Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Brain Behav ; 14(3): e3465, 2024 Mar.
Article En | MEDLINE | ID: mdl-38468469

BACKGROUND: SP gene family, consisting of SP100, SP110, SP140, and SP140L, has been implicated in the initiation and advancement of numerous malignancies. Nevertheless, their clinical significance in glioma remains incompletely understood. METHOD: Expression levels and prognostic significance of SP family members were evaluated in the TCGA and CGGA datasets. Multifactorial analysis was used to identify SP gene family members that can independently impact the prognosis of glioma patients. A SP140-based predictive risk model/nomogram was developed in TCGA dataset and validated in CGGA dataset. The model's performance was evaluated through receiver operating characteristic (ROC) curves, calibration plots, and decision curve analyses. Phenotypic associations of SP140 and TRIM22 were examined through CancerSEA and TIMER. The effect of SP140 inhibitor in glioma progress and TRIM22/PI3K/AKT signaling pathway was confirmed in U251/U87 glioma cells. RESULTS: The SP family members exhibited elevated expression in gliomas and were negatively correlated with prognosis. SP140 emerged as an independent prognostic factor, and a SP140-based nomogram/predictive risk model demonstrated high accuracy. SP140 inhibitor, GSK761, lead to the suppression of TRIM22 expression and the PI3K/AKT signaling pathway. GSK761 also restrain glioma proliferation, migration, and invasion. Furthermore, SP140 and TRIM22 coexpressed in glioma cells with high level of vascular proliferation, TRIM22 is closely associated with the immune cell infiltration. CONCLUSION: SP140-based nomogram proved to be a practical tool for predicting the survival of glioma patients. SP140 inhibitor could suppress glioma progress via TRIM22/PI3K/AKT signaling pathway.


Glioma , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation , Signal Transduction , Glioma/drug therapy , Glioma/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/pharmacology , Repressor Proteins/metabolism , Minor Histocompatibility Antigens/pharmacology , Transcription Factors , Antigens, Nuclear/metabolism , Antigens, Nuclear/pharmacology
2.
J Clin Invest ; 134(6)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38488012

As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.


Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Aged , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism , Aging , Cellular Senescence , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Intervertebral Disc/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism
3.
Graefes Arch Clin Exp Ophthalmol ; 262(1): 81-91, 2024 Jan.
Article En | MEDLINE | ID: mdl-37367995

PURPOSES: This work aimed to assess the possible role of TRIM25 in regulating hyperglycemia-induced inflammation, senescence, and oxidative stress in retinal microvascular endothelial cells, all of which exert critical roles in the pathological process of diabetic retinopathy. METHODS: The effects of TRIM25 were investigated using streptozotocin-induced diabetic mice, human primary retinal microvascular endothelial cells cultured in high glucose, and adenoviruses for TRIM25 knockdown and overexpression. TRIM25 expression was evaluated by western blot and immunofluorescence staining. Inflammatory cytokines were detected by western blot and quantitative real-time PCR. Cellular senescence level was assessed by detecting senescent marker p21 and senescence-associated-ß-galactosidase activity. The oxidative stress state was accessed by detecting reactive oxygen species and mitochondrial superoxide dismutase. RESULTS: TRIM25 expression is elevated in the endothelial cells of the retinal fibrovascular membrane from diabetic patients compared with that of the macular epiretinal membrane from non-diabetic patients. Moreover, we have also observed a significant increase in TRIM25 expression in diabetic mouse retina and retinal microvascular endothelial cells under hyperglycemia. TRIM25 knockdown suppressed hyperglycemia-induced inflammation, senescence, and oxidative stress in human primary retinal microvascular endothelial cells while TRIM25 overexpression further aggregates those injuries. Further investigation revealed that TRIM25 promoted the inflammatory responses mediated by the TNF-α/NF-κB pathway and TRIM25 knockdown improved cellular senescence by increasing SIRT3. However, TRIM25 knockdown alleviated the oxidative stress independent of both SIRT3 and mitochondrial biogenesis. CONCLUSION: Our study proposed TRIM25 as a potential therapeutic target for the protection of microvascular function during the progression of diabetic retinopathy.


Diabetes Mellitus, Experimental , Diabetic Retinopathy , Hyperglycemia , Sirtuin 3 , Animals , Humans , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Hyperglycemia/metabolism , Hyperglycemia/pathology , Inflammation/metabolism , Oxidative Stress , Retina/pathology , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Transcription Factors , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/pharmacology
4.
Food Chem Toxicol ; 182: 114177, 2023 Dec.
Article En | MEDLINE | ID: mdl-37977258

PURPOSE: Zinc oxide nanoparticles (ZnO NPs) are widely used in sunscreen, cosmetics, and topical drugs. Most previous studies have confirmed the safety of ZnO NPs applied to normal skin; however, little is known about the safety and potential toxicity of ZnO NPs applied to inflamed skin. This study aimed to evaluate the exposure risk of ZnO NPs in the treatment of inflammatory skin diseases. METHODS: Normal human and tumor necrosis factor-α (TNF-α)-induced inflammatory keratinocytes were incubated with ZnO NPs to assess their toxic effects on cell viability and autophagy signaling pathway. Tandem mass tag (TMT)-based proteomics analysis was used to identify differentially expressed proteins following incubation of inflammatory keratinocytes with ZnO NPs. Protein expression was assessed by Western blot, and double fluorescent labeling and siRNA-knockdown further elucidated the role of the TRIM16-NRF2-p62 pathway in mediating the effects of ZnO NP. RESULTS: In TNF-α-induced inflammatory keratinocytes, ZnO NPs activated cytoprotective autophagy and mediated p62-related autophagic flux block, thereby reducing the viability of inflammatory keratinocytes. Additionally, TRIM16-NRF2 was essential in ZnO NP-mediated autophagy flux block and cell viability reduction in inflammatory keratinocytes. Inhibition of the TRIM16-NRF2 pathway reduced p62 levels, alleviated autophagy flux blockade, and slightly restored the viability of inflammatory keratinocytes. CONCLUSION: ZnO NPs activated protective cell autophagy. Blockade of autophagy flux mediated by the TRIM16-NRF2-p62 pathway led to decreased cell viability. This study provided a deeper understanding of the toxicity mechanism of ZnO NPs in inflammatory keratinocytes.


Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/toxicity , Oxidative Stress , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cell Survival , Keratinocytes , Nanoparticles/toxicity , Autophagy , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/metabolism
5.
Cell Oncol (Dordr) ; 46(5): 1493-1507, 2023 Oct.
Article En | MEDLINE | ID: mdl-37219768

Cisplatin (CDDP)-based chemotherapy is commonly used to treat advanced non-small cell lung cancer (NSCLC). However, the efficacy is limited by the development of drug resistance. Tripartite motif (TRIM) proteins typically have E3 ubiquitin ligase activities and modulate protein stability. In the present study, we screened for chemosensitivity-regulating TRIM proteins using CDDP-resistant NSCLC cell lines. We show that TRIM17 is upregulated in CDDP-resistant NSCLC cells and tumors compared to CDDP-sensitive counterparts. NSCLC patients with high TRIM17 expression in tumors have shorter progression-free survival than those with low TRIM17 expression after CDDP chemotherapy. Knockdown of TRIM17 increases the sensitivity of NSCLC cells to CDDP both in vitro and in vivo. In contrast, overexpression of TRIM17 promotes CDDP resistance in NSCLC cells. TRIM17-mediated CDDP resistance is associated with attenuation of reactive oxygen species (ROS) production and DNA damage. Mechanistically, TRIM17 interacts with RBM38 and promotes K48-linked ubiquitination and degradation of RBM38. TRIM17-induced CDDP resistance is remarkably reversed by RBM38. Additionally, RBM38 enhances CDDP-induced production of ROS. In conclusion, TRIM17 upregulation drives CDDP resistance in NSCLC largely by promoting RBM38 ubiquitination and degradation. Targeting TRIM17 may represent a promising strategy for improving CDDP-based chemotherapy in NSCLC.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Ubiquitination , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
6.
J Chem Neuroanat ; 132: 102291, 2023 10.
Article En | MEDLINE | ID: mdl-37236551

