Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.252
1.
Chromosome Res ; 32(2): 8, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717688

Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific. No sex-specific major repeats are present in the high-copy repeat composition of male or female plants, or a significant difference in genome size was detected. Therefore, it is unlikely that M. fragrans possesses heteromorphic sex chromosomes.


Centromere , Chromosomes, Plant , DNA, Satellite , Myristica , DNA, Satellite/genetics , Centromere/genetics , Myristica/chemistry , Myristica/genetics , Histones/genetics , Tubulin/genetics , In Situ Hybridization, Fluorescence , Plant Proteins/genetics
2.
Sci Rep ; 14(1): 10551, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719929

Our purpose was to elucidate the genotype and ophthalmological and audiological phenotype in TUBB4B-associated inherited retinal dystrophy (IRD) and sensorineural hearing loss (SNHL), and to model the effects of all possible amino acid substitutions at the hotspot codons Arg390 and Arg391. Six patients from five families with heterozygous missense variants in TUBB4B were included in this observational study. Ophthalmological testing included best-corrected visual acuity, fundus examination, optical coherence tomography, fundus autofluorescence imaging, and full-field electroretinography (ERG). Audiological examination included pure-tone and speech audiometry in adult patients and auditory brainstem response testing in a child. Genetic testing was performed by disease gene panel analysis based on genome sequencing. The molecular consequences of the substitutions of residues 390 and 391 on TUBB4B and its interaction with α-tubulin were predicted in silico on its three-dimensional structure obtained by homology modelling. Two independent patients had amino acid exchanges at position 391 (p.(Arg391His) or p.(Arg391Cys)) of the TUBB4B protein. Both had a distinct IRD phenotype with peripheral round yellowish lesions with pigmented spots and mild or moderate SNHL, respectively. Yet the phenotype was milder with a sectorial pattern of bone spicules in one patient, likely due to a genetically confirmed mosaicism for p.(Arg391His). Three patients were heterozygous for an amino acid exchange at position 390 (p.(Arg390Gln) or p.(Arg390Trp)) and presented with another distinct retinal phenotype with well demarcated pericentral retinitis pigmentosa. All showed SNHL ranging from mild to severe. One additional patient showed a variant distinct from codon 390 or 391 (p.(Tyr310His)), and presented with congenital profound hearing loss and reduced responses in ERG. Variants at codon positions 390 and 391 were predicted to decrease the structural stability of TUBB4B and its complex with α-tubulin, as well as the complex affinity. In conclusion, the twofold larger reduction in heterodimer affinity exhibited by Arg391 substitutions suggested an association with the more severe retinal phenotype, compared to the substitution at Arg390.


Codon , Hearing Loss, Sensorineural , Phenotype , Tubulin , Humans , Female , Tubulin/genetics , Tubulin/chemistry , Male , Adult , Hearing Loss, Sensorineural/genetics , Codon/genetics , Middle Aged , Mutation, Missense , Child , Pedigree , Adolescent , Amino Acid Substitution , Young Adult , Retinitis Pigmentosa/genetics
3.
Mycopathologia ; 189(3): 44, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734862

A 50-year-old man, previously diagnosed with pulmonary tuberculosis and lung cavities, presented with symptoms including fever, shortness of breath, and cough. A pulmonary CT scan revealed multiple cavities, consolidation and tree-in-bud in the upper lungs. Further investigation through direct examination of bronchoalveolar lavage fluid showed septate hyphae with dichotomous acute branching. Subsequent isolation and morphological analysis identified the fungus as belonging to Aspergillus section Nigri. The patient was diagnosed with probable invasive pulmonary aspergillosis and successfully treated with a three-month oral voriconazole therapy. Phylogenetic analysis based on partial ß-tubulin, calmodulin and RNA polymerase second largest subunit sequences revealed that the isolate represents a putative new species related to Aspergillus brasiliensis, and is named Aspergillus hubkae here. Antifungal susceptibility testing demonstrated that the isolate is resistant to itraconazole but susceptible to voriconazole. This phenotypic and genetic characterization of A. hubkae, along with the associated case report, will serve as a valuable resource for future diagnoses of infections caused by this species. It will also contribute to more precise and effective patient management strategies in similar clinical scenarios.


