Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.643
1.
Ther Drug Monit ; 46(3): 277-280, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38723113

BACKGROUND: Carbamazepine (CBZ) is an antiseizure medication known to induce the expression of cytochrome P4503A metabolic enzymes. Here, we describe a man living with HIV who underwent several changes in the daily dose of CBZ, which resulted in different induction effects on darunavir trough concentrations. METHODS: A 59-year-old man with HIV, successfully undergoing maintenance antiretroviral treatment with darunavir/cobicistat once daily (combined with raltegravir), was prescribed CBZ for recurrent trigeminal neuralgia. Over subsequent months, the patient underwent various changes in the doses (from 200 to 800 mg/d) and trough concentrations (from 3.6 to 18.0 mg/L) of CBZ, guided by clinical response to trigeminal neuralgia. RESULTS: A highly significant inverse association was observed between darunavir trough concentration and both CBZ dose or trough concentration (coefficient of determination >0.75, P < 0.0001). Ultimately, the darunavir dose was increased to 600 mg twice daily with ritonavir and dolutegravir to ensure optimal antiretroviral coverage, anticipating potential further uptitration of CBZ doses. CONCLUSIONS: The impact of CBZ on boosted darunavir exposure seemed to be dose- and concentration-dependent. The management of such drug-drug interactions in daily practice was facilitated through therapeutic drug monitoring. This case underscores the importance of a multidisciplinary approach that incorporates both antiretroviral and nonantiretroviral comedications contributing to the optimal management of polypharmacy in individuals living with HIV.


Carbamazepine , Darunavir , Drug Interactions , HIV Infections , Humans , Darunavir/therapeutic use , Darunavir/pharmacokinetics , Male , Middle Aged , Carbamazepine/therapeutic use , Carbamazepine/pharmacokinetics , HIV Infections/drug therapy , Trigeminal Neuralgia/drug therapy , Ritonavir/therapeutic use , Ritonavir/administration & dosage , Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Anticonvulsants/administration & dosage , Pyridones/pharmacokinetics , Pyridones/therapeutic use , Pyridones/blood , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/therapeutic use , Heterocyclic Compounds, 3-Ring/administration & dosage , Piperazines/therapeutic use , Piperazines/pharmacokinetics , Oxazines/therapeutic use , Oxazines/pharmacokinetics , Dose-Response Relationship, Drug , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/administration & dosage , Drug Monitoring/methods
2.
Acta Neurochir (Wien) ; 166(1): 209, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727725

Based on a personal experience of 4200 surgeries, radiofrequency thermocoagulation is useful lesional treatment for those trigeminal neuralgias (TNs) not amenable to microvascular decompression (idiopathic or secondary TNs). Introduced through the foramen ovale, behind the trigemnial ganglion in the triangular plexus, the needle is navigated by radiology and neurophysiological testing to target the retrogasserian fibers corresponding to the trigger zone. Heating to 55-75 °C can achieve hypoesthesia without anaesthesia dolorosa if properly controlled. Depth of anaesthesia varies dynamically sedation for cannulation and lesioning, and awareness during neurophysiologic navigation. Proper technique ensures long-lasting results in more than 75% of patients.


Electrocoagulation , Trigeminal Neuralgia , Trigeminal Neuralgia/surgery , Trigeminal Neuralgia/diagnostic imaging , Humans , Electrocoagulation/methods , Trigeminal Nerve/surgery , Foramen Ovale/surgery , Foramen Ovale/diagnostic imaging , Trigeminal Ganglion/surgery , Microvascular Decompression Surgery/methods , Treatment Outcome
3.
J Headache Pain ; 25(1): 76, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730344

Trigeminal neuropathic pain (TNP) is a major concern in both dentistry and medicine. The progression from normal to chronic TNP through activation of the insular cortex (IC) is thought to involve several neuroplastic changes in multiple brain regions, resulting in distorted pain perception and associated comorbidities. While the functional changes in the insula are recognized contributors to TNP, the intricate mechanisms underlying the involvement of the insula in TNP processing remain subjects of ongoing investigation. Here, we have overviewed the most recent advancements regarding the functional role of IC in regulating TNP alongside insights into the IC's connectivity with other brain regions implicated in trigeminal pain pathways. In addition, the review examines diverse modulation strategies that target the different parts of the IC, thereby suggesting novel diagnostic and therapeutic management of chronic TNP in the future.


Insular Cortex , Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/physiopathology , Trigeminal Neuralgia/diagnosis , Insular Cortex/diagnostic imaging , Insular Cortex/physiopathology , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging
4.
Medwave ; 24(4): e2759, 2024 May 08.
Article En | MEDLINE | ID: mdl-38718322

Introduction: Trigeminal neuralgia is a painful neuropathic disorder characterized by sudden electric shock-like pain that significantly impacts patients' quality of life. Multiple treatment alternatives are available, including medical and surgical options but establishing the optimal course of action can be challenging. To enhance clinical decision-making for trigeminal neuralgia treatment, it is imperative to organize, describe and map the available systematic reviews and randomized trials. This will help identify the best treatment alternatives supported by evidence and acknowledge potential knowledge gaps where future research is needed. Objective: This systematic mapping review aims to provide up-to-date evidence on the different surgical and pharmacological treatment alternatives used for trigeminal neuralgia. Methods: A search will be systematically conducted on the Epistemonikos database to identify potentially eligible systematic reviews. Additionally, a search will be made in PubMed, CENTRAL, and EBSCO to identify randomized controlled trials assessing pharmacological and surgical treatment interventions for trigeminal neuralgia. Two independent reviewers will screen and select the studies. Data on the different treatment alternatives and reported outcomes in the included studies will be extracted using standardized forms. Following extraction, descriptive statistical methods will be used to analyze the data. The final output of this study will include an evidence map that will illustrate the connections between different treatments and their respective outcomes, providing a clear depiction of the evidence landscape. Expected results: This study expects to map, describe and assess the methodological quality of the available systematic reviews and trials on pharmacological interventions and neurosurgical procedures for treating trigeminal neuralgia. It will present the results in an evidence map that organizes the available evidence based on their different interventions and outcomes. This evidence map will serve as a visual tool to assist healthcare professionals and patients to understand evidence-based treatment options and their implications for managing this medical condition. Introducción: La neuralgia del trigémino es un trastorno neuropático doloroso caracterizado por un dolor súbito y agudo, similar a una descarga eléctrica, que impacta significativamente en la calidad de vida. Dada la variedad de tratamientos disponibles, médicos y quirúrgicos, es crucial organizar y mapear la evidencia proveniente de revisiones sistemáticas y ensayos clínicos para orientar las decisiones clínicas. Esto permite identificar tratamientos respaldados por evidencia y señalar áreas de investigación futura. Objetivo: El propósito de esta revisión sistemática de mapeo es proporcionar una visión actualizada de la evidencia existente en relación con las diversas opciones de tratamiento quirúrgico y farmacológico empleadas en el manejo de la neuralgia del trigémino. Métodos: Se realizará una búsqueda sistemática en la base de datos Epistemonikos para identificar potenciales revisiones sistemáticas. Adicionalmente, se buscará en PubMed, CENTRAL y EBSCO ensayos clínicos aleatorizados que evalúen intervenciones de tratamiento farmacológico y quirúrgico para la neuralgia del trigémino. Dos revisores independientes cribarán y seleccionarán los estudios. Se extraerán datos sobre las diferentes alternativas de tratamiento y los resultados reportados en los estudios incluidos utilizando formularios estandarizados. Tras la extracción, se utilizarán métodos estadísticos descriptivos para analizar los datos. El producto final de este estudio incluirá un mapa de evidencia que ilustrará las conexiones entre los diferentes tratamientos y sus respectivos resultados, proporcionando una representación clara del panorama de la evidencia. Resultados esperados: Los resultados que se extraerán de este mapeo sistemático incluyen identificar y describir las diferentes alternativas, tanto farmacológicas como quirúrgicas, que existen para el tratamiento de la neuralgia del trigémino. Además, se planea presentar un mapa de evidencia que se basará en los ensayos clínicos aleatorizados y revisiones sistemáticas, el cual mostrará la evidencia de manera organizada entre las diferentes intervenciones y sus desenlaces. Este mapa de evidencia servirá como una herramienta visual que ayudará a los profesionales de la salud y los pacientes a comprender mejor las opciones de tratamiento respaldadas por la evidencia y sus consecuencias en el manejo de esta condición médica.


Quality of Life , Randomized Controlled Trials as Topic , Systematic Reviews as Topic , Trigeminal Neuralgia , Trigeminal Neuralgia/drug therapy , Trigeminal Neuralgia/surgery , Humans , Research Design , Clinical Decision-Making , Treatment Outcome
6.
Neurosurg Rev ; 47(1): 198, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722430

