Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nat Microbiol ; 6(3): 392-400, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462435

RESUMEN

Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By solving high-resolution crystal structures of VSGsur and VSG13, we also demonstrate that these VSGs define a structurally divergent subgroup of the coat proteins. The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the VSG homodimer asymmetrically, primarily through contacts of its central benzene rings. Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the resistance phenotype. Altogether, these data show that the resistance phenotype is dependent on the binding of suramin to VSGsur, establishing that the VSG proteins can possess functionality beyond their role in antigenic variation.


Asunto(s)
Resistencia a Medicamentos/inmunología , Suramina/metabolismo , Trypanosoma brucei rhodesiense/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/química , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Variación Antigénica/efectos de los fármacos , Variación Antigénica/inmunología , Sitios de Unión , Cristalografía por Rayos X , Resistencia a Medicamentos/genética , Endocitosis/genética , Evasión Inmune , Mutación , Unión Proteica , Conformación Proteica , Suramina/toxicidad , Tripanocidas/metabolismo , Tripanocidas/toxicidad , Trypanosoma brucei rhodesiense/química , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/metabolismo , Tripanosomiasis Africana/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
2.
Elife ; 62017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28537557

RESUMEN

Reduced susceptibility to infectious disease can increase the frequency of otherwise deleterious alleles. In populations of African ancestry, two apolipoprotein-L1 (APOL1) variants with a recessive kidney disease risk, named G1 and G2, occur at high frequency. APOL1 is a trypanolytic protein that confers innate resistance to most African trypanosomes, but not Trypanosoma brucei rhodesiense or T.b. gambiense, which cause human African trypanosomiasis. In this case-control study, we test the prevailing hypothesis that these APOL1 variants reduce trypanosomiasis susceptibility, resulting in their positive selection in sub-Saharan Africa. We demonstrate a five-fold dominant protective association for G2 against T.b. rhodesiense infection. Furthermore, we report unpredicted strong opposing associations with T.b. gambiense disease outcome. G2 associates with faster progression of T.b. gambiense trypanosomiasis, while G1 associates with asymptomatic carriage and undetectable parasitemia. These results implicate both forms of human African trypanosomiasis in the selection and persistence of otherwise detrimental APOL1 kidney disease variants.


Asunto(s)
Alelos , Apolipoproteína L1/genética , Resistencia a la Enfermedad , Predisposición Genética a la Enfermedad , Enfermedades Renales/genética , Tripanosomiasis Africana/genética , África del Sur del Sahara , Estudios de Casos y Controles , Genotipo , Humanos , Selección Genética , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei rhodesiense/inmunología
4.
Cell ; 164(1-2): 246-257, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26771494

RESUMEN

Intercellular communication between parasites and with host cells provides mechanisms for parasite development, immune evasion, and disease pathology. Bloodstream African trypanosomes produce membranous nanotubes that originate from the flagellar membrane and disassociate into free extracellular vesicles (EVs). Trypanosome EVs contain several flagellar proteins that contribute to virulence, and Trypanosoma brucei rhodesiense EVs contain the serum resistance-associated protein (SRA) necessary for human infectivity. T. b. rhodesiense EVs transfer SRA to non-human infectious trypanosomes, allowing evasion of human innate immunity. Trypanosome EVs can also fuse with mammalian erythrocytes, resulting in rapid erythrocyte clearance and anemia. These data indicate that trypanosome EVs are organelles mediating non-hereditary virulence factor transfer and causing host erythrocyte remodeling, inducing anemia.


Asunto(s)
Vesículas Extracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei rhodesiense/citología , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/patología , Tripanosomiasis Africana/parasitología , Factores de Virulencia/metabolismo , Anemia/patología , Animales , Eritrocitos/parasitología , Flagelos/metabolismo , Humanos , Evasión Inmune , Ratones , Proteoma/metabolismo , Rodaminas/análisis , Trypanosoma brucei rhodesiense/metabolismo , Trypanosoma brucei rhodesiense/patogenicidad
5.
Parasitol Int ; 65(2): 121-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26519611

RESUMEN

Human African trypanosomiasis (HAT) is a disease caused by Kinetoplastid infection. Serological tests are useful for epidemiological surveillance. The aim of this study was to develop a multiplex serological assay for HAT to assess the diagnostic value of selected HAT antigens for sero-epidemiological surveillance. We cloned loci encoding eight antigens from Trypanosoma brucei gambiense, expressed the genes in bacterial systems, and purified the resulting proteins. Antigens were subjected to Luminex multiplex assays using sera from HAT and VL patients to assess the antigens' immunodiagnostic potential. Among T. b. gambiense antigens, the 64-kDa and 65-kDa invariant surface glycoproteins (ISGs) and flagellar calcium binding protein (FCaBP) had high sensitivity for sera from T. b. gambiense patients, yielding AUC values of 0.871, 0.737 and 0.858 respectively in receiver operating characteristics (ROC) analysis. The ISG64, ISG65, and FCaBP antigens were partially cross-reactive to sera from Trypanosoma brucei rhodesiense patients. The GM6 antigen was cross-reactive to sera from T. b. rhodesiense patients as well as to sera from VL patients. Furthermore, heterogeneous antibody responses to each individual HAT antigen were observed. Testing for multiple HAT antigens in the same panel allowed specific and sensitive detection. Our results demonstrate the utility of applying multiplex assays for development and evaluation of HAT antigens for use in sero-epidemiological surveillance.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Pruebas Serológicas/métodos , Tripanosomiasis Africana/diagnóstico , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Reacciones Cruzadas , Humanos , Curva ROC , Sensibilidad y Especificidad , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/inmunología
6.
Cell Microbiol ; 17(10): 1523-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25924022

RESUMEN

African trypanosomes infect a broad range of mammals, but humans and some higher primates are protected by serum trypanosome lytic factors that contain apolipoprotein L1 (ApoL1). In the human-infective subspecies of Trypanosoma brucei, Trypanosoma brucei rhodesiense, a gene product derived from the variant surface glycoprotein gene family member, serum resistance-associated protein (SRA protein), protects against ApoL1-mediated lysis. Protection against trypanosome lytic factor requires the direct interaction between SRA protein and ApoL1 within the endocytic apparatus of the trypanosome, but some uncertainty remains as to the precise mechanism and location of this interaction. In order to provide more insight into the mechanism of SRA-mediated resistance to trypanosome lytic factor, we assessed the localization of SRA in T. b. rhodesiense EATRO3 using a novel monoclonal antibody raised against SRA together with a set of well-characterized endosomal markers. By three-dimensional deconvolved immunofluorescence single-cell analysis, combined with double-labelling immunoelectron microscopy, we found that ≈ 50% of SRA protein localized to the lysosome, with the remaining population being distributed through the endocytic pathway, but apparently absent from the flagellar pocket membrane. These data suggest that the SRA/trypanolytic factor interaction is intracellular, with the concentration within the endosomes potentially crucial for ensuring a high efficiency.


Asunto(s)
Endosomas/química , Lisosomas/química , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/genética , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/química , Trypanosoma brucei rhodesiense/química , Animales , Apolipoproteína L1 , Apolipoproteínas/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/inmunología
7.
Nat Rev Microbiol ; 12(8): 575-84, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24975321

RESUMEN

Humans can survive bloodstream infection by African trypanosomes, owing to the activity of serum complexes that have efficient trypanosome-killing ability. The two trypanosome subspecies that are responsible for human sleeping sickness--Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense--can evade this defence mechanism by expressing distinct resistance proteins. In turn, sequence variation in the gene that encodes the trypanosome-killing component in human serum has enabled populations in western Africa to restore resistance to T. b. rhodesiense, at the expense of the high probability of developing kidney sclerosis. These findings highlight the importance of resistance to trypanosomes in human evolution.


