Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 571: 159-166, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34325132

RESUMEN

Uncontrolled cell proliferation associated with cancer depends on the functional abrogation of at least one of tumor suppressor. In response to nutrient cue, tuberous sclerosis complex (TSC) works as a tumor suppressor which inhibits cell growth via negative regulation of the mammalian target of rapamycin complex (mTORC1). However, the regulation mechanism of nutrient-dependent cell proliferation in TSC-null cells remains unclear. Here, we demonstrate that leucine is required for cell proliferation through the activation of leucyl-tRNA synthetase (LARS1)-mTORC1 pathway in TSC-null cells. Cell proliferation and survival were attenuated by LARS1 knock-down or inhibitors in TSC-null cells. In addition, either rapamycin or LARS1 inhibitors significantly decreased colony formation ability while their combined treatment drastically attenuated it. Taken together, we suggest that LARS1 inhibitors might considered as novel tools for the regression of tumor growth and proliferation in TSC-null tumor cells which regrow upon discontinuation of the mTORC1 inhibition.


Asunto(s)
Leucina-ARNt Ligasa/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Ratones , Ratones Desnudos , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
2.
Nat Commun ; 12(1): 3653, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135323

RESUMEN

The Mechanistic Target Of Rapamycin Complex 1 (mTORC1) pathway controls several aspects of neuronal development. Mutations in regulators of mTORC1, such as Tsc1 and Tsc2, lead to neurodevelopmental disorders associated with autism, intellectual disabilities and epilepsy. The correct development of inhibitory interneurons is crucial for functional circuits. In particular, the axonal arborisation and synapse density of parvalbumin (PV)-positive GABAergic interneurons change in the postnatal brain. How and whether mTORC1 signaling affects PV cell development is unknown. Here, we show that Tsc1 haploinsufficiency causes a premature increase in terminal axonal branching and bouton density formed by mutant PV cells, followed by a loss of perisomatic innervation in adult mice. PV cell-restricted Tsc1 haploinsufficient and knockout mice show deficits in social behavior. Finally, we identify a sensitive period during the third postnatal week during which treatment with the mTOR inhibitor Rapamycin rescues deficits in both PV cell innervation and social behavior in adult conditional haploinsufficient mice. Our findings reveal a role of mTORC1 signaling in the regulation of the developmental time course and maintenance of cortical PV cell connectivity and support a mechanistic basis for the targeted rescue of autism-related behaviors in disorders associated with deregulated mTORC1 signaling.


Asunto(s)
Interneuronas/patología , Parvalbúminas/metabolismo , Conducta Social , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Animales , Autofagia , Axones/efectos de los fármacos , Axones/patología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mutación , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Sirolimus/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/patología , Factores de Tiempo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
3.
J Neuroinflammation ; 18(1): 107, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33957945

RESUMEN

BACKGROUND: Tuberous sclerosis complex 1 (Tsc1) is known to regulate the development and function of various cell types, and RORγt is a critical transcription factor in the immune system. However, whether Tsc1 participates in regulating RORγt-expressing cells remains unknown. METHODS: We generated a mouse model in which Tsc1 was conditionally deleted from RORγt-expressing cells (Tsc1RORγt) to study the role of RORγt-expressing cells with Tsc1 deficiency in brain homeostasis. RESULTS: Type 3 innate lymphoid cells (ILC3s) in Tsc1RORγt mice displayed normal development and function, and the mice showed normal Th17 cell differentiation. However, Tsc1RORγt mice exhibited spontaneous tonic-clonic seizures and died between 4 and 6 weeks after birth. At the age of 4 weeks, mice in which Tsc1 was specifically knocked out in RORγt-expressing cells had cortical neuron defects and hippocampal structural abnormalities. Notably, over-activation of neurons and astrogliosis were observed in the cortex and hippocampus of Tsc1RORγt mice. Moreover, expression of the γ-amino butyric acid (GABA) receptor in the brains of Tsc1RORγt mice was decreased, and GABA supplementation prolonged the lifespan of the mice to some extent. Further experiments revealed the presence of a group of rare RORγt-expressing cells with high metabolic activity in the mouse brain. CONCLUSIONS: Our study verifies the critical role of previously unnoticed RORγt-expressing cells in the brain and demonstrates that the Tsc1 signaling pathway in RORγt-expressing cells is important for maintaining brain homeostasis.


Asunto(s)
Encéfalo , Linfocitos , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Animales , Encéfalo/inmunología , Encéfalo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo
4.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923449

RESUMEN

Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in TSC1 (hamartin) or TSC2 (tuberin), crucial negative regulators of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway. TSC affects multiple organs including the brain. The neurologic manifestation is characterized by cortical tubers, subependymal nodules (SEN), and subependymal giant cell astrocytoma (SEGA) in brain. SEGAs may result in hydrocephalus in TSC patients and mTORC1 inhibitors are the current recommended therapy for SEGA. Nevertheless, a major limitation in the research for SEGA is the lack of cell lines or animal models for mechanistic investigations and development of novel therapy. In this study, we generated TSC1-deficient neural cells from spontaneously immortalized mouse astrocytes in an attempt to mimic human SEGA. The TSC1-deficient cells exhibit mTORC1 hyperactivation and characteristics of transition from astrocytes to neural stem/progenitor cell phenotypes. Rapamycin efficiently decreased mTORC1 activity of these TSC1-deficient cells in vitro. In vivo, TSC1-deficient cells could form SEGA-like tumors and Rapamycin treatment decreased tumor growth. Collectively, our study generates a novel SEGA-like cell line that is invaluable for studying mTORC1-driven molecular and pathological alterations in neurologic tissue. These SEGA-like cells also provide opportunities for the development of novel therapeutic strategy for TSC patients with SEGA.


Asunto(s)
Astrocitoma/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antibióticos Antineoplásicos/farmacología , Astrocitos/metabolismo , Astrocitos/patología , Astrocitoma/genética , Astrocitoma/patología , Células Cultivadas , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Desnudos , Cultivo Primario de Células/métodos , Sirolimus/farmacología , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
5.
Biol Pharm Bull ; 43(12): 1983-1986, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268720

RESUMEN

The mechanistic/mammalian target of rapamycin complex-1 (mTORC1) integrates multiple signaling pathways and regulates various cellular processes. Tuberous sclerosis complex 1 (Tsc1) and complex 2 (Tsc2) are critical negative regulators of mTORC1. Mouse genetic studies, including ours, have revealed that inactivation of mTORC1 in undifferentiated mesenchymal cells and chondrocytes leads to severe skeletal abnormalities, indicating a pivotal role for mTORC1 in skeletogenesis. Here, we show that hyperactivation of mTORC1 influences skeletal development through its expression in undifferentiated mesenchymal cells at the embryonic stage. Inactivation of Tsc1 in undifferentiated mesenchymal cells by paired-related homeobox 1 (Prx1)-Cre-mediated recombination led to skeletal abnormalities in appendicular skeletons. In contrast, Tsc1 deletion in chondrocytes using collagen type II α1 (Col2a1)-Cre or in osteoprogenitors using Osterix (Osx)-Cre did not result in skeletal defects in either appendicular or axial skeletons. These findings indicate that Tsc complex-mediated chronic overactivation of mTORC1 influences skeletal development at the embryonic stage through its expression in undifferentiated mesenchymal cells but not in chondrocytes or osteoprogenitors.


Asunto(s)
Desarrollo Óseo/fisiología , Condrocitos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
6.
IUBMB Life ; 72(5): 965-977, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31958214

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterized by the benign tumor formation in multiple organs. The main etiology of TSC is the loss-of-function mutation of TSC1 or TSC2 gene, which leads to aberrant activation of mammalian target of rapamycin complex 1 (mTORC1). In this research, we found a significant increase of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression in Tsc1-/- and Tsc2-/- mouse embryonic fibroblasts (MEFs) compared with the control cells. Inhibition of mTORC1 led to a dramatic decrease of PFKFB3 expression, indicating PFKFB3 regulation by mTORC1. Moreover, suppression of mTORC1 inhibited the expression of PFKFB3 in rat uterine leiomyoma-derived Tsc2-null ELT3 cells and human tumor cells. Furthermore, we identified hypoxia-inducible factor 1α (HIF-1α) as a mediator transmitting the signal from mTORC1 to PFKFB3. Depletion of PFKFB3 inhibited proliferation and tumorigenicity of Tsc1- or Tsc2-deficient cells. In addition, combination of rapamycin with PFK15, a PFKFB3 inhibitor, exerts a stronger inhibitory effect on cell proliferation of Tsc1- or Tsc2-null MEFs than treatment with single drug. We conclude that loss of TSC1 or TSC2 led to upregulated expression of PFKFB3 through activation of mTORC1/HIF-1α signaling pathway and co-administration of rapamycin and PFK15 may be a promising strategy for the treatment of TSC tumors as well as other hyperactivated mTORC1-related tumors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosfofructoquinasa-2/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Esclerosis Tuberosa/genética , Animales , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HEK293 , Xenoinjertos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Fosfofructoquinasa-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/antagonistas & inhibidores , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Ratas , Proteína Reguladora Asociada a mTOR/antagonistas & inhibidores , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal , Sirolimus/farmacología , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia
7.
Ann Clin Transl Neurol ; 6(7): 1273-1291, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31353861

RESUMEN

OBJECTIVE: An epilepsy mouse model for Tuberous Sclerosis Complex (TSC) was developed and validated to investigate the mechanisms underlying epileptogenesis. Furthermore, the possible antiepileptogenic properties of commonly used antiepileptic drugs (AEDs) and new compounds were assessed. METHODS: Tsc1 deletion was induced in CAMK2A-expressing neurons of adult mice. The antiepileptogenic properties of commonly used AEDs and inhibitors of the mTOR pathways were assessed by EEG recordings and by molecular read outs. RESULTS: Mice developed epilepsy in a narrow time window (10 ± 2 days) upon Tsc1 gene deletion. Seizure frequency but not duration increased over time. Seizures were lethal within 18 days, were unpredictable, and did not correlate to seizure onset, length or frequency, reminiscent of sudden unexpected death in epilepsy (SUDEP). Tsc1 gene deletion resulted in a strong activation of the mTORC1 pathway, and both epileptogenesis and lethality could be entirely prevented by RHEB1 gene deletion or rapamycin treatment. However, other inhibitors of the mTOR pathway such as AZD8055 and PF4708671 were ineffective. Except for ketogenic diet, none of commonly used AEDs showed an effect on mTORC1 activity. Vigabatrin and ketogenic diet treatment were able to significantly delay seizure onset. In contrast, survival was shortened by lamotrigine. INTERPRETATION: This novel Tsc1 mouse model is highly suitable to assess the efficacy of antiepileptic and -epileptogenic drugs to treat mTORC1-dependent epilepsy. Additionally, it allows us to study the mechanisms underlying mTORC1-mediated epileptogenesis and SUDEP. We found that early treatment with vigabatrin was not able to prevent epilepsy, but significantly delayed seizure onset.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/fisiología , Esclerosis Tuberosa/fisiopatología , Animales , Anticonvulsivantes , Encéfalo/metabolismo , Dieta Cetogénica , Epilepsia , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfolinas/farmacología , Proteína Homóloga de Ras Enriquecida en el Cerebro/deficiencia , Proteína Homóloga de Ras Enriquecida en el Cerebro/fisiología , Sirolimus/farmacología , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteínas Supresoras de Tumor , Vigabatrin
8.
Cell Metab ; 30(2): 364-373.e7, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31130466

RESUMEN

Microbial dysbiosis and inflammation are implicated in diet-induced obesity and insulin resistance. However, it is not known whether crosstalk between immunity and microbiota also regulates metabolic homeostasis in healthy animals. Here, we report that genetic deletion of tuberous sclerosis 1 (Tsc1) in CD11c+ myeloid cells (Tsc1f/fCD11cCre mice) reduced food intake and body mass in the absence of metabolic disease. Co-housing and fecal transplant experiments revealed a dominant role for the healthy gut microbiota in regulation of body weight. 16S rRNA sequencing, selective culture, and reconstitution experiments further confirmed that selective deficiency of Lactobacillus johnsonii Q1-7 contributed to decreased food intake and body mass in Tsc1f/fCD11cCre mice. Mechanistically, activation of mTORC1 signaling in CD11c cells regulated production of L. johnsonii Q1-7-specific IgA, allowing for its stable colonization in the gut. Together, our findings reveal an unexpected transkingdom immune-microbiota feedback loop for homeostatic regulation of food intake and body mass in mammals.


Asunto(s)
Peso Corporal/fisiología , Antígenos CD11/metabolismo , Ingestión de Alimentos/fisiología , Microbioma Gastrointestinal/fisiología , Nutrientes/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 1 del Complejo de la Esclerosis Tuberosa/inmunología
9.
Aging Cell ; 18(3): e12943, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30924297

RESUMEN

Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age-related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age-related muscle atrophy, and GDF signaling is a proposed mechanism.


Asunto(s)
Envejecimiento/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Estrés Oxidativo , Animales , Células Cultivadas , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
10.
Sci Rep ; 9(1): 2799, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808980

RESUMEN

Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolism. The importance of mTORC1 signaling in neuronal development and functions has been highlighted by its strong relationship with many neurological and neuropsychiatric diseases. Previous studies demonstrated that hyperactivation of mTORC1 in forebrain recapitulates tuberous sclerosis and neurodegeneration. In the mouse cerebellum, Purkinje cell-specific knockout of Tsc1/2 has been implicated in autistic-like behaviors. However, since TSC1/2 activity does not always correlate with clinical manifestations as evident in some cases of tuberous sclerosis, the intriguing possibility is raised that phenotypes observed in Tsc1/2 knockout mice cannot be attributable solely to mTORC1 hyperactivation. Here we generated transgenic mice in which mTORC1 signaling is directly hyperactivated in Purkinje cells. The transgenic mice exhibited impaired synapse elimination of climbing fibers and motor discoordination without affecting social behaviors. Furthermore, mTORC1 hyperactivation induced prominent apoptosis of Purkinje cells, accompanied with dysregulated cellular homeostasis including cell enlargement, increased mitochondrial respiratory activity, and activation of pseudohypoxic response. These findings suggest the different contributions between hyperactivated mTORC1 and Tsc1/2 knockout in social behaviors, and reveal the perturbations of cellular homeostasis by hyperactivated mTORC1 as possible underlying mechanisms of neuronal dysfunctions and death in tuberous sclerosis and neurodegenerative diseases.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Potenciales de Acción/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Conducta Animal , Encéfalo/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/patología , Células de Purkinje/citología , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
11.
Cell Death Differ ; 26(10): 2015-2028, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30760873

RESUMEN

Loss of either TSC1 or TSC2 causes tuberous sclerosis complex (TSC) via activation of mTOR signaling pathway. The two prominent features of TSC are skin lesions including hypomelanic macules and benign tumors in multiple organs, whose molecular alterations are largely unknown. We report here that Xc- cystine/glutamate antiporter (xCT) was elevated in Tsc2-/- or Pten-/- cells, Tsc1 knockout mouse tissues and TSC2-deficient human kidney tumor. xCT was transcriptionally boosted by mTOR-mediated Oct1 signaling cascade. Augmented xCT led to reduction of eumelanin and elevation of pheomelanin in Tsc1 skin knockout mice through mTOR signaling pathway. Disruption of xCT suppressed the proliferation and tumorigenesis of Pten-null cells and Tsc2-null cells. mTOR hyperactive cells were more sensitive to inhibitors of mTOR or xCT. Combined inhibition of mTOR and xCT synergistically blocked the propagation and oncogenesis of mTOR hyperactive cells. Therefore, oncogenic mTOR activation of xCT is a key connection between aberrant melanin synthesis and tumorigenesis. We suggest that xCT is a novel therapeutic target for TSC and other aberrant mTOR-related diseases.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Melaninas/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Adolescente , Animales , Carcinogénesis , Femenino , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Melaninas/metabolismo , Ratones , Ratones Noqueados , Esclerosis Tuberosa , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Regulación hacia Arriba
12.
J Bone Miner Res ; 33(11): 2021-2034, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29924882

RESUMEN

A reduction in trabecular bone mass is often associated with an increase in marrow fat in osteoporotic bones. The molecular mechanisms underlying this inverse correlation are incompletely understood. Here, we report that mice lacking tuberous sclerosis 1 (Tsc1) in Osterix-expressing cells had a significant decrease in trabecular bone mass characterized by decreased osteoblastogenesis, increased osteoclastogenesis, and increased bone marrow adiposity in vivo. In vitro study showed that Tsc1-deficient bone marrow stromal cells (BMSCs) had decreased proliferation, decreased osteogenic differentiation, and increased adipogenic differentiation in association with the downregulation of Wnt/ß-catenin signaling. Mechanistically, TSC1 deficiency led to autophagy suppression and consequent Notch1 protein increase, which mediated the GSK3ß-independent ß-catenin degradation. Together, our results indicate that Tsc1 controls the balance between osteoblast and adipocyte differentiation of BMSCs. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
Adipocitos/citología , Autofagia , Diferenciación Celular , Osteoblastos/citología , Receptores Notch/metabolismo , Transducción de Señal , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , beta Catenina/metabolismo , Adipocitos/metabolismo , Adipogénesis , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Hueso Esponjoso/patología , Regulación hacia Abajo , Fémur/patología , Eliminación de Gen , Factor Estimulante de Colonias de Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Tamaño de los Órganos , Osteoblastos/metabolismo , Osteogénesis , Factor de Transcripción Sp7/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia
13.
PLoS One ; 13(6): e0197973, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29897930

RESUMEN

Birt-Hogg-Dube' Syndrome (BHDS) is a rare genetic disorder in humans characterized by skin hamartomas, lung cysts, pneumothorax, and increased risk of renal tumors. BHDS is caused by mutations in the BHD gene, which encodes for Folliculin, a cytoplasmic adapter protein that binds to Folliculin interacting proteins-1 and -2 (Fnip1, Fnip2) as well as the master energy sensor AMP kinase (AMPK). Whereas kidney-specific deletion of the Bhd gene in mice is known to result in polycystic kidney disease (PKD) and renal cell carcinoma, the roles of Fnip1 in renal cell development and function are unclear. In this study, we utilized mice with constitutive deletion of the Fnip1 gene to show that the loss of Fnip1 is sufficient to result in renal cyst formation, which was characterized by decreased AMPK activation, increased mTOR activation, and metabolic hyperactivation. Using RNAseq, we found that Fnip1 disruption resulted in many cellular and molecular changes previously implicated in the development of PKD in humans, including alterations in the expression of ion and amino acid transporters, increased cell adhesion, and increased inflammation. Loss of Fnip1 synergized with Tsc1 loss to hyperactivate mTOR, increase Erk activation, and greatly accelerate the development of PKD. Our results collectively define roles for Fnip1 in regulating kidney development and function, and provide a model for how loss of Fnip1 contributes to PKD and perhaps renal cell carcinoma.


Asunto(s)
Proteínas Portadoras/genética , Quistes/genética , Eliminación de Gen , Riñón/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transcripción Genética/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Animales , Proteínas Portadoras/metabolismo , Quistes/patología , Activación Enzimática/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Perfilación de la Expresión Génica , Genotipo , Riñón/crecimiento & desarrollo , Riñón/patología , Ratones , Tamaño de los Órganos/genética , Fosforilación Oxidativa , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia
14.
J Neurosci Methods ; 305: 17-27, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29727612

RESUMEN

BACKGROUND: Early onset epileptic encephalopathies are rare paediatric diseases, with seizures resistant to drugs and impacting development of cognitive and motor functions. Many of them show monogenic aetiology and engineered animal models are crucial to understand the underlying mechanisms and propose treatment trials. These models have mostly been explored in vitro or in vivo under anaesthesia. This may affect the occurrence of epileptic activities and their clinical expression. These study conditions perturb social skills and are limited in time. NEW METHOD: We developed a technique using telemetric recordings by means of the Data Science International (DSI) mouse transmitter to study long lasting electro-cortical activity in freely moving mice younger than three weeks, trying to minimally affect social interactions and development RESULTS: We describe how to implant telemetry EEG devices in mice aged P13 to P18, weighing 7-10 g, including the surgical procedure and the recovery phase. Normal EEG data and epileptic activities can be recorded up to 2 months after implantation in normally behaving animals. COMPARISONS WITH EXISTING METHODS: Electrocorticographic studies of mouse pups are rare, and few devices allow EEG recording at these ages. Here, the telemetry devices used for adult mice were implanted in mouse pups. The surgical procedure was well tolerated. An adapted recovery protocol allowed EEG recording during the period of interest. CONCLUSION: This technique was developed with currently used devices to enable better understanding of the pathophysiology of epileptic encephalopathies, chronic recording of seizures and helping the development of new therapies using chronic trials in the young animal.


Asunto(s)
Electrocorticografía/métodos , Telemetría/métodos , Animales , Conducta Animal , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Carbamazepina , Electrocorticografía/instrumentación , Epilepsia/fisiopatología , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Actividad Motora , Convulsiones/fisiopatología , Telemetría/instrumentación , Factores de Tiempo , Esclerosis Tuberosa/fisiopatología , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
15.
JCI Insight ; 3(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29415880

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a highly prevalent and devastating condition for which no curative treatment is available. Exaggerated lung cell senescence may be a major pathogenic factor. Here, we investigated the potential role for mTOR signaling in lung cell senescence and alterations in COPD using lung tissue and derived cultured cells from patients with COPD and from age- and sex-matched control smokers. Cell senescence in COPD was linked to mTOR activation, and mTOR inhibition by low-dose rapamycin prevented cell senescence and inhibited the proinflammatory senescence-associated secretory phenotype. To explore whether mTOR activation was a causal pathogenic factor, we developed transgenic mice exhibiting mTOR overactivity in lung vascular cells or alveolar epithelial cells. In this model, mTOR activation was sufficient to induce lung cell senescence and to mimic COPD lung alterations, with the rapid development of lung emphysema, pulmonary hypertension, and inflammation. These findings support a causal relationship between mTOR activation, lung cell senescence, and lung alterations in COPD, thereby identifying the mTOR pathway as a potentially new therapeutic target in COPD.


Asunto(s)
Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/patología , Serina-Treonina Quinasas TOR/metabolismo , Anciano , Animales , Estudios de Casos y Controles , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Femenino , Humanos , Pulmón/citología , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Cultivo Primario de Células , Enfisema Pulmonar/genética , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Fumar Tabaco/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
16.
Cell Death Differ ; 25(9): 1549-1566, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29358671

RESUMEN

Reorganization of the podosome into the sealing zone is crucial for osteoclasts (OCLs) to resorb bone, but the underlying mechanisms are unclear. Here, we show that tuberous sclerosis complex 1 (TSC1) functions centrally in OCLs to promote podosome organization and bone resorption through mechanistic target of rapamycin complex 1 (mTORC1) and the small GTPases Rac1/Cdc42. During osteoclastogenesis, enhanced expression of TSC1 downregulates mTORC1 activity. TSC1 deletion in OCLs reduced podosome belt formation in vitro and sealing zone formation in vivo, leading to bone resorption deficiency and osteopetrosis. Mechanistically, TSC1 promoted podosome superstructure assembly by releasing mTORC1-dependent negative feedback inhibition of Rac1/Cdc42. Rapamycin and active Rac1/Cdc42 restore podosome organization and bone resorption and alleviate osteopetrotic phenotypes in mutant mice. Our findings reveal an essential role of TSC1 signaling in the regulation of bone resorption. Targeting TSC1 represents a novel strategy to inhibit bone resorption and prevent bone loss-related diseases.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neuropéptidos/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Resorción Ósea/patología , Diferenciación Celular , Regulación hacia Abajo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptidos/genética , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis , Podosomas/efectos de los fármacos , Podosomas/patología , Podosomas/ultraestructura , Células RAW 264.7 , Transducción de Señal , Sirolimus/farmacología , Sirolimus/uso terapéutico , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA