Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 92
1.
Braz J Infect Dis ; 28(2): 103736, 2024.
Article En | MEDLINE | ID: mdl-38467387

Trypanosomatids are an important group of parasites that predominate in tropical and subtropical areas of the planet, which cause diseases that are classified as forgotten and neglected by the world health organization. In this group of parasites, we find Trypanosoma cruzi, Trypanosoma brucei, Trypanosoma brucei rhodesiense and Leishmania spp, for which there is no vaccine available, and its control has focused mainly on pharmacological treatment. Due to the poverty situation where these diseases are found and the biological complexity of these parasites, there are multiple variables to control, including the diversity of species, the complexity of their life cycles, drug resistance, cytotoxicity, the limited use in pregnant women, the high costs of treatment and the little-known pharmacological mechanisms of action, among others. It is therefore necessary to find new strategies and approaches for the treatment of these parasitic diseases. Among these new approaches is the rational search for new targets based on the allosteric inhibition of protein kinases, which have been little studied in trypanosomatids. Among these kinases, we find Glycogen Synthase Kinase-3 (GSK-3), a kinase of great pharmacological interest, which is under intense basic and clinical research by pharmaceutical companies for the treatment of cancer. This kinase, highly studied in the PI3K/AKT/mTOR pathway signaling in humans, has an orthologous gene in these parasites (GSK-3 s), which has proven to be essential for them in response to different challenges; Therefore, it is notable to increase research in this kinase in order to achieve a broad structural and functional characterization in the different species of trypanosomatids.


Glycogen Synthase Kinase 3 , Glycogen Synthase Kinase 3/antagonists & inhibitors , Humans , Animals , Trypanosomatina/enzymology , Trypanosomatina/drug effects , Trypanosomatina/genetics
3.
Curr Top Med Chem ; 21(21): 1900-1921, 2021.
Article En | MEDLINE | ID: mdl-33655860

Trypanosomatidae family belongs to the Kinetoplastida order, which consists of obligatory parasites that affect plants and all classes of vertebrates, especially humans and insects. Among the heteroxenic parasites, Leishmania spp., Trypanosoma cruzi, and T. brucei are protozoa of most significant interest for medicinal chemistry, being etiological agents of Leishmaniasis, Chagas, and Sleep Sickness diseases, respectively. Currently, inefficient pharmacotherapy, especially in chronic phases and low selectivity towards parasite/host cells, justifies the need to discover new drugs to treat them effectively. Among other targets, the sterol 14α-demethylase (CYP51), an enzyme responsible for ergosterol's biosynthesis in Trypanosomatidae parasites, has received more attention in the development of new bioactive compounds. In this context, antifungal ravuconazole proved to be the most promising drug among this class against T. cruzi, being used in combined therapy with Bnz in clinic trials. Non-antifungal inhibitors, such as VFV and VNF, have shown promising results against T. cruzi and T.brucei, respectively, being tested in Bnz-combined therapies. Among the experimental studies involving azoles, compound (15) was found to be the most promising derivative, displaying an IC50 value of 0.002 µM against amastigotes from T. cruzi, in addition to being non-toxic and highly selective towards TcCYP51 (< 25 nM). Interestingly, imidazole analog (16) was active against infectious forms of these three parasites, demonstrating Ki values of 0.17, 0.02, and 0.36 nM for CYP51 from T. cruzi, T. brucei, and L. infantum. Finally, this review will address promising inhibitors targeting sterol 14α-demethylase (CYP51) from Trypanosomatidae parasites, highlighting SAR studies, interactions with this target, and recent contributions and advances in the field, as well.


14-alpha Demethylase Inhibitors/pharmacology , Antiparasitic Agents/pharmacology , Sterol 14-Demethylase/metabolism , Trypanosomatina/drug effects , Trypanosomatina/enzymology , 14-alpha Demethylase Inhibitors/chemistry , Animals , Antiparasitic Agents/chemistry , Chemistry, Pharmaceutical , Euglenozoa Infections/drug therapy , Euglenozoa Infections/parasitology , Humans
4.
Chem Biodivers ; 17(10): e2000521, 2020 Oct.
Article En | MEDLINE | ID: mdl-32945120

Eight essential oils (EOs) from selected medicinal plants have been tested for their activity against Phytomonas davidi, a plant trypanosomal parasite. In the present research, the EOs have been tested on promastigote forms of P. davidi ATCC® 30287™ strain, along with their major components, both separately and in binary combinations, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. The EOs with the highest antipromastigote activity were from Origanum virens and Salvia lavandulifolia. Thymol and ß-pinene were the most active pure compounds. The study of the activity of the pure compounds in combination indicated the existence of antagonistic and synergistic effects depending on the concentration tested. In general, the combinations at low concentrations favored the activity.


Antiprotozoal Agents/pharmacology , Bicyclic Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Plants, Medicinal/chemistry , Thymol/pharmacology , Trypanosomatina/drug effects , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Bicyclic Monoterpenes/chemistry , Bicyclic Monoterpenes/isolation & purification , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Origanum/chemistry , Parasitic Sensitivity Tests , Salvia/chemistry , Thymol/chemistry , Thymol/isolation & purification
5.
Mar Drugs ; 18(4)2020 Mar 31.
Article En | MEDLINE | ID: mdl-32244488

Neglected Tropical Diseases (NTD) represent a serious threat to humans, especially for those living in poor or developing countries. Almost one-sixth of the world population is at risk of suffering from these diseases and many thousands die because of NTDs, to which we should add the sanitary, labor and social issues that hinder the economic development of these countries. Protozoan-borne diseases are responsible for more than one million deaths every year. Visceral leishmaniasis, Chagas disease or sleeping sickness are among the most lethal NTDs. Despite not being considered an NTD by the World Health Organization (WHO), malaria must be added to this sinister group. Malaria, caused by the apicomplexan parasite Plasmodium falciparum, is responsible for thousands of deaths each year. The treatment of this disease has been losing effectiveness year after year. Many of the medicines currently in use are obsolete due to their gradual loss of efficacy, their intrinsic toxicity and the emergence of drug resistance or a lack of adherence to treatment. Therefore, there is an urgent and global need for new drugs. Despite this, the scant interest shown by most of the stakeholders involved in the pharmaceutical industry makes our present therapeutic arsenal scarce, and until recently, the search for new drugs has not been seriously addressed. The sources of new drugs for these and other pathologies include natural products, synthetic molecules or repurposing drugs. The most frequent sources of natural products are microorganisms, e.g., bacteria, fungi, yeasts, algae and plants, which are able to synthesize many drugs that are currently in use (e.g. antimicrobials, antitumor, immunosuppressants, etc.). The marine environment is another well-established source of bioactive natural products, with recent applications against parasites, bacteria and other pathogens which affect humans and animals. Drug discovery techniques have rapidly advanced since the beginning of the millennium. The combination of novel techniques that include the genetic modification of pathogens, bioimaging and robotics has given rise to the standardization of High-Performance Screening platforms in the discovery of drugs. These advancements have accelerated the discovery of new chemical entities with antiparasitic effects. This review presents critical updates regarding the use of High-Throughput Screening (HTS) in the discovery of drugs for NTDs transmitted by protozoa, including malaria, and its application in the discovery of new drugs of marine origin.


Antiprotozoal Agents/pharmacology , Aquatic Organisms/chemistry , Biological Products/pharmacology , Euglenozoa Infections/drug therapy , Malaria, Falciparum/drug therapy , Neglected Diseases/drug therapy , Animals , Antiprotozoal Agents/therapeutic use , Biological Products/therapeutic use , Drug Discovery , Drug Resistance , Euglenozoa Infections/parasitology , High-Throughput Screening Assays , Humans , Malaria, Falciparum/parasitology , Neglected Diseases/parasitology , Plasmodium falciparum/drug effects , Plasmodium malariae/drug effects , Plasmodium malariae/pathogenicity , Trypanosomatina/drug effects
6.
Acta Parasitol ; 65(1): 108-117, 2020 Mar.
Article En | MEDLINE | ID: mdl-31755068

