green panel) and in the subgroups of CML patients with high-risk ACA (HR-ACA, yellow panel) and Var-Ph (red panel).


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Philadelphia Chromosome , Remission Induction , Translocation, Genetic , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Female , Male , Adult , Middle Aged , Chromosome Aberrations , Aged , Adolescent
20.
Elife ; 122024 Mar 18.
Article En | MEDLINE | ID: mdl-38497611

Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement, and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and two-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding, respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/s on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.


Chromatin , Nucleosomes , Adenosine Triphosphate/metabolism , Chromatin/metabolism , DNA/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Translocation, Genetic
...