Achieving a pear-shaped balloon holds pivotal significance in the context of successful percutaneous microcompression procedures for trigeminal neuralgia. However, inflated balloons may assume various configurations, whether it is inserted into Meckel's cave or not. The absence of an objective evaluation metric has become apparent. To investigate the relationship between the morphology of Meckel's Cave and the balloon used in percutaneous microcompression for trigeminal neuralgia and establish objective criteria for assessing balloon shape in percutaneous microcompression procedures. This retrospective study included 58 consecutive patients with primary trigeminal neuralgia. Data included demographic, clinical outcomes, and morphological features of Meckel's cave and the balloon obtained from MRI and Dyna-CT imaging. MRI of Meckel's cave and Dyna-CT of intraoperative balloon were modeled, and the morphological characteristics and correlation were analyzed. The reconstructed balloon presented a fuller morphology expanding outward and upward on the basis of Meckel's cave. The projected area of balloon was strongly positively correlated with the projected area of Meckel's cave. The Pearson correlation coefficients were 0.812 (P<0.001) for axial view, 0.898 (P<0.001) for sagittal view and 0.813 (P<0.001) for coronal view. Similarity analysis showed that the sagittal projection image of Meckel's cave and that of the balloon had good similarity. This study reveals that the balloon in percutaneous microcompression essentially represents an expanded morphology of Meckel's cave, extending outward and upward. There is a strong positive correlation between the volume and projected area of the balloon and that of Meckel's cave. Notably, the sagittal projection image of Meckel's cave serves as a reliable predictor of the intraoperative balloon shape. This method has a certain generalizability and can help providing objective criteria for judging balloon shape during percutaneous microcompression procedures.


Magnetic Resonance Imaging , Trigeminal Neuralgia , Humans , Female , Male , Middle Aged , Aged , Retrospective Studies , Trigeminal Neuralgia/surgery , Trigeminal Neuralgia/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Tomography, X-Ray Computed/methods , Neurosurgical Procedures/methods , Treatment Outcome , Aged, 80 and over
7.
Sci Rep ; 14(1): 10205, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702383

Mapping the localization of the functional brain regions in trigeminal neuralgia (TN) patients is still lacking. The study aimed to explore the functional brain alterations and influencing factors in TN patients using functional brain imaging techniques. All participants underwent functional brain imaging to collect resting-state brain activity. The significant differences in regional homogeneity (ReHo) and amplitude of low frequency (ALFF) between the TN and control groups were calculated. After familywise error (FWE) correction, the differential brain regions in ReHo values between the two groups were mainly located in bilateral middle frontal gyrus, bilateral inferior cerebellum, right superior orbital frontal gyrus, right postcentral gyrus, left inferior temporal gyrus, left middle temporal gyrus, and left gyrus rectus. The differential brain regions in ALFF values between the two groups were mainly located in the left triangular inferior frontal gyrus, left supplementary motor area, right supramarginal gyrus, and right middle frontal gyrus. With the functional impairment of the central pain area, the active areas controlling memory and emotion also change during the progression of TN. There may be different central mechanisms in TN patients of different sexes, affected sides, and degrees of nerve damage. The exact central mechanisms remain to be elucidated.


Magnetic Resonance Imaging , Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/physiopathology , Trigeminal Neuralgia/diagnostic imaging , Male , Female , Middle Aged , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiopathology , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Aged , Adult
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 47-53, 2024 Jan 28.
Article En, Zh | MEDLINE | ID: mdl-38615165

Trigeminal neuralgia is a manifestation of orofacial neuropathic pain disorder, always deemed to be an insurmountable peak in the field of pain research and treatment. The pain is recurrent, abrupt in onset and termination similar to an electric shock or described as shooting. A poor quality of life has been attributed to trigeminal neuralgia, as the paroxysms of pain may be triggered by innocuous stimuli on the face or inside the oral cavity, such as talking, washing face, chewing and brushing teeth in daily life. The pathogenesis of trigeminal neuralgia has not been fully elucidated, although the microvascular compression in the trigeminal root entry zone is generally considered to be involved in the emergence and progression of the pain disorder. In addition, orofacial neuropathic pain restricted to one or more divisions of the trigeminal nerve might be secondary to peripheral nerve injury. Based on current hypotheses regarding the potential causes, a variety of animal models have been designed to simulate the pathogenesis of trigeminal neuralgia, including models of compression applied to the trigeminal nerve root or trigeminal ganglion, chronic peripheral nerve injury, peripheral inflammatory pain and center-induced pain. However, it has not yet been possible to determine which model can be perfectly employed to explain the mechanisms. The selection of appropriate animal models is of great significance for the study of trigeminal neuralgia. Therefore, it is necessary to discuss the characteristics of the animal models in terms of animal strains, materials, operation methods and behavior observation, in order to gain insight into the research progress in animal models of trigeminal neuralgia. In the future, animal models that closely resemble the features of human trigeminal neuralgia pathogenesis need to be developed, with the aim of making valuable contributions to the relevant basic and translational medical research.


Neuralgia , Peripheral Nerve Injuries , Trigeminal Neuralgia , Animals , Humans , Quality of Life , Mastication , Models, Animal
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 40-46, 2024 Jan 28.
Article En, Zh | MEDLINE | ID: mdl-38615164

OBJECTIVES: There are a variety of minimally invasive interventional treatments for trigeminal neuralgia, and the efficacy evaluation is different. The preferred treatment scheme is still controversial. This study aims to investigate the differences in treatment effects between patients with primary trigeminal neuralgia (PTN) treated with percutaneous balloon compression (PBC) for the first intervention and patients with pain recurrence after radiofrequency thermocoagulation (RT) who then received PBC for PTN, and to offer clinicians and patients more scientifically grounded and precise treatment alternatives. METHODS: We retrospectively analyzed 103 patients with PTN admitted to the Department of Pain Management of the Second Affiliated Hospital of Guangxi Medical University from January 2020 to December 2021, including 49 patients who received PBC for the first time (PBC group) and 54 patients who received PBC for pain recurrence after RT (RT+PBC group). General information, preoperative pain score, intraoperative oval foramen morphology, oval foramen area, balloon volume, duration of compression, and postoperative pain scores and pain recurrence at each time point on day 1 (T1), day 7 (T2), day 14 (T3), 1 month (T4), 3 months (T5), and 1 year (T6) were collected and recorded for both groups. The differences in treatment effect, complications and recurrence between the 2 groups were compared, and the related influencing factors were analyzed. RESULTS: The differences of general information, preoperative pain scores, foramen ovale morphology, foramen ovale area, T1 to T3 pain scores between the 2 groups were not statistically different (all P>0.05). The balloon filling volume in the PBC group was smaller than that in the RT+PBC group, the pain scores at T4 to T6 and pain recurrence were better than those in the RT+PBC group (all P<0.05). Pain recurrence was positively correlated with pain scores of T2 to T6 (r=0.306, 0.482, 0.831, 0.876, 0.887, respectively; all P<0.01). CONCLUSIONS: The choice of PBC for the first intervention in PTN patients is superior to the choice of PBC after pain recurrence after RT treatment in terms of treatment outcome and pain recurrence.


Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/surgery , Retrospective Studies , China , Electrocoagulation , Pain, Postoperative
10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 11-20, 2024 Jan 28.
Article En, Zh | MEDLINE | ID: mdl-38615161

OBJECTIVES: Trigeminal neuralgia (TN) is a severe chronic neuropathic pain that mainly affects the distribution area of the trigeminal nerve with limited treating efficacy. There are numerous treatments for TN, but currently the main clinical approach is to suppress pain by carbamazepine (CBZ). Brain-derived neurotrophic factor (BDNF) is closely related to chronic pain. This study aims to determine the effects of CBZ treatment on BDNF expression in both the trigeminal ganglion (TG) and serum of TN via a chronic constriction injury of the infraorbital nerve (ION-CCI) rat model. METHODS: The ION-CCI models were established in male Sprague-Dawley rats and were randomly divided into a sham group, a TN group, a TN+low-dose CBZ treatment group (TN+20 mg/kg CBZ group), a TN+medium-dose CBZ treatment group (TN+40 mg/kg CBZ group), and a TN+high-dose CBZ treatment group (TN+80 mg/kg CBZ group). The mechanical pain threshold in each group of rats was measured regularly before and after surgery. The expressions of BDNF and tyrosine kinase receptor B (TrkB) mRNA in TGs of rats in different groups were determined by real-time PCR, and the expression of BDNF protein on neurons in TGs was observed by immunofluorescence. Western Blotting was used to detect the protein expression of BDNF, TrkB, extracellular regulated protein kinases (ERK), and phospho-extracellular regulated protein kinases (p-ERK) in TGs of rats in different groups. The expression of BDNF in the serum of rats in different groups was detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: The results of mechanical pain sensitivity showed that there was no significant difference in the mechanical pain threshold in the right facial sensory area of the experimental rats in each group before surgery (all P>0.05). From the 3rd day after operation, the mechanical pain threshold of rats in the TN group was significantly lower than that in the sham group (all P<0.01), and the mechanical pain threshold of rats in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 CBZ mg/kg group was higher than that in the TN group (all P<0.05). The BDNF and TrkB mRNA and protein expressions in TGs of rats in the TN group were higher than those in the sham group (all P<0.05), and those in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than the TN group (all P<0.05). The p-ERK levels in TG of rats in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were significantly decreased compared with the TN group (all P<0.05). The BDNF and neuron-specific nuclear protein (NeuN) were mainly co-expressed in neuron of TGs in the TN group and they were significantly higher than those in the sham group (all P<0.05). The co-labeled expressions of BDNF and NeuN in TGs of the TN+ 80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than those in the TN group (all P<0.05). The results of ELISA showed that the level of BDNF in the serum of the TN group was significantly higher than that in the sham group (P<0.05). The levels of BDNF in the TN+80 mg/kg CBZ group, the TN+40 mg/kg CBZ group, and the TN+20 mg/kg CBZ group were lower than those in the TN group (all P<0.05). Spearman correlation analysis showed that the BDNF level in serum was negatively correlated with mechanical pain threshold (r=-0.650, P<0.01). CONCLUSIONS: CBZ treatment can inhibit the expression of BDNF and TrkB in the TGs of TN rats, reduce the level of BDNF in serum of TN rats and the phosphorylation of ERK signaling pathway, so as to inhibit TN. The serum level of BDNF can be considered as an indicator for the diagnosis and prognosis of TN.


Carbamazepine , Chronic Pain , Trigeminal Neuralgia , Animals , Male , Rats , Brain-Derived Neurotrophic Factor/drug effects , Brain-Derived Neurotrophic Factor/genetics , Carbamazepine/pharmacology , Protein Kinases , Rats, Sprague-Dawley , RNA, Messenger , Trigeminal Ganglion/drug effects , Trigeminal Neuralgia/drug therapy
11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 29-39, 2024 Jan 28.
Article En, Zh | MEDLINE | ID: mdl-38615163

OBJECTIVES: Trigeminal neuralgia (TN) is a common neuropathic pain. Voltage-gated potassium channel (Kv) has been confirmed to be involved in the occurrence and development of TN, but the specific mechanism is still unclear. MicroRNA may be involved in neuropathic pain by regulating the expression of Kv channels and neuronal excitability in trigeminal ganglion (TG). This study aims to explore the relationship between Kv1.1 and miR-21-5p in TG with a TN model, evaluate whether miR-21-5p has a regulatory effect on Kv1.1, and to provide a new target and experimental basis for the treatment of TN. METHODS: A total of 48 SD rats were randomly divided into 6 groups: 1) a sham group (n=12), the rats were only sutured at the surgical incision without nerve ligation; 2) a sham+agomir NC group (n=6), the sham rats were microinjected with agomir NC through stereotactic brain injection in the surgical side of TG; 3) a sham+miR-21-5p agomir group (n=6), the sham rats were microinjected with miR-21-5p agomir via stereotactic brain injection in the surgical side of TG; 4) a TN group (n=12), a TN rat model was constructed using the chronic constriction injury of the distal infraorbital nerve (dIoN-CCI) method with chromium intestinal thread; 5) a TN+antagonist NC group (n=6), TN rats were microinjected with antagonist NC through stereotactic brain injection method in the surgical side of TG; 6) a TN+miR-21-5p antagonist group (n=6), TN rats were microinjected with miR-21-5p antagonist through stereotactic brain injection in the surgical side of TG. The change of mechanical pain threshold in rats of each group after surgery was detected. The expressions of Kv1.1 and miR-21-5p in the operative TG of rats were detected by Western blotting and real-time reverse transcription polymerase chain reaction. Dual luciferase reporter genes were used to determine whether there was a target relationship between Kv1.1 and miR-21-5p and whether miR-21-5p directly affected the 3'-UTR terminal of KCNA1. The effect of brain stereotaxic injection was evaluated by immunofluorescence assay, and then the analogue of miR-21-5p (agomir) and agomir NC were injected into the TG of rats in the sham group by brain stereotaxic apparatus to overexpress miR-21-5p. The miR-21-5p inhibitor (antagomir) and antagomir NC were injected into TG of rats in the TN group to inhibit the expression of miR-21-5p. The behavioral changes of rats before and after administration were observed, and the expression changes of miR-21-5p and Kv1.1 in TG of rats after intervention were detected. RESULTS: Compared with the baseline pain threshold, the facial mechanical pain threshold of rats in the TN group was significantly decreased from the 5th to 15th day after the surgery (P<0.05), and the facial mechanical pain threshold of rats in the sham group was stable at the normal level, which proved that the dIoN-CCI model was successfully constructed. Compared with the sham group, the expression of Kv1.1 mRNA and protein in TG of the TN group was down-regulated (both P<0.05), and the expression of miR-21-5p was up-regulated (P<0.05). The results of dual luciferase report showed that the luciferase activity of rno-miR-21-5p mimics and KCNA1 WT transfected with 6 nmol/L or 20 nmol/L were significantly decreased compared with those transfected with mimic NC and wild-type KCNA1 WT, respectively (P<0.001). Compared with low dose rno-miR-21-5p mimics (6 nmol/L) co-transfection group, the relative activity of luciferase in the high dose rno-miR-21-5p mimics (20 nmol/L) cotransfection group was significantly decreased (P<0.001). The results of immunofluorescence showed that drugs were accurately injected into TG through stereotaxic brain. After the expression of miR-21-5p in the TN group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were increased. After overexpression of miR-21-5p in the sham group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were decreased. CONCLUSIONS: Both Kv1.1 and miR-21-5p are involved in TN and miR-21-5p can regulate Kv1.1 expression by binding to the 3'-UTR of KCNA1.