Gliomas are the highest prevalent primary central nervous system (CNS) cancers with poor overall survival rate. There is an urgent need to conduct more research into molecular therapies targeting critical elements of gliomas. This study herein targeted to assess the impact of tripartite motif protein 6 (TRIM6) on gliomas. Using public databases, we found the increased TRIM6 expression in tissues of glioma which was linked with worst overall survival. Silencing TRIM6 promoted glioma cell proliferation, migration and angiogenesis, suggesting the promoting effects of TRIM6 on gliomas. Knockdown of TRIM6 expression downregulated the expression levels of Forkhead box M1 (FOXM1) and vascular endothelial growth factor A (VEGFA) in glioma cells. Afterwards, impact of TRIM6 on VEGFA expression was regulated by FOXM1. VEGFA overexpression reversed the decreased abilities of glioma cell proliferation, migration and angiogenesis caused by silencing TRIM6. Furthermore, we also found that TRIM6 promoted the growth of gliomas in the xenograft mouse model. In summary, the expression of TRIM6 was increased which was related to poor prognosis of glioma patients. TRIM6 promoted glioma cell proliferation, migration and angiogenesis through the FOXM1-VEGFA pathway. Therefore, TRIM6 carries capacity to be explored as a novel therapeutic target in clinical.


Glioma , Vascular Endothelial Growth Factor A , Humans , Animals , Mice , Vascular Endothelial Growth Factor A/metabolism , Cell Line, Tumor , Glioma/genetics , Glioma/metabolism , Cell Proliferation , Cell Movement/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/pharmacology
7.
Mol Neurobiol ; 60(6): 3277-3298, 2023 Jun.
Article En | MEDLINE | ID: mdl-36828952

The ubiquitin-proteasome system (UPS) controls protein homeostasis to maintain cell functionality and survival. Neurogenesis relies on proteasome function, and a defective proteasome system during brain development leads to neurological disorders. An endocrine-disrupting xenoestrogen bisphenol-A (BPA) used in plastic products adversely affects human health and causes neurotoxicity. Previously, we reported that BPA reduces neural stem cells (NSCs) proliferation and differentiation, impairs myelination and mitochondrial protein import, and causes excessive mitochondrial fragmentation leading to cognitive impairments in rats. Herein, we examined the effect(s) of prenatal BPA exposure on UPS functions during NSCs proliferation and differentiation in the hippocampus. Rats were orally treated with 40 µg/kg body weight BPA during day 6 gestation to day 21 postnatal. BPA significantly reduced proteasome activity in a cellular extract of NSCs. Immunocytochemistry exhibited a significant reduction of 20S proteasome/Nestin+ and PSMB5/Nestin+ cells in NSCs culture. BPA decreased 20S/Tuj1+ and PSMB5/Tuj1+ cells, indicating disrupted UPS during neuronal differentiation. BPA reduced the expression of UPS genes, 20S, and PSMB5 protein levels and proteasome activity in the hippocampus. It significantly reduced overall protein synthesis by the loss of Nissl substances in the hippocampus. Pharmacological activation of UPS by a bioactive triterpenoid 18α-glycyrrhetinic acid (18α GA) caused increased proteasome activities, significantly increased neurosphere size and number, and enhanced NSCs proliferation in BPA exposed culture, while proteasome inhibition by MG132 further aggravates BPA-mediated effects. In silico studies demonstrated that BPA strongly binds to catalytic sites of UPS genes (PSMB5, TRIM11, Parkin, and PSMD4) which may result in UPS inactivation. These results suggest that BPA significantly reduces NSCs proliferation by impairing UPS, and UPS activation by 18α GA could suppress BPA-mediated neurotoxicity and exerts neuroprotection.


Proteasome Endopeptidase Complex , Ubiquitin , Pregnancy , Female , Animals , Rats , Humans , Proteasome Endopeptidase Complex/metabolism , Nestin/metabolism , Ubiquitin/metabolism , Neurogenesis , Hippocampus/metabolism , Benzhydryl Compounds/toxicity , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/metabolism
8.
Virology ; 579: 84-93, 2023 02.
Article En | MEDLINE | ID: mdl-36623352

Hepatitis B virus (HBV) infection represents one of the most critical health problems worldwide. Tripartite motif protein 38 (TRIM38) is an interferon-stimulated gene (ISG) that inhibits various DNA and RNA viruses.In this study, we found a mechanistic correlation between TRIM38 expression levels and the efficacy of HBV infection and IFN-α therapy in patients with CHB. TRIM38 was highly induced by IFN-alpha (IFN-α) in vivo and in vitro. TRIM38 overexpression inhibited HBV replication and gene expression in HepG2 and HepG2.2.15 cells, whereas knockdown of TRIM38 increased these processes. Further experiments indicated that TRIM38 protein enhanced the antiviral effect of IFN-α by enhancing the expression of antiviral proteins. A prospective study revealed high TRIM38 levels in peripheral blood PBMCs were from early responders, and increased TRIM38 expression correlated with a better response to PEG-IFN-α therapy. Taken together, our study suggests that TRIM38 plays a vital role in HBV replication and gene expression.


Hepatitis B, Chronic , Hepatitis B , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Gene Expression , Hepatitis B/drug therapy , Hepatitis B virus/physiology , Hepatitis B, Chronic/drug therapy , Interferon-alpha/pharmacology , Interferon-alpha/genetics , Prospective Studies , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/pharmacology , Tripartite Motif Proteins/therapeutic use , Virus Replication
9.
Virol J ; 19(1): 228, 2022 12 31.
Article En | MEDLINE | ID: mdl-36587218

BACKGROUND: Dengue virus type 2 (DENV-2) was used to infect primary human umbilical vein endothelial cells (HUVECs) to examine autophagy induced by activation of the adenosine monophosphate-activated protein kinase (AMPK)/extracellular signal-regulated kinase (ERK)/mammalian target of rapamycin (mTOR) signaling pathway following tripartite motif-containing 22 (TRIM22)-mediated DENV-2 infection to further reveal the underlying pathogenic mechanism of DENV-2 infection. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to screen putative interference targets of TRIM22 and determine the knockdown efficiency. The effect of TRIM22 knockdown on HUVEC proliferation was determined using the CCK8 assay. Following TRIM22 knockdown, transmission electron microscopy (TEM) was used to determine the ultrastructure of HUVEC autophagosomes and expression of HUVEC autophagy and AMPK pathway-related genes were measured by qRT-PCR. Moreover, HUVEC autophagy and AMPK pathway-related protein expression levels were determined by western blot analysis. Cell cycle and apoptosis were assessed by flow cytometry (FCM) and the autophagosome structure of the HUVECs was observed by TEM. RESULTS: Western blot results indicated that TRIM22 protein expression levels increased significantly 36 h after DENV-2 infection, which was consistent with the proteomics prediction. The CCK8 assay revealed that HUVEC proliferation was reduced following TRIM22 knockdown (P < 0.001). The TEM results indicated that HUVEC autolysosomes increased and autophagy was inhibited after TRIM22 knockdown. The qRT-PCR results revealed that after TRIM22 knockdown, the expression levels of antithymocyte globulin 7 (ATG7), antithymocyte globulin 5 (ATG5), Beclin1, ERK, and mTOR genes decreased (P < 0.01); however, the expression of AMPK genes (P < 0.05) and P62 genes (P < 0.001) increased. FCM revealed that following TRIM22 knockdown, the percentage of HUVECs in the G2 phase increased (P < 0.001) along with cell apoptosis. The effect of TRIM22 overexpression on HUVEC autophagy induced by DENV-2 infection and AMPK pathways decreased after adding an autophagy inhibitor. CONCLUSIONS: In HUVECs, TRIM22 protein positively regulates autophagy and may affect autophagy through the AMPK/ERK/mTOR signaling pathway. Autophagy is induced by activation of the AMPK/ERK/mTOR signaling pathway following TRIM22-mediated DENV-2 infection of HUVECs.


AMP-Activated Protein Kinases , Extracellular Signal-Regulated MAP Kinases , Humans , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Human Umbilical Vein Endothelial Cells , Extracellular Signal-Regulated MAP Kinases/metabolism , Sirolimus/pharmacology , Antilymphocyte Serum/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , Autophagy , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/pharmacology , Repressor Proteins/metabolism , Minor Histocompatibility Antigens/pharmacology
11.
PLoS One ; 15(4): e0231194, 2020.
Article En | MEDLINE | ID: mdl-32271817