Asunto(s)
Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/inmunología , Animales , Apolipoproteína L1 , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Evolución Biológica , Resistencia a la Enfermedad/inmunología , Humanos , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Trypanosoma brucei gambiense/metabolismo , Trypanosoma brucei rhodesiense/metabolismo , Tripanosomiasis Africana/genética , Tripanosomiasis Africana/metabolismo
8.
PLoS Pathog ; 9(4): e1003317, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637606

RESUMEN

Critical to human innate immunity against African trypanosomes is a minor subclass of human high-density lipoproteins, termed Trypanosome Lytic Factor-1 (TLF-1). This primate-specific molecule binds to a haptoglobin-hemoglobin receptor (HpHbR) on the surface of susceptible trypanosomes, initiating a lytic pathway. Group 1 Trypanosoma brucei gambiense causes human African Trypanosomiasis (HAT), escaping TLF-1 killing due to reduced uptake. Previously, we found that group 1 T. b. gambiense HpHbR (TbgHpHbR) mRNA levels were greatly reduced and the gene contained substitutions within the open reading frame. Here we show that a single, highly conserved amino acid in the TbgHpHbR ablates high affinity TLF-1 binding and subsequent endocytosis, thus evading TLF-1 killing. In addition, we show that over-expression of TbgHpHbR failed to rescue TLF-1 susceptibility. These findings suggest that the single substitution present in the TbgHpHbR directly contributes to the reduced uptake and resistance to TLF-1 seen in these important human pathogens.


Asunto(s)
Haptoglobinas/genética , Haptoglobinas/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Lipoproteínas HDL/metabolismo , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei rhodesiense/inmunología , Sustitución de Aminoácidos , Línea Celular , Endocitosis , Técnicas de Inactivación de Genes , Haptoglobinas/química , Hemoglobinas/química , Humanos , Alineación de Secuencia , Trypanosoma brucei gambiense/química , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/metabolismo , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei rhodesiense/metabolismo , Tripanosomiasis Africana/inmunología
9.
PLoS Pathog ; 9(4): e1003318, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637607

RESUMEN

Tsetse flies (Glossina spp.) vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse's resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb) and epithelial (inducible nitric oxide synthase and dual oxidase) immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm(Apo)) present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm(Apo) adults present a structurally compromised peritrophic matrix (PM), which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm(Apo) flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse's PM appears to regulate the timing of host immune induction following parasite challenge. Our results document a novel finding, which is the existence of a positive correlation between tsetse's larval microbiome and the integrity of the emerging adult PM gut immune barrier.


Asunto(s)
Microbiota , Trypanosoma brucei rhodesiense/inmunología , Moscas Tse-Tse/inmunología , Moscas Tse-Tse/parasitología , Animales , Proteínas Portadoras/biosíntesis , Femenino , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/parasitología , Proteínas de Insectos/biosíntesis , NADPH Oxidasas/biosíntesis , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Simbiosis , Trypanosoma brucei rhodesiense/patogenicidad , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/crecimiento & desarrollo , Moscas Tse-Tse/microbiología
11.
Bull Mem Acad R Med Belg ; 166(10-12): 358-63; discussion 364-5, 2011.
Artículo en Francés | MEDLINE | ID: mdl-23082501