Antifungal Agents , Aspergillus , Invasive Pulmonary Aspergillosis , Microbial Sensitivity Tests , Phylogeny , Sequence Analysis, DNA , Voriconazole , Humans , Middle Aged , Male , Invasive Pulmonary Aspergillosis/microbiology , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/diagnosis , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Aspergillus/isolation & purification , Aspergillus/genetics , Aspergillus/classification , Aspergillus/drug effects , Voriconazole/therapeutic use , Voriconazole/pharmacology , Bronchoalveolar Lavage Fluid/microbiology , Tomography, X-Ray Computed , DNA, Fungal/genetics , DNA, Fungal/chemistry , Itraconazole/therapeutic use , Cluster Analysis , Treatment Outcome , Tubulin/genetics , Microscopy
4.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38722279

In addition to its well-established role in actin assembly, profilin 1 (PFN1) has been shown to bind to tubulin and alter microtubule growth. However, whether PFN1's predominant control over microtubules in cells occurs through direct regulation of tubulin or indirectly through the polymerization of actin has yet to be determined. Here, we manipulated PFN1 expression, actin filament assembly, and actomyosin contractility and showed that reducing any of these parameters for extended periods of time caused an adaptive response in the microtubule cytoskeleton, with the effect being significantly more pronounced in neuronal processes. All the observed changes to microtubules were reversible if actomyosin was restored, arguing that PFN1's regulation of microtubules occurs principally through actin. Moreover, the cytoskeletal modifications resulting from PFN1 depletion in neuronal processes affected microtubule-based transport and mimicked phenotypes that are linked to neurodegenerative disease. This demonstrates how defects in actin can cause compensatory responses in other cytoskeleton components, which in turn significantly alter cellular function.


Actins , Microtubules , Profilins , Animals , Humans , Mice , Actin Cytoskeleton/metabolism , Actins/metabolism , Actins/genetics , Actomyosin/metabolism , Microtubules/metabolism , Neurons/metabolism , Profilins/metabolism , Profilins/genetics , Tubulin/metabolism , Tubulin/genetics
5.
Sci Rep ; 14(1): 10276, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704483

Fuchs endothelial corneal dystrophy (FECD) is a complex corneal disease characterized by the progressive decline and morphological changes of corneal endothelial cells (CECs) that leads to corneal edema and vision loss. The most common mutation in FECD is an intronic CTG repeat expansion in transcription factor 4 (TCF4) that leads to its altered expression. Corneal endothelial wound healing occurs primarily through cell enlargement and migration, and FECD CECs have been shown to display increased migration speeds. In this study, we aim to determine whether TCF4 can promote cellular migration in FECD CECs. We generated stable CEC lines derived from FECD patients that overexpressed different TCF4 isoforms and investigated epithelial-to-mesenchymal (EMT) expression, morphological analysis and cellular migration speeds. We found that full length TCF4-B isoform overexpression promotes cellular migration in FECD CECs in an EMT-independent manner. RNA-sequencing identified several pathways including the negative regulation of microtubules, with TUBB4A (tubulin beta 4A class IVa) as the top upregulated gene. TUBB4A expression was increased in FECD ex vivo specimens, and there was altered expression of cytoskeleton proteins, tubulin and actin, compared to normal healthy donor ex vivo specimens. Additionally, there was increased acetylation and detyrosination of microtubules in FECD supporting that microtubule stability is altered in FECD and could promote cellular migration. Future studies could be aimed at investigating if targeting the cytoskeleton and microtubules would have therapeutic potential for FECD by promoting cellular migration and regeneration.


Cell Movement , Endothelium, Corneal , Fuchs' Endothelial Dystrophy , Microtubules , Transcription Factor 4 , Humans , Fuchs' Endothelial Dystrophy/genetics , Fuchs' Endothelial Dystrophy/metabolism , Fuchs' Endothelial Dystrophy/pathology , Cell Movement/genetics , Microtubules/metabolism , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Endothelium, Corneal/metabolism , Endothelium, Corneal/pathology , Male , Female , Epithelial-Mesenchymal Transition/genetics , Aged , Endothelial Cells/metabolism , Endothelial Cells/pathology , Tubulin/metabolism , Tubulin/genetics , Middle Aged , Protein Isoforms/metabolism , Protein Isoforms/genetics
6.
Antonie Van Leeuwenhoek ; 117(1): 77, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717550

The "Shadegan International Wetland" (SIW) is one of the wetlands internationally recognized in the Ramsar convention. The vegetation of this wetland ecosystem consists of mostly grasses and shrubs that host a large number of fungi including endophytes. In this study, Nigrospora isolates were obtained from healthy plants of this wetland and its surrounding salt marshes and identified based on morphological features and multilocus phylogenetic analyses based on three DNA loci, namely the internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), ß-tubulin (tub2), and elongation factor 1-α (tef1-α). Accordingly, the following Nigrospora species were identified: N. lacticolonia, N. oryzae, N. osmanthi, N. pernambucoensis and a novel taxon N. shadeganensis sp. nov., which is described and illustrated. To the best of our knowledge, 10 new hosts for Nigrospora species are here reported, namely Aeluropus lagopoides, Allenrolfea occidentalis, Anthoxanthum monticola, Arthrocnemum macrostachyum, Cressa cretica, Halocnemum strobilaceum, Seidlitzia rosmarinus, Suaeda vermiculata, Tamarix passerinoides, and Typha latifolia. Moreover, the species N. lacticolonia and N. pernambucoensis are new records for the mycobiota of Iran.


Ascomycota , Endophytes , Phylogeny , Poaceae , Wetlands , Iran , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Poaceae/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Tubulin/genetics
7.
J Cell Sci ; 137(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38587100

During development, neurons achieve a stereotyped neuron type-specific morphology, which relies on dynamic support by microtubules (MTs). An important player is the augmin complex (hereafter augmin), which binds to existing MT filaments and recruits the γ-tubulin ring complex (γ-TuRC), to form branched MTs. In cultured neurons, augmin is important for neurite formation. However, little is known about the role of augmin during neurite formation in vivo. Here, we have revisited the role of mammalian augmin in culture and then turned towards the class four Drosophila dendritic arborization (c4da) neurons. We show that MT density is maintained through augmin in cooperation with the γ-TuRC in vivo. Mutant c4da neurons show a reduction of newly emerging higher-order dendritic branches and in turn also a reduced number of their characteristic space-filling higher-order branchlets. Taken together, our data reveal a cooperative function for augmin with the γ-TuRC in forming enough MTs needed for the appropriate differentiation of morphologically complex dendrites in vivo.


Dendrites , Drosophila Proteins , Microtubule-Associated Proteins , Microtubules , Animals , Microtubules/metabolism , Dendrites/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Drosophila melanogaster/metabolism , Tubulin/metabolism , Drosophila/metabolism , Humans , Neurons/metabolism , Neurons/cytology
8.
J Cell Sci ; 137(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38606636

Microtubules are nucleated by γ-tubulin ring complexes (γ-TuRCs) and are essential for neuronal development. Nevertheless, γ-TuRC depletion has been reported to perturb only higher-order branching in elaborated Drosophila larval class IV dendritic arborization (da) neurons. This relatively mild phenotype has been attributed to defects in microtubule nucleation from Golgi outposts, yet most Golgi outposts lack associated γ-TuRCs. By analyzing dendritic arbor regrowth in pupae, we show that γ-TuRCs are also required for the growth and branching of primary and secondary dendrites, as well as for higher-order branching. Moreover, we identify the augmin complex (hereafter augmin), which recruits γ-TuRCs to the sides of pre-existing microtubules, as being required predominantly for higher-order branching. Augmin strongly promotes the anterograde growth of microtubules in terminal dendrites and thus terminal dendrite stability. Consistent with a specific role in higher-order branching, we find that augmin is expressed less strongly and is largely dispensable in larval class I da neurons, which exhibit few higher-order dendrites. Thus, γ-TuRCs are essential for various aspects of complex dendritic arbor development, and they appear to function in higher-order branching via the augmin pathway, which promotes the elaboration of dendritic arbors to help define neuronal morphology.


Dendrites , Drosophila Proteins , Microtubules , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Dendrites/metabolism , Microtubules/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Tubulin/metabolism , Larva/metabolism , Larva/growth & development , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Drosophila/metabolism
9.
J Phys Chem B ; 128(17): 4035-4046, 2024 May 02.
Article En | MEDLINE | ID: mdl-38641327

Networks of tryptophan (Trp)─an aromatic amino acid with strong fluorescence response─are ubiquitous in biological systems, forming diverse architectures in transmembrane proteins, cytoskeletal filaments, subneuronal elements, photoreceptor complexes, virion capsids, and other cellular structures. We analyze the cooperative effects induced by ultraviolet (UV) excitation of several biologically relevant Trp mega-networks, thus giving insights into novel mechanisms for cellular signaling and control. Our theoretical analysis in the single-excitation manifold predicts the formation of strongly superradiant states due to collective interactions among organized arrangements of up to >105 Trp UV-excited transition dipoles in microtubule architectures, which leads to an enhancement of the fluorescence quantum yield (QY) that is confirmed by our experiments. We demonstrate the observed consequences of this superradiant behavior in the fluorescence QY for hierarchically organized tubulin structures, which increases in different geometric regimes at thermal equilibrium before saturation, highlighting the effect's persistence in the presence of disorder. Our work thus showcases the many orders of magnitude across which the brightest (hundreds of femtoseconds) and darkest (tens of seconds) states can coexist in these Trp lattices.


Tryptophan , Ultraviolet Rays , Tryptophan/chemistry , Tubulin/chemistry , Tubulin/metabolism , Microtubules/chemistry , Fluorescence , Spectrometry, Fluorescence
10.
Eur J Med Chem ; 271: 116425, 2024 May 05.
Article En | MEDLINE | ID: mdl-38636129

Phosphatidylinositol 3-kinase (PI3K) is one of the most attractive therapeutic targets for cervical cancer treatment. In this study, we designed and synthesized a series of benzimidazole derivatives and evaluated their anti-cervical cancer activity. Compound 4r exhibited strong antiproliferative activity in different cervical cancer cell lines HeLa, SiHa and Ca Ski, and relative lower cytotoxicity to normal hepatic and renal cell lines LO2 and HEK-293t (IC50 values were at 21.08 µM and 23.96 µM respectively). Its IC50 value was at 3.38 µM to the SiHa cells. Further mechanistic studies revealed that 4r induced apoptosis, arrested cell cycle in G2/M phase, suppressed PI3K/Akt/mTOR pathway and inhibit the polymerization of tubulin. Molecular docking study suggested that 4r formed key H-bonds action with PI3Kα (PDB ID:8EXU) and tubulin (PDB ID:1SA0). Zebrafish acute toxicity experiments showed that high concentrations of 4r did not cause death or malformation of zebrafish embryos. All these results demonstrated that 4r would be a promising lead candidate for further development of novel PI3K and tubulin dual inhibitors in cervical cancer treatment.


Antineoplastic Agents , Benzimidazoles , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Tubulin Modulators , Tubulin , Uterine Cervical Neoplasms , Zebrafish , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis , Tubulin/metabolism , Cell Proliferation/drug effects , Animals , Structure-Activity Relationship , Phosphatidylinositol 3-Kinases/metabolism , Female , Molecular Structure , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Apoptosis/drug effects , Dose-Response Relationship, Drug , Molecular Docking Simulation , Cell Line, Tumor , Signal Transduction/drug effects
11.
Cell Mol Life Sci ; 81(1): 193, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652325

The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.


Acetyltransferases , Microtubule Proteins , Tubulin , Humans , Acetyltransferases/metabolism , Acetyltransferases/chemistry , Tubulin/metabolism , Tubulin/chemistry , Animals , Protein Processing, Post-Translational , Acetylation , Microtubules/metabolism , Mitosis , Cell Movement , Neoplasms/pathology , Neoplasms/enzymology , Neoplasms/metabolism , Cytoskeleton/metabolism
12.
Cells ; 13(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38607037

Zika virus (ZIKV) infection and pathogenesis are linked to the disruption of neurogenesis, congenital Zika syndrome and microcephaly by affecting neural progenitor cells. Nonstructural protein 5 (NS5) is the largest product encoded by ZIKV-RNA and is important for replication and immune evasion. Here, we studied the potential effects of NS5 on microtubules (MTs) and autophagy flux, together with the interplay of NS5 with histone deacetylase 6 (HDAC6). Fluorescence microscopy, biochemical cell-fractionation combined with the use of HDAC6 mutants, chemical inhibitors and RNA interference indicated that NS5 accumulates in nuclear structures and strongly promotes the acetylation of MTs that aberrantly reorganize in nested structures. Similarly, NS5 accumulates the p62 protein, an autophagic-flux marker. Therefore, NS5 alters events that are under the control of the autophagic tubulin-deacetylase HDAC6. HDAC6 appears to degrade NS5 by autophagy in a deacetylase- and BUZ domain-dependent manner and to control the cytoplasmic expression of NS5. Moreover, NS5 inhibits RNA-mediated RIG-I interferon (IFN) production, resulting in greater activity when autophagy is inhibited (i.e., effect correlated with NS5 stability). Therefore, it is conceivable that NS5 contributes to cell toxicity and pathogenesis, evading the IFN-immune response by overcoming HDAC6 functions. HDAC6 has emerged as an anti-ZIKV factor by targeting NS5.


Zika Virus Infection , Zika Virus , Humans , Zika Virus/physiology , Histone Deacetylase 6 , Tubulin , Microtubules , RNA , Autophagy
13.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38612847

Even though electromagnetic fields have been reported to assist endogenous neurogenesis, little is known about the exact mechanisms of their action. In this pilot study, we investigated the effects of pulsating extremely low-frequency electromagnetic fields on neural stem cell differentiation towards specific phenotypes, such as neurons and astrocytes. Neural stem cells isolated from the telencephalic wall of B6(Cg)-Tyrc-2J/J mouse embryos (E14.5) were randomly divided into three experimental groups and three controls. Electromagnetic field application setup included a solenoid placed within an incubator. Each of the experimental groups was exposed to 50Hz ELF-EMFs of varied strengths for 1 h. The expression of each marker (NES, GFAP, ß-3 tubulin) was then assessed by immunocytochemistry. The application of high-strength ELF-EMF significantly increased and low-strength ELF-EMF decreased the expression of GFAP. A similar pattern was observed for ß-3 tubulin, with high-strength ELF-EMFs significantly increasing the immunoreactivity of ß-3 tubulin and medium- and low-strength ELF-EMFs decreasing it. Changes in NES expression were observed for medium-strength ELF-EMFs, with a demonstrated significant upregulation. This suggests that, even though ELF-EMFs appear to inhibit or promote the differentiation of neural stem cells into neurons or astrocytes, this effect highly depends on the strength and frequency of the fields as well as the duration of their application. While numerous studies have demonstrated the capacity of EMFs to guide the differentiation of NSCs into neuron-like cells or ß-3 tubulin+ neurons, this is the first study to suggest that ELF-EMFs may also steer NSC differentiation towards astrocyte-like phenotypes.


Astrocytes , Neural Stem Cells , Animals , Mice , Electromagnetic Fields , Pilot Projects , Tubulin , Cell Differentiation , Phenotype
14.
Bioorg Med Chem Lett ; 105: 129745, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614151

A series of 8 novel pyridinyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PYRIB-SOs) were designed, prepared and evaluated for their mechanism of action. PYRIB-SOs were found to have antiproliferative activity in the nanomolar to submicromolar range on several breast cancer cell lines. Moreover, subsequent biofunctional assays indicated that the most potent PYRIB-SOs 1-3 act as antimitotics binding to the colchicine-binding site (C-BS) of α, ß-tubulin and that they arrest the cell cycle progression in the G2/M phase. Microtubule immunofluorescence and tubulin polymerisation assay confirm that they disrupt the cytoskeleton through inhibition of tubulin polymerisation as observed with microtubule-destabilising agents. They also show good overall theoretical physicochemical, pharmacokinetic and druglike properties. Overall, these results show that PYRIB-SOs is a new family of promising antimitotics to be further studied in vivo for biopharmaceutical and pharmacodynamic evaluations.


Antimitotic Agents , Cell Proliferation , Colchicine , Drug Screening Assays, Antitumor , Humans , Colchicine/chemistry , Colchicine/metabolism , Colchicine/pharmacology , Binding Sites , Antimitotic Agents/pharmacology , Antimitotic Agents/chemistry , Antimitotic Agents/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Cell Line, Tumor , Benzenesulfonates/chemistry , Benzenesulfonates/pharmacology , Benzenesulfonates/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Tubulin/metabolism , Molecular Structure , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Tubulin Modulators/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Dose-Response Relationship, Drug
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 571-577, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38597449

OBJECTIVE: To investigate the regulatory effect of miR-132-3p on calmodulin-binding transcription activator 1 (CAMTA1) and Schwann cell activity in rats with facial nerve injury (FNI) treated with I-125 seeds. METHODS: Rat Schwann cells were irradiated with I-125 seeds and transfected with miR-132-3p mimic, miR-132-3p inhibitor or sh-CAMTA1. The expressions of S100B and ß-tubulin Ⅲ in the cells were detected with immunofluorescence assay, and the expressions of miR-132-3p and CAMTA1 protein were determined using RT-qPCR and Western blotting, respectively. EdU staining and Transwell assay were used to evaluate the changes in cell proliferation and migration ability. In a rat model of FNI, I-125 seeds were implanted into the facial tissues near the facial nerve 2 weeks before modeling, and miR-132-3p mimic was injected subcutaneously in the face after modeling. The pathologies of the facial nerve was assessed by HE, LFB and immunofluorescence staining. The targeting relationship between miR-132-3p and CAMTA1 was verified using StarBase v2.0 database and dual-luciferase reporter assay. RESULTS: Rat Schwann cells showed high expressions of S100B and ß-tubulin Ⅲ. I-125 seeds radiation significantly decreased miR-132-3p expression and repressed proliferation and migration of the cells (P < 0.001). Overexpression of miR-132-3p or CAMTA1 knockdown obviously enhanced proliferation and migration of the Schwann cells, while miR-132-3p knockdown produced the opposite effect. MiR-132-3p negatively regulated CAMTA1 expression. In the rat models of FNI, miR-132-3p injection significantly inhibited CAMTA1 expression and attenuated I-125 seeds-induced exacerbation of FNI. CONCLUSION: Overexpression of miR-132-3p suppresses CAMTA1 expression and promotes Schwann cell proliferation and migration to alleviate I-125 seeds-induced exacerbation of FNI in rats.


Facial Nerve Injuries , MicroRNAs , Rats , Animals , MicroRNAs/metabolism , Iodine Radioisotopes , Tubulin , Transcription Factors , Cell Proliferation , Cell Movement , Cell Line, Tumor
16.
Cell Mol Life Sci ; 81(1): 170, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38597976

In our prior investigation, we discerned loss-of-function variants within the gene encoding glutamine-rich protein 2 (QRICH2) in two consanguineous families, leading to various morphological abnormalities in sperm flagella and male infertility. The Qrich2 knockout (KO) in mice also exhibits multiple morphological abnormalities of the flagella (MMAF) phenotype with a significantly decreased sperm motility. However, how ORICH2 regulates the formation of sperm flagella remains unclear. Abnormal glutamylation levels of tubulin cause dysplastic microtubules and flagella, eventually resulting in the decline of sperm motility and male infertility. In the current study, by further analyzing the Qrich2 KO mouse sperm, we found a reduced glutamylation level and instability of tubulin in Qrich2 KO mouse sperm flagella. In addition, we found that the amino acid metabolism was dysregulated in both testes and sperm, leading to the accumulated glutamine (Gln) and reduced glutamate (Glu) concentrations, and disorderly expressed genes responsible for Gln/Glu metabolism. Interestingly, mice fed with diets devoid of Gln/Glu phenocopied the Qrich2 KO mice. Furthermore, we identified several mitochondrial marker proteins that could not be correctly localized in sperm flagella, which might be responsible for the reduced mitochondrial function contributing to the reduced sperm motility in Qrich2 KO mice. Our study reveals a crucial role of a normal Gln/Glu metabolism in maintaining the structural stability of the microtubules in sperm flagella by regulating the glutamylation levels of the tubulin and identifies Qrich2 as a possible novel Gln sensor that regulates microtubule glutamylation and mitochondrial function in mouse sperm.


Glutamine , Infertility, Male , Animals , Humans , Male , Mice , Glutamic Acid , Infertility, Male/genetics , Mice, Knockout , Microtubules , Mitochondria , Mitochondrial Proteins , Semen , Sperm Motility , Spermatozoa , Tubulin
17.
Elife ; 122024 Apr 10.
Article En | MEDLINE | ID: mdl-38598282

Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.


Microtubules , Tubulin , Acetylation , Cryoelectron Microscopy , Protein Processing, Post-Translational
18.
Biochem Biophys Res Commun ; 710: 149872, 2024 May 28.
Article En | MEDLINE | ID: mdl-38593621

Protein modifications importantly contribute to memory formation. Protein acetylation is a post-translational modification of proteins that regulates memory formation. Acetylation level is determined by the relative activities of acetylases and deacetylases. Crebinostat is a histone deacetylase inhibitor. Here we show that in an object recognition task, crebinostat facilitates memory formation by a weak training. Further, this compound enhances acetylation of α-tubulin, and reduces the level of histone deacetylase 6, an α-tubulin deacetylase. The results suggest that enhanced acetylation of α-tubulin by crebinostat contributes to its facilitatory effect on memory formation.


Histone Deacetylases , Tubulin , Tubulin/metabolism , Histone Deacetylases/metabolism , Histone Deacetylase 6/metabolism , Biphenyl Compounds , Hydrazines , Histone Deacetylase Inhibitors/pharmacology , Acetylation
19.
Nanoscale ; 16(16): 7976-7987, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38567463

Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 µg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.


Autophagy , Colorectal Neoplasms , Gold , Metal Nanoparticles , Humans , Gold/chemistry , Gold/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Metal Nanoparticles/chemistry , Autophagy/drug effects , Acetylation , Microtubules/metabolism , Microtubules/drug effects , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/drug therapy , HT29 Cells , Caspases/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Tubulin/metabolism , Tubulin/chemistry
20.
J Ethnopharmacol ; 328: 118132, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38565411

ETHNOPHARMACOLOGICAL RELEVANCE: Infections caused by parasitic worms or helminth continue to pose a great burden on human and animal health, particularly in underdeveloped tropical and subtropical countries where they are endemic. Current anthelmintic drugs present serious limitations and the emergence of drug resistance has made it increasingly challenging to combat such infections (helminthiases). In Bangladesh, medicinal plants are often used by indigenous communities for the treatment of helminthiases. Knowledge on such plants along with screening for their anthelmintic activity has the potential to lead to the discovery of phytochemicals that could serve as novel molecular scaffolds for the development of new anthelminthic drugs. AIM OF THE STUDY: The purpose of this study was i) to conduct an ethnobotanical survey to gather data on Bangladeshi medicinal plants used in the treatment of helminthiases, ii) to test plants with the highest use values for their in vitro anthelmintic activity, and iii) to carry out in silico screening on phytochemicals present in the most active plant extract to investigate their ability to disrupt ß-tubulin function in helminths. METHODS: The ethnobotanical survey was conducted across three sub-districts of Bangladesh, namely Mathbaria, Phultala and Khan Jahan Ali. The in vitro screening for anthelmintic activity was performed in a motility test using adult Haemonchus contortus worms. Virtual screening using PyRx was performed on the phytochemicals reported from the most active plant, exploring their interactions with the colchicine binding site of the ß-tubulin protein target (PDB ID: 1SA0). RESULTS: The survey respondents reported a total of 32 plants for treating helminthiases. Based on their use values, the most popular choices were Ananas comosus (L.) Merr., Azadirachta indica A.Juss., Carica papaya L., Citrus maxima (Burm.) Merr., Curcuma longa L., Momordica charantia L., Nigella sativa L. and Syzygium cumini (L.) Skeels. In vitro anthelmintic testing revealed that A. indica leaves and bark had the highest activity with LC50 values of 16 mg/mL in both cases. Other plant extracts also exhibited good anthelmintic activity with LC50 values ranging from 16 to 52 mg/mL, while the value for albendazole (positive control) was 8.39 mg/mL. The limonoids nimbolide and 28-deoxonimbolide showed a binding affinity of -8.9 kcal/mol, and satisfied all drug-likeness parameters. The control ligand N-deacetyl-N-(2-mercaptoacetyl)colchicine had a binding affinity of -6.9 kcal/mol. CONCLUSION: Further in silico and in vitro studies are warranted on the identified limonoids to confirm the potential of these derivatives as novel drug templates for helminthiases. The current study supports the need for an ethnobotanical survey-based approach to discover novel drug templates for helminthiases.


Anthelmintics , Haemonchus , Helminthiasis , Limonins , Plants, Medicinal , Adult , Animals , Humans , Plants, Medicinal/chemistry , Tubulin , Anthelmintics/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Colchicine
...