Various injuries to the neural tissues can cause irreversible damage to multiple functions of the nervous system ranging from motor control to cognitive function. The limited treatment options available for patients have led to extensive interest in studying the mechanisms of neuronal regeneration and recovery from injury. Since many neurons are terminally differentiated, by increasing cell survival following injury it may be possible to minimize the impact of these injuries and provide translational potential for treatment of neuronal diseases. While several cell types are known to survive injury through plasma membrane repair mechanisms, there has been little investigation of membrane repair in neurons and even fewer efforts to target membrane repair as a therapy in neurons. Studies from our laboratory group and others demonstrated that mitsugumin 53 (MG53), a muscle-enriched tripartite motif (TRIM) family protein also known as TRIM72, is an essential component of the cell membrane repair machinery in skeletal muscle. Interestingly, recombinant human MG53 (rhMG53) can be applied exogenously to increase membrane repair capacity both in vitro and in vivo. Increasing the membrane repair capacity of neurons could potentially minimize the death of these cells and affect the progression of various neuronal diseases. In this study we assess the therapeutic potential of rhMG53 to increase membrane repair in cultured neurons and in an in vivo mouse model of neurotrauma. We found that a robust repair response exists in various neuronal cells and that rhMG53 can increase neuronal membrane repair both in vitro and in vivo. These findings provide direct evidence of conserved membrane repair responses in neurons and that these repair mechanisms can be targeted as a potential therapeutic approach for neuronal injury.


Nerve Regeneration , Sciatic Nerve/injuries , Sciatic Nerve/physiopathology , Wound Healing , Animals , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Crush Injuries/pathology , Crush Injuries/physiopathology , Disease Models, Animal , Humans , Membrane Proteins/metabolism , Membranes , Mice, Inbred C57BL , Nerve Regeneration/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Recombinant Proteins/pharmacology , Sciatic Nerve/drug effects , Sciatic Nerve/pathology , Tripartite Motif Proteins/pharmacology , Wound Healing/drug effects
12.
Diabetes ; 69(5): 1052-1064, 2020 05.
Article En | MEDLINE | ID: mdl-32139593

MG53 is a member of the TRIM protein family that is predominantly expressed in striated muscles and participates in cell membrane repair. Controversy exists regarding MG53's role in insulin signaling and manifestation of diabetes. We generated db/db mice with either whole-body ablation or sustained elevation of MG53 in the bloodstream in order to evaluate the physiological function of MG53 in diabetes. To quantify the amount of MG53 protein in circulation, we developed a monoclonal antibody against MG53 with high specificity. Western blot using this antibody revealed lower or no change of serum MG53 levels in db/db mice or patients with diabetes compared with control subjects. Neither whole-body ablation of MG53 nor sustained elevation of MG53 in circulation altered insulin signaling and glucose handling in db/db mice. Instead, mice with ablation of MG53 were more susceptible to streptozotocin-induced dysfunctional handling of glucose compared with the wild-type littermates. Alkaline-induced corneal injury demonstrated delayed healing in db/db mice, which was restored by topical administration of recombinant human (rh)MG53. Daily intravenous administration of rhMG53 in rats at concentrations up to 10 mg/kg did not produce adverse effects on glucose handling. These findings challenge the hypothetical function of MG53 as a causative factor for the development of diabetes. Our data suggest that rhMG53 is a potentially safe and effective biologic to treat diabetic oculopathy in rodents.


Blood Glucose , Corneal Injuries/drug therapy , Glucose/metabolism , Insulin Resistance , Membrane Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Animals , Antibodies, Monoclonal , Burns, Chemical/drug therapy , Gene Expression Regulation/physiology , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Inbred NOD , Mice, Knockout , Rabbits , Recombinant Proteins
13.
Biochem Biophys Res Commun ; 521(2): 360-367, 2020 01 08.
Article En | MEDLINE | ID: mdl-31668806

Tripartite motif (TRIM)-containing protein 14 (TRIM14) is implicated in many malignancies. Presently, we studied whether TRIM14 played a role in human papillary thyroid carcinoma (PTC). Herein, TRIM14 was up-regulated in tumor tissues when compared with normal thyroid samples. Among PTC patients, enhanced TRIM14 predicted short recurrence free survival (RFS) time. Then, we found that knockdown of TRIM14 in human PTC K1 cells inhibited cell proliferation, induced cell apoptosis and prevented the tumorigenicity in nude mice. On the contrary, TRIM14 overexpression in human PTC TPC1 cells promoted cell proliferation while inhibited cell apoptosis. TRIM14 exerted its oncogenic activities via promoting the activation of signal transducer and activator of transcription 3 (STAT3). Further, TRIM14 interacted with the suppressor of cytokine-signaling-1 (SOCS1), a negative regulator of STAT3 activation, and knockdown of TRIM14 inhibited SOCS1 ubiquitination. In conclusion, TRIM14 may be a prognostic factor and oncogene in PTC, and may be a potential target for PTC intervention.


Intracellular Signaling Peptides and Proteins/genetics , Oncogenes , Thyroid Cancer, Papillary/genetics , Tripartite Motif Proteins/genetics , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Intracellular Signaling Peptides and Proteins/pharmacology , Mice , Mice, Nude , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitination/drug effects
14.
Article En | MEDLINE | ID: mdl-31260721

Neuroinflammation plays important roles in the pathogenesis and development of neurodegenerative disorders. Lipopolysaccharide (LPS) induces neuroinflammation and causes neurotoxicity, which results in cell damage or memory impairment in different cells and animals. In the present study, we investigated the neuroprotective effects of MG53, a member of the TRIM family proteins, against LPS-induced neuroinflammation and neurotoxicity in vitro and in vivo. MG53 significantly protected HT22 cells against LPS-induced cell apoptosis and cell cycle arrest by inhibiting TNF-α, IL-6 and IL-1ß expression. In addition, MG53 ameliorated LPS-induced memory impairment and neuronal cell death in mice. Interestingly, MG53 significantly promoted newborn cell survival, improved neurogenesis, and mitigated neuroinflammation evidenced by lower production of IL-1ß and IL-6, less activation of microglia in the hippocampus of LPS treated mice. Further studies demonstrated that MG53 significantly inhibited TLR4 expression and nuclear factor-κB (NF-κB) phosphorylation in LPS treated HT22 cells and mice. Taken together, our results suggested that MG53 attenuated LPS-induced neurotoxicity and neuroinflammation partly by inhibiting TLR4/NF-κB pathway in vitro and in vivo.


Inflammation/metabolism , Lipopolysaccharides/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects , Tripartite Motif Proteins/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line , Hippocampus/drug effects , Hippocampus/metabolism , Maze Learning/drug effects , Mice , NF-kappa B/metabolism , Neurons/metabolism , Signal Transduction/physiology , Toll-Like Receptor 4/metabolism
15.
Biochim Biophys Acta Mol Cell Res ; 1866(9): 1412-1420, 2019 09.
Article En | MEDLINE | ID: mdl-31176697

Src is a known proto-oncogene and its aberrant activity is involved in a variety of cancers, including ovarian cancer, whereas the regulatory mechanism of Src has not been fully clarified. In this study, we identified tripartite motif-containing (TRIM) 50 as a novel negative regulator of Src protein. Our data showed that TRIM50 directly interacted with SH3 domain of Src via its B-box domain; and TRIM50 reduced Src stability by inducing RING domain-dependent K48-linked poly-ubiquitous modification. We further demonstrated that TRIM50 acted as a tumor suppressor in ovarian cancer cells by its negative regulation of Src protein. In vivo animal model verified that TRIM50 inhibited the xenograft tumor growth of ovarian cancer by suppressing Src protein. Clinical investigation showed that expression of TRIM50 in clinical specimens was inversely correlated with the clinical stages, pathology grades and lymph node metastatic status of the patients, which indicated the involvement of aberrant TRIM50 expression in disease progression. Further analysis verified the negative correlation between TRIM50 and Src expression in clinical specimens. Altogether, we identified TRIM50 as a novel suppressor of Src protein, and demonstrated that TRIM50 inhibited ovarian cancer progression by targeting Src and reducing its activity, which provided a novel therapeutic strategy for Src over-activated cancers by positive regulation of TRIM50.


Disease Progression , Ovarian Neoplasms/drug therapy , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/pharmacology , src-Family Kinases/drug effects , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Models, Animal , Female , HEK293 Cells , Humans , Lymph Nodes , Middle Aged , Ovarian Neoplasms/pathology , Proto-Oncogene Mas , Xenograft Model Antitumor Assays , src-Family Kinases/metabolism
...