RESUMEN

The evolutionary origin of Man in the African continent has imposed the requirement to resist endemic parasites, in particular African trypanosomes (prototype: Trypanosoma brucei). Therefore, human serum is provided with an efficient system of innate immunity against these parasites, as discovered by A. Laveran in 1902. However, two T. brucei clones, termed T. b. rhodesiense and T. b. gambiense, managed to escape this immunity system, enabling them to grow in humans where they cause sleeping sickness. We have identified the gene allowing T. b. rhodesiense to resist trypanolysis by human serum, which led us to discover that the trypanolytic factor is apolipoprotein L1 (apoL1). ApoL1 is a human-specific serum protein bound to HDL particles that also contain another human-specific protein termed "haptoglobin-related protein " (Hpr). Following the binding of hemoglobin (Hb) to Hpr, the apoL1-bearing HDL particles are avidly taken up by the trypanosome through their binding to a parasite surface receptor for the Hp-Hb complex. After endocytosis apoL1 kills the parasite by generating anionic pores in the lysosomal membrane. In our laboratory, mutant versions of apoL1 have been constructed, which are no longer neutralized by the resistance protein of T. b. rhodesiense and are therefore able to kill this human pathogen. Unexpectedly, we have recently discovered that similar mutants do actually exist in nature : in Africans and Americans of recent African origin, even a single allele of these mutants allows protection against infection by T. b. rhodesiense, but the price to pay is a high frequency of end-stage renal disease when doubly allelic. The evidence of natural selection of these apoL1 mutations despite their deleterious potential for kidneys highlights the importance of the resistance to trypanosomes in the evolution of Man. The mechanism by which mutant apoL1 triggers end-stage renal disease is currently studied.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Haptoglobinas/metabolismo , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Mutación , Trypanosoma brucei gambiense/genética , Trypanosoma brucei rhodesiense/genética , Tripanosomiasis Africana/parasitología , Animales , Apolipoproteína L1 , Apolipoproteínas/inmunología , Humanos , Inmunidad Innata , Lipoproteínas HDL/inmunología , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/inmunología
12.
Infect Disord Drug Targets ; 10(4): 266-82, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20429865

RESUMEN

African trypanosomes are responsible for sleeping sickness in man and nagana in cattle, which are both tremendous health burdens in Africa. Most African trypanosome species are killed by human serum. This is due to a serum trypanolytic particle specific of some old world monkeys and great apes, an HDL subclass containing two proteins which appeared recently in mammalian evolution, apolipoprotein L1 and haptoglobin related protein. Nevertheless, two African trypanosome species, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense are able to infect humans, because they developed resistance to trypanolysis. Resistance to human serum in Trypanosoma brucei rhodesiense is due to a single gene called SRA. This mechanism of lysis-resistance is therefore an example of a natural drug-antidote system which evolved during a pathogen-host arms race. The lysis and resistance mechanisms, their molecular components as well as their mode of action are reviewed. I also discuss how components of the system would be suitable drug targets and how the system could be engineered to generate an effective synthetic drug.


Asunto(s)
Lipoproteínas HDL/farmacología , Tripanocidas/farmacología , Trypanosoma brucei gambiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/efectos de los fármacos , Animales , Variación Antigénica , Apolipoproteína L1 , Apolipoproteínas/química , Apolipoproteínas/genética , Apolipoproteínas/farmacología , Bovinos , Resistencia a Medicamentos/genética , Resistencia a Medicamentos/inmunología , Evolución Molecular , Genes Protozoarios , Humanos , Lipoproteínas HDL/sangre , Lipoproteínas HDL/química , Lipoproteínas HDL/genética , Modelos Biológicos , Tripanocidas/química , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
13.
Parasitology ; 137(14): 1977-86, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20380768

RESUMEN

Human African trypanosomiasis (HAT) or sleeping sickness is caused by protozoan parasites Trypanosoma brucei gambiense and T. b. rhodesiense. Despite the enormous technological progress in molecular parasitology in recent years, the diagnosis of HAT is still problematic due to the lack of specific tools. To date, there are two realities when it comes to HAT; the first one being the world of modern experimental laboratories, equipped with the latest state-of-the-art technology, and the second being the world of HAT diagnosis, where the latest semi-commercial test was introduced 30 years ago (Magnus et al. 1978). Hence, it appears that the lack of progress in HAT diagnosis is not primarily due to a lack of scientific interest or a lack of research funds, but mainly results from the many obstacles encountered in the translation of basic research into field-applicable diagnostics. This review will provide an overview of current diagnostic methods and highlight specific difficulties in solving the shortcomings of these methods. Future perspectives for accurate, robust, affordable diagnostics will be discussed as well.