Kv1.1 Potassium Channel , MicroRNAs , Neuralgia , Trigeminal Neuralgia , Animals , Rats , Antagomirs , Down-Regulation , Luciferases , MicroRNAs/genetics , Neuralgia/genetics , Rats, Sprague-Dawley , RNA, Messenger , Trigeminal Neuralgia/genetics , Kv1.1 Potassium Channel/genetics
12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 21-28, 2024 Jan 28.
Article En, Zh | MEDLINE | ID: mdl-38615162

OBJECTIVES: The activation of astrocytes is an important process in the formation of chronic pain. This study aims to observe the activation of A1 reactive astrocytes in the medullary dorsal horn in the rat model of trigeminal neuralgia, and to explore the mechanism of central sensitization caused by A1 reactive astrocyte. METHODS: The adult male rats were randomly divided into a sham group and a chronic constriction injury of infraorbital nerve (ION-CCI) group. The facial mechanical pain threshold and thermal withdrawal latency were measured before the operation and on the 1st, 3rd, 7th, 10th, and 14th day after the operation. After pain behavior observation, the expression of glial fibrillary acidic protein (GFAP) in the medullary dorsal horn was observed by immunohistochemistry and immunofluorescence colocalization of GFAP, complement 3 (C3)/S100A10, and 4', 6-diamidino-2-phenylindole (DAPI) was analyzed. Primary astrocytes were cultured and randomly divided into a naive group and a DHK group. The DHK group was treated with 1 mmol/L of astrocyte activation inhibitor dihydrokainic acid (DHK). Fura-2/AM was used to stain the astrocytes and the calcium wave of the 2 groups under the stimulation of high potassium was recorded and compared. The expression of C3 was detected by Western blotting. RESULTS: The facial mechanical pain threshold and thermal withdrawal latency of the ION-CCI group were significantly lower than those of the sham group (both P<0.05). There were a large number of GFAP positive astrocytes in the medullary dorsal horn of the ION-CCI group. The fluorescence intensity of GFAP in the ION-CCI group was higher than that in the sham group (P<0.05). GFAP and C3/S100A10 were co-expressed in astrocytes. Compared with the sham group, the fluorescence intensity of C3 and the protein expression of C3 in the ION-CCI group were increased (both P<0.05). The expression of C3 in ION-CCI group was significantly increased (P<0.05). Compared with the naive group, the C3 protein expression was significantly decreased in the DHK group (P<0.05). The intensity of calcium fluorescence was increased after high potassium stimulation in both groups. Furthermore, the peak and increase amplitude of calcium fluorescence in the naive group were much higher than those in the DHK group (both P<0.05). CONCLUSIONS: A1 reactive astrocytes in the medullary dorsal horn of trigeminal neuralgia model rats are increased significantly, which may participate in central sensitization of trigeminal neuralgia by impacting astrocyte calcium wave.


Chronic Pain , Trigeminal Neuralgia , Male , Animals , Rats , Astrocytes , Calcium , Potassium
13.
Sci Rep ; 14(1): 9235, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649718

Magnetic resonance-diffusion tensor imaging (MR-DTI) has been used in the microvascular decompression and gamma knife radiosurgery in trigeminal neuralgia (TN) patients; however, use of percutaneous stereotactic radiofrequency rhizotomy (PSR) to target an abnormal trigeminal ganglion (ab-TG) is unreported. Fractional anisotropy (FA), mean and radial diffusivity (MD and RD, respectively), and axial diffusivity (AD) of the trigeminal nerve (CNV) were measured in 20 TN patients and 40 healthy control participants immediately post PSR, at 6-months, and at 1 year. Longitudinal alteration of the diffusivity metrics and any correlation with treatment effects, or prognoses, were analyzed. In the TN group, either low FA (value < 0.30) or a decreased range compared to the adjacent FA (dFA) > 17% defined an ab-TG. Two-to-three days post PSR, all 15 patients reported decreased pain scores with increased FA at the ab-TG (P < 0.001), but decreased MD and RD (P < 0.01 each). Treatment remained effective in 10 of 14 patients (71.4%) and 8 of 12 patients (66.7%) at the 6-month and 1-year follow-ups, respectively. In patients with ab-TGs, there was a significant difference in treatment outcomes between patients with low FA values (9 of 10; 90%) and patients with dFA (2 of 5; 40%) (P < 0.05). MR-DTI with diffusivity metrics correlated microstructural CNV abnormalities with PSR outcomes. Of all the diffusivity metrics, FA could be considered a novel objective quantitative indicator of treatment effects and a potential indicator of PSR effectiveness in TN patients.


Diffusion Tensor Imaging , Rhizotomy , Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/surgery , Trigeminal Neuralgia/diagnostic imaging , Male , Female , Rhizotomy/methods , Middle Aged , Diffusion Tensor Imaging/methods , Aged , Treatment Outcome , Adult , Trigeminal Nerve/surgery , Trigeminal Nerve/diagnostic imaging , Trigeminal Nerve/pathology , Radiosurgery/methods , Anisotropy , Prognosis
14.
Medicine (Baltimore) ; 103(16): e37884, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640323

INTRODUCTION: Trigeminal herpes zoster, which comprises 10% to 20% of cases of herpes zoster, often leads to severe pain in the ophthalmic branches. Current treatments, including drug therapy and minimally invasive interventions, have limitations; accordingly, there is a need to explore alternative approaches. This study aimed to evaluate the efficacy and safety of computerized tomography (CT)-guided pulsed radiofrequency of the sphenopalatine ganglion in patients with intractable trigeminal herpetic pain. PATIENT CONCERNS: Three patients with intractable trigeminal ophthalmic zoster neuralgia were studied. All patients complained of bursts of headache, which occurred at least 10 times a day, usually in the periorbital and frontal regions. Conventional treatments, including oral medications and radiofrequency therapy targeting the trigeminal-semilunar ganglion and supraorbital nerve, could not sufficiently provide relief. DIAGNOSIS: Two patients were diagnosed with herpes zoster in the ocular branch of the trigeminal nerve with conjunctivitis, while one patient was diagnosed with postherpetic neuralgia in the ocular branch of the trigeminal nerve. INTERVENTIONS: This study employed a novel approach that involved CT-guided radiofrequency regulation of the pterygopalatine fossa sphenopalatine ganglion. OUTCOMES: In all three patients, pain relief was achieved within 1 to 3 days after treatment. During the follow-up, one patient had pain recurrence; however, its severity was ≈ 40% lower than the pretreatment pain severity. The second patient had sustained and effective pain relief. However, the pain of the third patient worsened again after 2 months. The average follow-up duration was 3 months. None of the enrolled patients showed treatment-related adverse reactions or complications. CONCLUSION: Our findings indicated that CT-guided radiofrequency regulation of the pterygopalatine fossa sphenopalatine ganglion was a safe and effective intervention for pain in patients with trigeminal ophthalmic zoster neuralgia, suggesting that it may be a therapeutic option if other treatments fail.


Herpes Zoster Ophthalmicus , Herpes Zoster , Neuralgia, Postherpetic , Neuralgia , Pain, Intractable , Pulsed Radiofrequency Treatment , Trigeminal Neuralgia , Humans , Herpes Zoster Ophthalmicus/complications , Herpes Zoster Ophthalmicus/therapy , Pulsed Radiofrequency Treatment/methods , Neuralgia/etiology , Neuralgia/therapy , Neuralgia, Postherpetic/therapy , Neuralgia, Postherpetic/complications , Trigeminal Neuralgia/therapy , Trigeminal Neuralgia/complications , Herpes Zoster/complications , Treatment Outcome
16.
Article En | MEDLINE | ID: mdl-38575452

Trigeminal neuralgia is one of the most common neurological pains affecting the head and neck and is associated with severe, lancinating, electrical pain episodes. The maxillary and mandibular branches are usually affected. The ophthalmic branch is rarely involved and, when present, it requires a comprehensive workup to rule out major conditions. Pharmacotherapy and surgery are the most common treatment options for this condition. Systemic medications may pose a wide range of side effects and effectiveness may decrease over time while surgery has inherent complications. Injectable onabotulinum toxins have been utilized for various applications in medicine and dentistry. There is, however, limited data on their use for the management of refractory trigeminal neuralgia of the ophthalmic branch. We present the case of a 58-year-old male diagnosed with refractory idiopathic trigeminal neuralgia affecting the ophthalmic branch, which was unresponsive to standard care and successfully managed with onabotulinum toxin type A. This treatment should be considered in cases of refractory trigeminal neuralgia prior to surgery. We reviewed the relevant literature concerning the application of Onabotulinum toxin A for managing trigeminal neuralgia of the ophthalmic branch. This case report and review aim to enlighten the application of Onabotulinum toxin A for managing refractory trigeminal neuralgia of the ophthalmic branch. Our case report and review show that Onabotulinum toxin A could be used for managing TN of the ophthalmic branch.


Botulinum Toxins, Type A , Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/drug therapy , Male , Middle Aged , Botulinum Toxins, Type A/therapeutic use , Neuromuscular Agents/therapeutic use , Pain Measurement
17.
Brain Res Bull ; 211: 110947, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614409

Trigeminal neuralgia (TN) is a highly debilitating facial pain condition. Magnetic resonance imaging (MRI) is the main method for generating insights into the central mechanisms of TN pain in humans. Studies have found both structural and functional abnormalities in various brain structures in TN patients as compared with healthy controls. Whereas studies have also examined aberrations in brain networks in TN, no studies have to date investigated causal interactions in these brain networks and related these causal interactions to the levels of TN pain. We recorded fMRI data from 39 TN patients who either rested comfortably in the scanner during the resting state session or tracked their pain levels during the pain tracking session. Applying Granger causality to analyze the data and requiring consistent findings across the two scanning sessions, we found 5 causal interactions, including: (1) Thalamus → dACC, (2) Caudate → Inferior temporal gyrus, (3) Precentral gyrus → Inferior temporal gyrus, (4) Supramarginal gyrus → Inferior temporal gyrus, and (5) Bankssts → Inferior temporal gyrus, that were consistently associated with the levels of pain experienced by the patients. Utilizing these 5 causal interactions as predictor variables and the pain score as the predicted variable in a linear multiple regression model, we found that in both pain tracking and resting state sessions, the model was able to explain ∼36 % of the variance in pain levels, and importantly, the model trained on the 5 causal interaction values from one session was able to predict pain levels using the 5 causal interaction values from the other session, thereby cross-validating the models. These results, obtained by applying novel analytical methods to neuroimaging data, provide important insights into the pathophysiology of TN and could inform future studies aimed at developing innovative therapies for treating TN.


Brain , Magnetic Resonance Imaging , Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/physiopathology , Trigeminal Neuralgia/diagnostic imaging , Female , Male , Magnetic Resonance Imaging/methods , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Aged , Adult , Brain Mapping/methods , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Pain/physiopathology , Pain/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
18.
Agri ; 36(2): 129-132, 2024 Apr.
Article En | MEDLINE | ID: mdl-38558394

Ocular complications are one of the rare side effects that can be seen after a mandibular nerve block and have the most dramatic results. Since the mandibular nerve block is mostly performed by dentists, this complication is mostly seen after an intraoral mandibular nerve block. The mandibular nerve is the third division of the trigeminal nerve. It is the most caudal and lateral part of Gasser's ganglion. It arises from the middle cranial fossa through the foramen ovale. In this region, a block method, which is performed by passing through the coronoid process, has been defined. This block, usually made using anatomical markers, is used in the treatment of trigeminal neuralgia. A 42-year-old female patient was admitted to our department for a maxillary and mandibular block with a diagnosis of trigeminal neuralgia. Immediately after the administration of the local anesthetic, the patient described a complete loss of vision. The complaint of vision loss lasted for about 1 minute, after which the patient's complaint of diplopia continued for 2 hours and 10 minutes. This case report presents the ocular complications after a mandibular block applied with the extraoral technique as an unexpected side effect.


Nerve Block , Trigeminal Neuralgia , Female , Humans , Adult , Trigeminal Neuralgia/drug therapy , Diplopia/etiology , Nerve Block/adverse effects , Mandibular Nerve , Blindness/etiology
19.
Neurosurg Rev ; 47(1): 134, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38561506

This critique evaluates a recent study on a nomogram based on radiomics and clinical data to predict the prognosis of percutaneous balloon compression (PBC) for trigeminal neuralgia (TN), focusing on its strengths, weaknesses, and suggestions for future research. It acknowledges the innovative approach's potential to personalize treatment and improve outcomes, but raises concerns about the study's retrospective nature, sample size limitations, and challenges in implementing radiomics in clinical practice. Overall, although the nomogram offers promise, further validation in larger cohorts is essential to confirm its utility and reliability. Future research should prioritize prospective multicenter studies with standardized protocols, collaborative efforts among institutions, and innovative techniques to advance our understanding and management.


Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/diagnostic imaging , Trigeminal Neuralgia/surgery , Retrospective Studies , Nomograms , Prospective Studies , Radiomics , Reproducibility of Results , Prognosis , Treatment Outcome
...