BACKGROUND: Protozoa are distantly related to vertebrates but present some features of higher eukaryotes, making them good model systems for studying the evolution of basic processes such as the cell cycle. Herpetomonas samuelpessoai is a trypanosomatid parasite isolated from the hemipteran insect Zelus leucogrammus. Lysophosphatidylcholine (LPC) is implicated in the transmission and establishment of Chagas disease, whose etiological agent is Trypanosoma cruzi. LPC is synthesized by T. cruzi and its vectors, the hemipteran Rhodnius prolixus and Triatoma infestans. Platelet-activating factor (PAF), a phospholipid with potent and diverse physiological and pathophysiological actions, is a powerful inducer of cell differentiation in Herpetomonas muscarum muscarum and T. cruzi. The enzyme phospholipase A2 (PLA2) catalyzes the hydrolysis of the 2-ester bond of 3-sn-phosphoglyceride, transforming phosphatidylcholine (PC) into LPC. METHODS: In this study, we evaluated cellular differentiation, PLA2 activity and protein kinase CK2 activity of H. samuelpessoai in the absence and in the presence of LPC and PAF. RESULTS: We demonstrate that both PC and LPC promoted a twofold increase in the cellular differentiation of H. samuelpessoai, through CK2, with a concomitant inhibition of its cell growth. Intrinsic PLA2 most likely directs this process by converting PC into LPC. CONCLUSIONS: Our results suggest that the actions of LPC on H. samuelpessoai occur upon binding to a putative PAF receptor and that the protein kinase CK2 plays a major role in this process. Cartoon depicting a model for the synthesis and functions of LPC in Herpetomonas samuelpessoai, based upon our results regarding the role of LPC on the cell biology of Trypanosoma cruzi [28-32]. N nucleus, k kinetoplast, PC phosphatidylcholine, LPC lysophosphatidylcholine, PLA2 phospholipase A2, PAFR putative PAF receptor in trypanosomatids [65], CK2 protein kinase CK2 [16].


Casein Kinase II/metabolism , Cell Differentiation , Lysophosphatidylcholines/metabolism , Metabolic Networks and Pathways , Trypanosomatina/physiology , Animals , Dichlororibofuranosylbenzimidazole/pharmacology , Enzyme Inhibitors/pharmacology , Hemiptera/parasitology , Phospholipases A2/metabolism , Triazoles/pharmacology , Trypanosomatina/drug effects
7.
Bioorg Med Chem ; 27(4): 620-629, 2019 02 15.
Article En | MEDLINE | ID: mdl-30638761

(+)-N6-Hydroxyagelasine D, the enantiomer of the proposed structure of (-)-ageloxime D, as well as N6-hydroxyagelasine analogs were synthesized by selective N-7 alkylation of N6-[tert-butyl(dimethyl)silyloxy]-9-methyl-9H-purin-6-amine in order to install the terpenoid side chain, followed by fluoride mediated removal of the TBDMS-protecting group. N6-Hydroxyagelasine D and the analog carrying a geranylgeranyl side chain displayed profound antimicrobial activities against several pathogenic bacteria and protozoa and inhibited bacterial biofilm formation. However these compounds were also toxic towards mammalian fibroblast cells (MRC-5). The spectral data of N6-hydroxyagelasine D did not match those reported for ageloxime D before. Hence, a revised structure of ageloxime D was proposed. Basic hydrolysis of agelasine D gave (+)-N-[4-amino-6-(methylamino)pyrimidin-5-yl]-N-copalylformamide, a compound with spectral data in full agreement with those reported for (-)-ageloxime D.


Anti-Bacterial Agents/pharmacology , Diterpenes/pharmacology , Pyrimidines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/toxicity , Biofilms/drug effects , Candida albicans/drug effects , Cell Line , Diterpenes/chemical synthesis , Diterpenes/toxicity , Escherichia coli/drug effects , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Pyrimidines/chemical synthesis , Pyrimidines/toxicity , Staphylococcus aureus/drug effects , Trypanosomatina/drug effects
8.
Int J Parasitol Drugs Drug Resist ; 8(3): 430-439, 2018 12.
Article En | MEDLINE | ID: mdl-30293058

Tritryps diseases are devastating parasitic neglected infections caused by Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei subspecies. Together, these parasites affect more than 30 million people worldwide and cause high mortality and morbidity. Leishmaniasis comprises a complex group of diseases with clinical manifestation ranging from cutaneous lesions to systemic visceral damage. Antimonials, the first-choice drugs used to treat leishmaniasis, lead to high toxicity and carry significant contraindications limiting its use. Drug-resistant parasite strains are also a matter for increasing concern, especially in areas with very limited resources. The current scenario calls for novel and/or improvement of existing therapeutics as key research priorities in the field. Although several studies have shown advances in drug discovery towards leishmaniasis in recent years, key knowledge gaps in drug discovery pipelines still need to be addressed. In this review we discuss not only scientific and non-scientific bottlenecks in drug development, but also the central role of public-private partnerships for a successful campaign for novel treatment options against this devastating disease.


Drug Discovery/methods , Leishmania/drug effects , Leishmaniasis/drug therapy , Animals , Antiprotozoal Agents/adverse effects , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/toxicity , Chagas Disease/drug therapy , Drug Delivery Systems/methods , Drug Delivery Systems/statistics & numerical data , Drug Discovery/legislation & jurisprudence , Drug Discovery/statistics & numerical data , Drug Discovery/trends , Humans , Neglected Diseases/drug therapy , Neglected Diseases/parasitology , Public-Private Sector Partnerships , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects , Trypanosomatina/drug effects
9.
Parasite ; 25: 10, 2018.
Article En | MEDLINE | ID: mdl-29528842

The purpose of this review is to survey the antiparasitic plants of the Asteraceae family and their applicability in the treatment of parasites. This review is divided into three major parts: (a) literature on traditional uses of Asteraceae plants for the treatment of parasites; (b) description of the major classes of chemical compounds from Asteraceae and their antiparasitic effects; and (c) antiparasitic activity with special reference to flavonoids and terpenoids. This review provides detailed information on the reported Asteraceae plant extracts found throughout the world and on isolated secondary metabolites that can inhibit protozoan parasites such as Plasmodium, Trypanosoma, Leishmania, and intestinal worms. Additionally, special attention is given to the Asteraceae plants of Odisha, used by the tribes of the area as antiparasitics. These plants are compared to the same plants used traditionally in other regions. Finally, we provide information on which plants identified in Odisha, India and related compounds show promise for the development of new drugs against parasitic diseases. For most of the plants discussed in this review, the active compounds still need to be isolated and tested further.


Antiparasitic Agents/pharmacology , Asteraceae/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plasmodium/drug effects , Trypanosomatina/drug effects , Animals , Antiparasitic Agents/chemistry , Helminths/drug effects , Humans , India , Leishmania/drug effects , Phytotherapy , Population Groups , Trypanosoma/drug effects
10.
Front Biosci (Landmark Ed) ; 23(5): 954-966, 2018 01 01.
Article En | MEDLINE | ID: mdl-28930584

The trypanosomatid-induced diseases are considered as neglected, because the countries where they kill people are not important markets for western big pharmaceutical companies. However, recently some effort has been made to translate the use of already known drugs to neglected infectious disease. Although many metals are essential to life, many disorders affecting metal homeostasis and bioavailability are responsible for several human diseases. Metals can be toxic even at very low concentrations and semimetals are classified as toxic and dangerous for the environment. However, metal- and metalloid-based therapeutic drugs have existed for centuries. Some of them, as antimony and arsenic compounds, are still the first line drugs used for the treatment of leishmaniasis and trypanosomiases in developing countries. Other metal complexes (as those of Ag, Pt, Pd and Au), already present in the market for cancer therapies or to cure bacterial infection or for anti-inflammatory treatments, have been proposed also against the vector-borne infections caused by trypanosomatids. The use of novel approaches based on nanotechnologies, allowing selective targeting, may represent a promising strategy to decrease the toxicity of these drugs.


Coordination Complexes/pharmacology , Leishmaniasis/drug therapy , Metals/chemistry , Trypanocidal Agents/pharmacology , Trypanosomatina/drug effects , Trypanosomiasis/drug therapy , Animals , Coordination Complexes/chemistry , Host-Parasite Interactions/drug effects , Humans , Leishmaniasis/parasitology , Treatment Outcome , Trypanocidal Agents/chemistry , Trypanosomatina/physiology , Trypanosomiasis/parasitology
11.
Acta Trop ; 178: 73-80, 2018 Feb.
Article En | MEDLINE | ID: mdl-29092797

Nanomaterials are currently considered for many biological, biomedical and environmental purposes, due to their outstanding physical and chemical properties. The synthesis of gold nanoparticles (Au NPs) is of high interest for research in parasitology and entomology, since these nanomaterials showed promising applications, ranging from detection techniques to drug development, against a rather wide range of parasites of public health relevance, as well as on insect vectors. Here, I reviewed current knowledge about the bioactivity of Au NPs on selected insect species of public health relevance, including major mosquito vectors, such as Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The toxicity of Au NPs against helminths was reviewed, covering Schistosoma mansoni trematodes as well as Raillietina cestodes. Furthermore, I summarized the information available on the antiparasitic role of Au NPs in the fight against malaria, leishmaniosis, toxoplasmosis, trypanosomiasis, cryptosporidiosis, and microsporidian parasites affecting human and animals health. Besides, I examined the employ of Au NPs as biomarkers, tools for diagnostics and adjuvants for the induction of transmission blocking immunity in malaria vaccine research. In the final section, major challenges and future outlooks for further research are discussed, with special reference to the pressing need of further knowledge about the effect of Au NPs on other arthropod vectors, such as ticks, tsetse flies, tabanids, sandflies and blackflies, and related ecotoxicology assays.


Gold/chemistry , Gold/immunology , Insect Vectors/drug effects , Metal Nanoparticles/chemistry , Parasites/drug effects , Aedes/drug effects , Animals , Anopheles/drug effects , Biomarkers , Cryptosporidium/drug effects , Culex/drug effects , Diagnostic Techniques and Procedures , Helminths/drug effects , Humans , Insecticides/pharmacology , Larva/drug effects , Malaria Vaccines/chemistry , Malaria Vaccines/immunology , Mosquito Vectors/drug effects , Trypanosomatina/drug effects
12.
Parasitology ; 145(3): 355-370, 2018 03.
Article En | MEDLINE | ID: mdl-29039273

The species Phytomonas serpens is known to express some molecules displaying similarity to those described in trypanosomatids pathogenic to humans, such as peptidases from Trypanosoma cruzi (cruzipain) and Leishmania spp. (gp63). In this work, a population of P. serpens resistant to the calpain inhibitor MDL28170 at 70 µ m (MDLR population) was selected by culturing promastigotes in increasing concentrations of the drug. The only relevant ultrastructural difference between wild-type (WT) and MDLR promastigotes was the presence of microvesicles within the flagellar pocket of the latter. MDLR population also showed an increased reactivity to anti-cruzipain antibody as well as a higher papain-like proteolytic activity, while the expression of calpain-like molecules cross-reactive to anti-Dm-calpain (from Drosophila melanogaster) antibody and calcium-dependent cysteine peptidase activity were decreased. Gp63-like molecules also presented a diminished expression in MDLR population, which is probably correlated to the reduction in the parasite adhesion to the salivary glands of the insect vector Oncopeltus fasciatus. A lower accumulation of Rhodamine 123 was detected in MDLR cells when compared with the WT population, a phenotype that was reversed when MDLR cells were treated with cyclosporin A and verapamil. Collectively, our results may help in the understanding of the roles of calpain inhibitors in trypanosomatids.


Cysteine Proteinase Inhibitors/pharmacology , Dipeptides/pharmacology , Membrane Transport Proteins/drug effects , Peptide Hydrolases/drug effects , Trypanosomatina/drug effects , Calpain/antagonists & inhibitors , Calpain/chemistry , Calpain/drug effects , Calpain/genetics , Cysteine Endopeptidases/immunology , Drug Resistance , Glycoproteins/pharmacology , Leishmania/chemistry , Leishmania/physiology , Membrane Transport Proteins/genetics , Peptide Hydrolases/genetics , Protozoan Proteins/immunology , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/physiology , Trypanosomatina/genetics
13.
Free Radic Biol Med ; 113: 255-266, 2017 12.
Article En | MEDLINE | ID: mdl-28993269

Reactive oxygen species (ROS) are toxic molecules involved in several biological processes such as cellular signaling, proliferation, differentiation and cell death. Adaptations to oxidative environments are crucial for the success of the colonization of insects by protozoa. Strigomonas culicis is a monoxenic trypanosomatid found in the midgut of mosquitoes and presenting a life cycle restricted to the epimastigote form. Among S. culicis peculiarities, there is an endosymbiotic bacterium in the cytoplasm, which completes essential biosynthetic routes of the host cell and may represent an intermediary evolutive step in organelle origin, thus constituting an interesting model for evolutive researches. In this work, we induced ROS resistance in wild type S. culicis epimastigotes by the incubation with increasing concentrations of hydrogen peroxide (H2O2), and compared the oxidative and energetic metabolisms among wild type, wild type-H2O2 resistant and aposymbiotic strains. Resistant protozoa were less sensitive to the oxidative challenge and more dependent on oxidative phosphorylation, which was demonstrated by higher oxygen consumption and mitochondrial membrane potential, increased activity of complexes II-III and IV, increased complex II gene expression and higher ATP production. Furthermore, the wild type-H2O2 resistant strain produced reduced ROS levels and showed lower lipid peroxidation, as well as an increase in gene expression of antioxidant enzymes and thiol-dependent peroxidase activity. On the other hand, the aposymbiotic strain showed impaired mitochondrial function, higher H2O2 production and deficient antioxidant response. The induction of H2O2 resistance also led to a remarkable increase in Aedes aegypti midgut binding in vitro and colonization in vivo, indicating that both the pro-oxidant environment in the mosquito gut and the oxidative stress susceptibility regulate S. culicis population in invertebrates.


Aedes/parasitology , Electron Transport Chain Complex Proteins/genetics , Energy Metabolism/genetics , Host-Parasite Interactions , Hydrogen Peroxide/pharmacology , Protozoan Proteins/genetics , Trypanosomatina/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Antioxidants/metabolism , Betaproteobacteria/metabolism , Biological Evolution , Drug Resistance , Electron Transport Chain Complex Proteins/metabolism , Gastrointestinal Tract/parasitology , Gene Expression Regulation , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Protozoan Proteins/metabolism , Signal Transduction , Symbiosis/physiology , Trypanosomatina/drug effects , Trypanosomatina/genetics , Trypanosomatina/microbiology
14.
Eur J Med Chem ; 126: 1129-1135, 2017 Jan 27.
Article En | MEDLINE | ID: mdl-28064141

Chalcones display a broad spectrum of pharmacological activities. Herein, a series of 2'-hydroxy methoxylated chalcones was synthesized and evaluated towards Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum. Among the synthesized library, compounds 1, 3, 4, 7 and 8 were the most potent and selective anti-T. brucei compounds (EC50 = 1.3-4.2 µM, selectivity index >10-fold). Compound 4 showed the best early-tox and antiparasitic profile. The pharmacokinetic studies of compound 4 in BALB/c mice using hydroxypropil-ß-cyclodextrins formulation showed a 7.5 times increase in oral bioavailability.


Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Animals , Antiparasitic Agents/pharmacokinetics , Antiparasitic Agents/toxicity , Cell Line, Tumor , Chalcones/pharmacokinetics , Chalcones/toxicity , Cyclodextrins/chemistry , Drug Carriers/chemistry , Mice , Solubility , Trypanosomatina/drug effects
15.
Trends Parasitol ; 33(4): 256-257, 2017 04.
Article En | MEDLINE | ID: mdl-27988096

In Liu et al., the authors present a 2.5-Å structure of the Trypanosoma cruzi 60S ribosomal subunit and propose a model for the stepwise assembly of the large-subunit ribosomal RNA (rRNA). Based on this study, we discuss how the unique features of trypanosomatid ribosome assembly offer potential drug targets.


Drug Discovery , Ribosomes/chemistry , Ribosomes/metabolism , Trypanosomatina/physiology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Drug Delivery Systems , Protein Multimerization/drug effects , Trypanosomatina/drug effects , Trypanosomiasis/drug therapy
16.
BMC Evol Biol ; 16(1): 247, 2016 11 11.
Article En | MEDLINE | ID: mdl-27835948

BACKGROUND: Bacterial endosymbionts are found across the eukaryotic kingdom and profoundly impacted eukaryote evolution. In many endosymbiotic associations with vertically inherited symbionts, highly complementary metabolic functions encoded by host and endosymbiont genomes indicate integration of metabolic processes between the partner organisms. While endosymbionts were initially expected to exchange only metabolites with their hosts, recent evidence has demonstrated that also host-encoded proteins can be targeted to the bacterial symbionts in various endosymbiotic systems. These proteins seem to participate in regulating symbiont growth and physiology. However, mechanisms required for protein targeting and the specific endosymbiont targets of these trafficked proteins are currently unexplored owing to a lack of molecular tools that enable functional studies of endosymbiotic systems. RESULTS: Here we show that the trypanosomatid Angomonas deanei, which harbors a ß-proteobacterial endosymbiont, is readily amenable to genetic manipulation. Its rapid growth, availability of full genome and transcriptome sequences, ease of transfection, and high frequency of homologous recombination have allowed us to stably integrate transgenes into the A. deanei nuclear genome, efficiently generate null mutants, and elucidate protein localization by heterologous expression of a fluorescent protein fused to various putative targeting signals. Combining these novel tools with proteomic analysis was key for demonstrating the routing of a host-encoded protein to the endosymbiont, suggesting the existence of a specific endosymbiont-sorting machinery in A. deanei. CONCLUSIONS: After previous reports from plants, insects, and a cercozoan amoeba we found here that also in A. deanei, i.e. a member of a fourth eukaryotic supergroup, host-encoded proteins can be routed to the bacterial endosymbiont. This finding adds further evidence to our view that the targeting of host proteins is a general strategy of eukaryotes to gain control over and interact with a bacterial endosymbiont. The molecular resources reported here establish A. deanei as a time and cost efficient reference system that allows for a rigorous dissection of host-symbiont interactions that have been, and are still being shaped over evolutionary time. We expect this system to greatly enhance our understanding of the biology of endosymbiosis.


Genomics/methods , Symbiosis , Trypanosomatina/genetics , Trypanosomatina/microbiology , Animals , Base Sequence , Betaproteobacteria/drug effects , Betaproteobacteria/metabolism , Cinnamates/pharmacology , Genetic Vectors/metabolism , Genome, Protozoan , Gentamicins/pharmacology , Green Fluorescent Proteins/metabolism , Homologous Recombination/drug effects , Homologous Recombination/genetics , Hygromycin B/analogs & derivatives , Hygromycin B/pharmacology , Mutagenesis, Insertional/genetics , Protein Transport/drug effects , Protozoan Proteins/metabolism , Reproducibility of Results , Sequence Analysis, DNA , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Symbiosis/drug effects , Symbiosis/genetics , Transcriptome/drug effects , Transcriptome/genetics , Trypanosomatina/drug effects
17.
Biochim Biophys Acta ; 1857(8): 1247-1257, 2016 Aug.
Article En | MEDLINE | ID: mdl-26951942

In this review, we summarize our knowledge about mitochondrial potassium channels, with a special focus on unanswered questions in this field. The following potassium channels have been well described in the inner mitochondrial membrane: ATP-regulated potassium channel, Ca(2+)-activated potassium channel, the voltage-gated Kv1.3 potassium channel, and the two-pore domain TASK-3 potassium channel. The primary functional roles of these channels include regulation of mitochondrial respiration and the alteration of membrane potential. Additionally, they modulate the mitochondrial matrix volume and the synthesis of reactive oxygen species by mitochondria. Mitochondrial potassium channels are believed to contribute to cytoprotection and cell death. In this paper, we discuss fundamental issues concerning mitochondrial potassium channels: their molecular identity, channel pharmacology and functional properties. Attention will be given to the current problems present in our understanding of the nature of mitochondrial potassium channels. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Mitochondria/metabolism , Potassium Channels, Calcium-Activated/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Voltage-Gated/metabolism , Animals , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression , Humans , Ion Transport , Mitochondria/drug effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Organ Specificity , Plants/drug effects , Plants/metabolism , Potassium Channel Blockers/pharmacology , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Potassium Channels, Calcium-Activated/genetics , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Potassium Channels, Voltage-Gated/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Trypanosomatina/drug effects , Trypanosomatina/metabolism
18.
BMC Microbiol ; 15: 188, 2015 Sep 29.
Article En | MEDLINE | ID: mdl-26415499

BACKGROUND: Angomonas deanei is a trypanosomatid parasite of insects that has a bacterial endosymbiont, which supplies amino acids and other nutrients to its host. Bacterium loss induced by antibiotic treatment of the protozoan leads to an aposymbiotic strain with increased need for amino acids and results in increased production of extracellular peptidases. In this work, a more detailed examination of A. deanei was conducted to determine the effects of endosymbiont loss on the host calpain-like proteins (CALPs), followed by testing of different calpain inhibitors on parasite proliferation. RESULTS: Western blotting showed the presence of different protein bands reactive to antibodies against calpain from Drosophila melanogaster (anti-Dm-calpain), lobster calpain (anti-CDPIIb) and cytoskeleton-associated calpain from Trypanosoma brucei (anti-CAP5.5), suggesting a possible modulation of CALPs influenced by the endosymbiont. In the cell-free culture supernatant of A. deanei wild type and aposymbiotic strains, a protein of 80 kDa cross-reacted with the anti-Dm-calpain antibody; however, no cross-reactivity was found with anti-CAP5.5 and anti-CDPIIb antibodies. A search in A. deanei genome for homologues of D. melanogaster calpain, T. brucei CAP5.5 and lobster CDPIIb calpain revealed the presence of hits with at least one calpain conserved domain and also with theoretical molecular mass consistent with the recognition by each antibody. No significant hit was observed in the endosymbiont genome, indicating that calpain molecules might be absent from the symbiont. Flow cytometry analysis of cells treated with the anti-calpain antibodies showed that a larger amount of reactive epitopes was located intracellularly. The reversible calpain inhibitor MDL28170 displayed a much higher efficacy in diminishing the growth of both strains compared to the non-competitive calpain inhibitor PD150606, while the irreversible calpain inhibitor V only marginally diminished the proliferation. CONCLUSIONS: Altogether, these results indicate that distinct calpain-like molecules are expressed by A. deanei, with a possible modulation in the expression influenced by the endosymbiont. In addition, treatment with MDL28170 affects the growth rate of both strains, as previously determined in the human pathogenic species Leishmania amazonensis and Trypanosoma cruzi, with whom A. deanei shares immunological and biochemical relationships.


Bacteria/growth & development , Calpain/antagonists & inhibitors , Calpain/biosynthesis , Glycoproteins/metabolism , Symbiosis , Trypanosomatina/growth & development , Trypanosomatina/microbiology , Calpain/genetics , Trypanosomatina/drug effects , Trypanosomatina/genetics
19.
Trends Parasitol ; 31(8): 373-9, 2015 Aug.
Article En | MEDLINE | ID: mdl-26004537

Despite recent research linking cAMP signalling to virulence in trypanosomatids and detailed studies of trypanosomatid adenylyl cyclases (ACs) and phosphodiesterases (PDEs) since their discoveries 40 years ago, downstream components of the pathway and their biological functions have remained remarkably elusive. However, in recent years, significant discoveries have been made: a role for parasite ACs has been proposed in cytokinesis, evasion of the host immune response, and social motility. cAMP phosphodiesterases PDEB1 and PDEB2 were found to be essential for survival and virulence of Trypanosoma brucei and, in Trypanosoma cruzi, PDEC2 was shown to be required for normal osmoregulation. As we discuss here, these breakthroughs have led to an ongoing surge in the development of PDE inhibitors as lead compounds for trypanocidal drugs.


Cyclic AMP/metabolism , Signal Transduction , Trypanosomatina/physiology , Trypanosomatina/pathogenicity , Adenylyl Cyclases/metabolism , Drug Discovery , Euglenozoa Infections/parasitology , Host-Parasite Interactions , Humans , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Trypanocidal Agents/pharmacology , Trypanosomatina/drug effects , Trypanosomatina/enzymology
20.
Mem Inst Oswaldo Cruz ; 110(1): 48-55, 2015 Feb.
Article En | MEDLINE | ID: mdl-25742263

Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.


Cell Proliferation/drug effects , Growth Inhibitors/pharmacology , Tomatine/analogs & derivatives , Tomatine/pharmacology , Trypanosomatina/drug effects , Cell Membrane/drug effects , Cholesterol/analysis , Solanum lycopersicum/parasitology , Methyltransferases/drug effects , Microscopy, Electron, Transmission , Plant Diseases/parasitology , Sterols/analysis , Sterols/biosynthesis , Trypanosomatina/metabolism , Trypanosomatina/ultrastructure
...