Asunto(s)
Pruebas de Aglutinación/métodos , Tripanosomiasis Africana/diagnóstico , África del Sur del Sahara/epidemiología , Antígenos de Protozoos/sangre , Humanos , Tamizaje Masivo , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/epidemiología
14.
Proc Natl Acad Sci U S A ; 106(46): 19509-14, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19858474

RESUMEN

Several species of African trypanosomes cause fatal disease in livestock, but most cannot infect humans due to innate trypanosome lytic factors (TLFs). Human TLFs are pore forming high-density lipoprotein (HDL) particles that contain apolipoprotein L-I (apoL-I) the trypanolytic component, and haptoglobin-related protein (Hpr), which binds free hemoglobin (Hb) in blood and facilitates the uptake of TLF via a trypanosome haptoglobin-hemoglobin receptor. The human-infective Trypanosoma brucei rhodesiense escapes lysis by TLF by expression of serum resistance-associated (SRA) protein, which binds and neutralizes apoL-I. Unlike humans, baboons are not susceptible to infection by T. b. rhodesiense due to previously unidentified serum factors. Here, we show that baboons have a TLF complex that contains orthologs of Hpr and apoL-I and that full-length baboon apoL-I confers trypanolytic activity to mice and when expressed together with baboon Hpr and human apoA-I, provides protection against both animal infective and the human-infective T. brucei rhodesiense in vivo. We further define two critical lysines near the C terminus of baboon apoL-1 that are necessary and sufficient to prevent binding to SRA and thereby confer resistance to human-infective trypanosomes. These findings form the basis for the creation of TLF transgenic livestock that would be resistant to animal and human-infective trypanosomes, which would result in the reduction of disease and the zoonotic transmission of human infective trypanosomes.


Asunto(s)
Apolipoproteína A-I/inmunología , Lipoproteínas HDL/inmunología , Glicoproteínas de Membrana/inmunología , Papio/inmunología , Proteínas Protozoarias/inmunología , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/inmunología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Apolipoproteína A-I/genética , Clonación Molecular , Técnicas de Transferencia de Gen , Humanos , Lipoproteínas HDL/genética , Ratones , Datos de Secuencia Molecular , Papio/genética , Papio/parasitología , Estructura Terciaria de Proteína , Tripanosomiasis Africana/genética , Tripanosomiasis Africana/veterinaria
15.
J Immunol ; 183(5): 3344-55, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19675169

RESUMEN

Th1 cell responses to the variant surface glycoprotein (VSG) of African trypanosomes play a critical role in controlling infection through the production of IFN-gamma, but the role of APCs in the induction and regulation of T cell-mediated protection is poorly understood. In this study, we have investigated the Ag presentation capabilities of dendritic cells (DCs) and macrophages during early trypanosome infection in relatively resistant responder and susceptible nonresponder mouse strains. Splenic DCs appeared to be the primary cell responsible for activating naive VSG-specific Th cell responses in resistant responder animals through the coordinated up-regulation of costimulatory molecules, secretion of IL-12, and presentation of VSG peptides to T cells in vivo. Splenic DC depletion and the down-regulation of costimulatory markers on splenic macrophages were observed in susceptible animals and may be associated with the inability of these animals to elicit a significant VSG-specific T cell response. In contrast to splenic APCs, peritoneal macrophages secreted NO, failed to activate naive Th cells in vitro, and presented relatively low levels of VSG peptides to T cells in vivo. Thus, VSG-specific Th1 cell responses may be determined by tissue- and cell-specific differences in Ag presentation. Additionally, all APCs from resistant and susceptible strains displayed a reduced ability to process and present newly encountered exogenous Ag, including new VSG molecules, during high parasitemia. Thus, initial uptake of VSG (or other trypanosome factors) may interfere with Ag presentation and have dramatic consequences for subsequent T cell responses to other proteins.


Asunto(s)
Presentación de Antígeno/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/parasitología , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Animales , Presentación de Antígeno/genética , Membrana Celular/inmunología , Membrana Celular/metabolismo , Membrana Celular/parasitología , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/parasitología , Células Dendríticas/patología , Femenino , Predisposición Genética a la Enfermedad , Antígenos de Histocompatibilidad Clase II/biosíntesis , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Inmunofenotipificación , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/parasitología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Subgrupos de Linfocitos T/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/parasitología , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/patología , Glicoproteínas Variantes de Superficie de Trypanosoma/biosíntesis , Glicoproteínas Variantes de Superficie de Trypanosoma/fisiología
16.
Trop Med Int Health ; 14(7): 736-47, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19573160

RESUMEN

OBJECTIVE: To determine the usefulness of IL-10 and immunoglobulin M (IgM) as biomarkers for staging HAT in vervet monkeys, a useful pathogenesis model for humans. METHODS: Vervet monkeys were infected with Trypanosoma brucei rhodesiense and subsequently given sub-curative and curative treatment 28 and 140 days post-infection (dpi) respectively. Matched serum and CSF samples were obtained at regular intervals and immunospecific IgM, immunoglobulin G (IgG) and IL-10 were quantified by ELISA. RESULTS: There was no detectable immunospecific IgM and IgG in the CSF before 49 dpi. CSF IgM and IgG and serum IgM were significantly elevated with peak levels coinciding with meningoencephalitis 98 dpi. The serum IL-10 was upregulated in both early and late disease stage, coinciding with primary and relapse parasitaemia respectively. CSF white cell counts (CSF WCC) were elevated progressively till curative treatment was given. After curative treatment, there was rapid and significant drop in serum IgM and IL-10 concentration as well as CSF WCC. However, the CSF IgM and IgG remained detectable to the end of the study. CONCLUSIONS: Serum and CSF concentrations of immunospecific IgM and CSF IgG changes followed a pattern that mimics the progression of the disease and may present reliable and useful biomarkers of the disease stage. Due to rapid decline, serum IgM and IL-10 are, additionally, potential biomarkers of the success of chemotherapy.


Asunto(s)
Antígenos de Protozoos/líquido cefalorraquídeo , Antígenos de Protozoos/inmunología , Inmunoglobulina G , Inmunoglobulina M , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/inmunología , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Encéfalo/patología , Chlorocebus aethiops , Diminazeno/análogos & derivados , Diminazeno/uso terapéutico , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/líquido cefalorraquídeo , Inmunoglobulina M/sangre , Inmunoglobulina M/líquido cefalorraquídeo , Interleucina-10/líquido cefalorraquídeo , Masculino , Trypanosoma brucei rhodesiense/efectos de los fármacos , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/líquido cefalorraquídeo , Tripanosomiasis Africana/tratamiento farmacológico
17.
Microbes Infect ; 10(9): 985-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18675374

RESUMEN

Around 1900 Laveran and Mesnil discovered that African trypanosomes (prototype: Trypanosoma brucei brucei) do not survive in the blood of some primates and humans. The nature of the trypanolytic factor present in these sera has been the focus of a long-standing debate between different groups, but recent developments have allowed the proposal of a coherent model incorporating most seemingly divergent views and providing an interesting example of the complex interplay that continuously occurs between hosts and parasites. Possibly as an adaptation to their natural environment, great African apes and humans have acquired a new member of the apolipoprotein-L family, termed apoL1. This protein is the only one of the family to be secreted in the blood, where it binds to a subset of HDL particles that also contain another human-specific protein, haptoglobin-related protein or Hpr. T. b. brucei possesses a specific surface receptor for the haptoglobin-hemoglobin (Hp-Hb) complex, as a way to capture heme into hemoproteins that contribute to cell growth and resistance to the oxidative stress of the host. As this receptor does not discriminate between Hp and Hpr, Hpr-containing HDL particles of human serum are efficiently taken up by the parasite, leading to the simultaneous internalization of apoL1, Hpr and Hb-derived heme. Once in the lysosome, apoL1 is targeted to the lysosomal membrane, where its colicin-like anionic pore-forming activity triggers an influx of chloride ions from the cytoplasm. Osmotic effect linked to this ionic flux leads to uncontrolled swelling of the lysosome, ultimately causing the death of the parasite. Two T. brucei clones, termed Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense, have managed to resist this lysis mechanism and, therefore, cause sleeping sickness in humans. While the mechanism of this resistance is still not known in the case of T. b. gambiense, the dominant factor responsible for resistance of T. b. rhodesiense has been identified. This protein, named SRA for Serum Resistance-Associated, is a truncated version of the major and variable surface antigen of the parasite, the Variant Surface Glycoprotein or VSG. Presumably due to its defective nature, SRA is not targeted to the plasma membrane as do regular VSGs, but ends up in the late endosomal compartment. In this location SRA is thought to neutralize apoL1 through coiled-coil interactions between alpha-helices. We discuss the potential of these discoveries in terms of fight against the disease.


Asunto(s)
Antígenos de Neoplasias/fisiología , Apolipoproteínas/fisiología , Haptoglobinas/fisiología , Lipoproteínas HDL/química , Lipoproteínas HDL/fisiología , Glicoproteínas de Membrana/fisiología , Proteínas Protozoarias/fisiología , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei brucei/fisiología , Tripanosomiasis Africana/inmunología , Animales , Antígenos de Neoplasias/inmunología , Apolipoproteína L1 , Apolipoproteínas/inmunología , Haptoglobinas/inmunología , Interacciones Huésped-Parásitos , Humanos , Inmunidad Innata , Lipoproteínas HDL/sangre , Lipoproteínas HDL/inmunología , Lipoproteínas HDL3/inmunología , Lipoproteínas HDL3/fisiología , Glicoproteínas de Membrana/inmunología , Modelos Biológicos , Proteínas Protozoarias/inmunología , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/fisiología , Trypanosoma brucei gambiense/inmunología , Trypanosoma brucei gambiense/fisiología , Trypanosoma brucei rhodesiense/inmunología , Trypanosoma brucei rhodesiense/fisiología , Tripanosomiasis Africana/parasitología
18.
PLoS Negl Trop Dis ; 2(3): e192, 2008 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-18335067

RESUMEN

The parasite Trypanosoma brucei rhodesiense and its insect vector Glossina morsitans morsitans were used to evaluate the effect of parasite clearance (resistance) as well as the cost of midgut infections on tsetse host fitness. Tsetse flies are viviparous and have a low reproductive capacity, giving birth to only 6-8 progeny during their lifetime. Thus, small perturbations to their reproductive fitness can have a major impact on population densities. We measured the fecundity (number of larval progeny deposited) and mortality in parasite-resistant tsetse females and untreated controls and found no differences. There was, however, a typanosome-specific impact on midgut infections. Infections with an immunogenic parasite line that resulted in prolonged activation of the tsetse immune system delayed intrauterine larval development resulting in the production of fewer progeny over the fly's lifetime. In contrast, parasitism with a second line that failed to activate the immune system did not impose a fecundity cost. Coinfections favored the establishment of the immunogenic parasites in the midgut. We show that a decrease in the synthesis of Glossina Milk gland protein (GmmMgp), a major female accessory gland protein associated with larvagenesis, likely contributed to the reproductive lag observed in infected flies. Mathematical analysis of our empirical results indicated that infection with the immunogenic trypanosomes reduced tsetse fecundity by 30% relative to infections with the non-immunogenic strain. We estimate that a moderate infection prevalence of about 26% with immunogenic parasites has the potential to reduce tsetse populations. Potential repercussions for vector population growth, parasite-host coevolution, and disease prevalence are discussed.


Asunto(s)
Reproducción/fisiología , Trypanosoma brucei rhodesiense/inmunología , Moscas Tse-Tse/fisiología , Moscas Tse-Tse/parasitología , Animales , Northern Blotting , Western Blotting , Femenino , Fertilidad/inmunología , Fertilidad/fisiología , Interacciones Huésped-Parásitos/inmunología , Masculino , Proteínas Protozoarias/metabolismo , Reproducción/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Moscas Tse-Tse/inmunología , Moscas Tse-Tse/metabolismo
19.
J Eukaryot Microbiol ; 54(1): 18-21, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17300512

RESUMEN

Trypanosoma brucei brucei is the causative agent of Nagana in cattle and can infect a wide range of mammals but is unable to infect humans because it is susceptible to the innate cytotoxic activity of normal human serum. A minor subfraction of human high-density lipoprotein (HDL), containing apolipoprotein A-I (APOA1), apolipoprotein L-I (APOL1) and haptoglobin-related protein (HPR) provides this innate protection against T. b. brucei infection. Both HPR and APOL1 are cytotoxic to T. b. brucei but their specific activities for killing increase several hundred-fold when assembled in the same HDL. This HDL is called trypanosome lytic factor (TLF) and kills T. b. brucei following receptor binding, endocytosis, and lysosomal localization. Trypanosome lytic factor is activated in the acidic lysosome and facilitates lysosomal membrane disruption. Lysosomal localization is necessary for T. b. brucei killing by TLF. Trypanosoma brucei rhodesiense, which is indistinguishable from T. b. brucei, is resistant to TLF killing and causes human African sleeping sickness. Human infectivity by T. b. rhodesiense correlates with the evolution of a human serum resistance associated protein (SRA) that is able to ablate TLF killing. When T. b. brucei is transfected with the SRA gene it becomes highly resistant to TLF and human serum. In the SRA transfected cells, intracellular trafficking of TLF is altered and TLF mainly localizes to a subset of SRA containing cytoplasmic vesicles but not to the lysosome. These findings indicate that the cellular distribution of TLF is influenced by SRA expression and may directly determine susceptibility.


Asunto(s)
Endocitosis , Lipoproteínas HDL/inmunología , Glicoproteínas de Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei rhodesiense/inmunología , Tripanosomiasis Africana/inmunología , Animales , Antígenos de Neoplasias/inmunología , Apolipoproteína L1 , Apolipoproteínas/inmunología , Proteínas Sanguíneas/inmunología , Haptoglobinas/inmunología , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei rhodesiense/metabolismo
20.
Infect Immun ; 74(8): 4530-7, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16861639

RESUMEN

Activation of a type I cytokine response is important for early resistance to infection with Trypanosoma brucei rhodesiense, the extracellular protozoan parasite that causes African sleeping sickness. The work presented here demonstrates that trypanosome DNA activates macrophages to produce factors that may contribute to this response. Initial results demonstrated that T. brucei rhodesiense DNA was present in the plasma of C57BL/6 and C57BL/6-scid mice following infection. Subsequently, the effect of trypanosome DNA on macrophages was investigated; parasite DNA was found to be less stimulatory than Escherichia coli DNA but more stimulatory than murine DNA, as predicted by the CG dinucleotide content. Trypanosome DNA stimulated the induction of a signal transduction cascade associated with Toll-like receptor signaling in RAW 264.7 macrophage cells. The signaling cascade led to expression of mRNAs, including interleukin-12 (IL-12) p40, IL-6, IL-10, cyclooxygenase-2, and beta interferon. The treatment of RAW 264.7 cells and bone marrow-derived macrophages with trypanosome DNA induced the production of NO, prostaglandin E2, and the cytokines IL-6, IL-10, IL-12, and tumor necrosis factor alpha. In all cases, DNase I treatment of T. brucei rhodesisense DNA abolished the activation. These results suggest that T. brucei rhodesiense DNA serves as a ligand for innate immune cells and may play an important contributory role in early stimulation of the host immune response during trypanosomiasis.


Asunto(s)
ADN Protozoario/inmunología , Macrófagos/inmunología , Trypanosoma brucei rhodesiense/inmunología , Animales , Células de la Médula Ósea , Línea Celular , Citocinas/biosíntesis , Citocinas/genética , ADN Protozoario/química , ADN Protozoario/genética , Expresión Génica , Humanos , Activación de Macrófagos , Macrófagos/metabolismo , Ratones , Ratones Congénicos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones SCID , Transducción de Señal , Transcripción Genética , Trypanosoma brucei rhodesiense/genética , Tripanosomiasis Africana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA