Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 281
1.
Chemosphere ; 358: 142143, 2024 Jun.
Article En | MEDLINE | ID: mdl-38685319

Conventional pest control measures, such as chemical pesticides and nematicides, have limited efficacy and raise environmental concerns, necessitating sustainable and eco-friendly alternatives for pest management. Therefore, to find a complementary eco-friendly pesticide/nematicide, this study investigated the role of fly ash (FA) in managing a notorious pest, Meloidogyne javanica and its impact on the growth and physiology of Abelmoschus esculentus. Molecular characterization using SSU and LSU rDNA gene markers confirmed the identity of Indian M. javanica as belonging to the same species. Biotic stress induced by nematode infection was significantly alleviated (P < 0.05) by FA application at a 20% w/v, regulating of ROS accumulation (44.1% reduction in superoxide anions and 39.7% reduction in hydrogen peroxide content) in the host plant. Moreover, FA enhanced antioxidant defence enzymes like superoxide dismutase (46.6%) and catalase (112%) to combat nematode induced ROS. Furthermore, the application of FA at a 20% concentration significantly improved the biomass and biochemical attributes of okra. Fly ash also upregulated the activity of the important osmo-protectant proline (11.5 µmol/g FW) to mitigate nematode stress in host cells. Suppression of disease indices like gall index and reproduction factor, combined with in-vitro experiments, revealed that FA exhibits strong nematode mortality capacity and thus can be used as a sustainable and eco-friendly control agent against root-knot nematodes.


Abelmoschus , Antinematodal Agents , Antioxidants , Coal Ash , Reactive Oxygen Species , Tylenchoidea , Animals , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Antinematodal Agents/pharmacology , Tylenchoidea/drug effects , Tylenchoidea/physiology , Soil/chemistry , Soil/parasitology , Pesticides , Superoxide Dismutase/metabolism , Nematoda/drug effects , Nematoda/physiology , Catalase/metabolism
2.
Nature ; 618(7963): 102-109, 2023 Jun.
Article En | MEDLINE | ID: mdl-37225985

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Antinematodal Agents , Tylenchoidea , Animals , Humans , Antinematodal Agents/chemistry , Antinematodal Agents/metabolism , Antinematodal Agents/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Tylenchoidea/drug effects , Tylenchoidea/metabolism , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/pharmacology , Cytochrome P-450 Enzyme System/drug effects , Plant Roots/drug effects , Plant Roots/parasitology , Plant Diseases , Species Specificity , Substrate Specificity
3.
Microbiol Spectr ; 10(1): e0257721, 2022 02 23.
Article En | MEDLINE | ID: mdl-35138171

Entomopathogenic Photorhabdus bacteria (Enterobacteriaceae: Gamma-proteobacteria), the natural symbionts of Heterorhabditis nematodes, are a rich source for the discovery of biologically active secondary metabolites (SMs). This study describes the isolation of three nematicidal SMs from in vitro culture supernatants of the Arizona-native Photorhabdus luminescens sonorensis strain Caborca by bioactivity-guided fractionation. Nuclear magnetic resonance spectroscopy and comparison to authentic synthetic standards identified these bioactive metabolites as trans-cinnamic acid (t-CA), (4E)-5-phenylpent-4-enoic acid (PPA), and indole. PPA and t-CA displayed potent, concentration-dependent nematicidal activities against the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans), two economically and globally important plant parasitic nematodes (PPNs) that are ubiquitous in the United States. Southwest. Indole showed potent, concentration-dependent nematistatic activity by inducing the temporary rigid paralysis of the same targeted nematodes. While paralysis was persistent in the presence of indole, the nematodes recovered upon removal of the compound. All three SMs were found to be selective against the tested PPNs, exerting little effects on non-target species such as the bacteria-feeding nematode Caenorhabditis elegans or the entomopathogenic nematodes Steinernema carpocapsae, Heterorhabditis bacteriophora, and Hymenocallis sonorensis. Moreover, none of these SMs showed cytotoxicity against normal or neoplastic human cells. The combination of t-CA + PPA + indole had a synergistic nematicidal effect on both targeted PPNs. Two-component mixtures prepared from these SMs revealed complex, compound-, and nematode species-dependent interactions. These results justify further investigations into the chemical ecology of Photorhabdus SMs, and recommend t-CA, PPA and indole, alone or in combinations, as lead compounds for the development of selective and environmentally benign nematicides against the tested PPNs. IMPORTANCE Two phenylpropanoid and one alkaloid secondary metabolites were isolated and identified from culture filtrates of Photorhabdus l. sonorensis strain Caborca. The three identified metabolites showed selective nematicidal and/or nematistatic activities against two important plant parasitic nematodes, the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans). The mixture of all three metabolites had a synergistic nematicidal effect on both targeted nematodes, while other combinations showed compound- and nematode-dependent interactions.


Anthelmintics/pharmacology , Photorhabdus/chemistry , Plant Diseases/parasitology , Secondary Metabolism , Tylenchoidea/drug effects , Animals , Anthelmintics/chemistry , Anthelmintics/metabolism , Cinnamates/chemistry , Cinnamates/metabolism , Cinnamates/pharmacology , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Molecular Structure , Photorhabdus/metabolism , Tylenchoidea/growth & development
4.
Int J Mol Sci ; 23(4)2022 Feb 14.
Article En | MEDLINE | ID: mdl-35216195

The exploration of novel, environmentally friendly, and efficient nematicides is essential, and modifying natural biomacromolecules is one feasible approach. In this study, 6-O-(trifluorobutenyl-oxadiazol)-chitosan oligosaccharide derivative was synthesized and characterized by FTIR, NMR, and TG/DTG. Its bioactivity and action mode against root-knot nematode M. incognita were estimated. The results show that the derivative shows high nematicidal activity against J2s, and egg hatching inhibitory activity at 1 mg/mL. The derivative may affect nematode ROS metabolism and further damage intestinal tissue to kill nematode. Meanwhile, by synergism with improving crop resistance, the derivative performed a high control effect on the nematode with low phytotoxicity. These findings suggested that chitosan oligosaccharide derivatives bearing fluoroalkenyl groups are promising green nematicides.


Antinematodal Agents/pharmacology , Chitosan/pharmacology , Oligosaccharides/pharmacology , Tylenchoidea/drug effects , Animals , Biological Control Agents/pharmacokinetics , Plant Diseases/parasitology
5.
Plant Dis ; 106(8): 2228-2238, 2022 Aug.
Article En | MEDLINE | ID: mdl-34978874

Meta-analysis was used to compare yield protection and nematode suppression provided by two seed-applied and two soil-applied nematicides against Meloidogyne incognita and Rotylenchulus reniformis on cotton across 3 years and several trial locations in the U.S. Cotton Belt. Nematicides consisted of thiodicarb- and fluopyram-treated seed, aldicarb and fluopyram applied in furrow, and combinations of the seed treatments and soil-applied fluopyram. The nematicides had no effect on nematode reproduction or root infection but had a significant impact on seed cotton yield response ([Formula: see text]), with an average increase of 176 and 197 kg/ha relative to the nontreated control in M. incognita and R. reniformis infested fields, respectively. However, because of significant variation in yield protection and nematode suppression by nematicides, five or six moderator variables (cultivar resistance [M. incognita only], nematode infestation level, nematicide treatment, application method, trial location, and growing season) were used depending on nematode species. In M. incognita-infested fields, greater yield protection was observed with nematicides applied in furrow and with seed-applied + in-furrow than with solo seed-applied nematicide applications. Most notable of these in-furrow nematicides were aldicarb and fluopyram (>131 g/ha) with or without a seed-applied nematicide compared with thiodicarb. In R. reniformis-infested fields, moderator variables provided no further explanation of the variation in yield response produced by nematicides. Furthermore, moderator variables provided little explanation of the variation in nematode suppression by nematicides in M. incognita- and R. reniformis-infested fields. The limited explanation by the moderator variables on the field efficacy of nematicides in M. incognita- and R. reniformis-infested fields demonstrates the difficulty of managing these pathogens with nonfumigant nematicides across the U.S. Cotton Belt.


Antinematodal Agents , Tylenchoidea , Aldicarb/toxicity , Animals , Antinematodal Agents/toxicity , Benzamides/toxicity , Gossypium , Pyridines/toxicity , Seeds , Soil , Tylenchoidea/drug effects , Tylenchoidea/physiology , United States
6.
J Ethnopharmacol ; 284: 114802, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-34752900

ETHNOPHARMACOLOGICAL RELEVANCE: Leonotis leonurus (L.) R.Br. (Lamiaceae) is a perennial shrub native to South Africa used to treat various diseases including digestive tract problems, intestinal worms and constipation. AIM OF THE STUDY: The aim was to isolate and characterise nematicidal compounds from leaves of L. leonurus. MATERIALS AND METHODS: Bioassay-guided fractionation was carried out using the free-living nematode Caenorhabditis elegans as a model organism. Structural elucidation of the purified compound was carried out using NMR spectroscopic analyses and UPLC-QTOF-MS. The fractions and the isolated compound were tested for nematicidal activity on motility of plant-parasitic Meloidogyne incognita juveniles (J2s) and J2 hatch inhibition. Further screening was done to determine the minimum inhibitory concentration (MIC) of the fractions against bacterial phytopathogens and cytotoxicity against Vero kidney cells. RESULTS: Leoleorin C isolated from L. leonurus had moderate activity against C. elegans juveniles (34%) but was not active against J2 motility and J2 hatch of M. incognita. Thus, activity against the free-living C. elegans did not correspond with efficacy against plant-parasitic nematodes. Leoleorin C was not active against the tested bacterial phytopathogens, but some activity was observed in the bioautography assay against Clavibacter michiganensis subsp. michiganensis, the organism causing bacterial canker in tomatoes. The plant extract, fractions and leolorin C were relatively non-toxic to Vero cells with LC50 values greater than 0.01 mg/mL. CONCLUSION: The crude extract of L. leonurus and fractions may be useful in developing complementary treatments for controlling nematodes and phytopathogens. This study does not support the use of free-living nematodes as a model to isolate anti-parasitic compounds from plants.


Anthelmintics , Caenorhabditis elegans , Lamiaceae , Plant Extracts , Plant Leaves , Animals , Anthelmintics/chemistry , Anthelmintics/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Caenorhabditis elegans/drug effects , Cell Survival , Chlorocebus aethiops , Lamiaceae/chemistry , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Tylenchoidea/drug effects , Vero Cells
7.
Exp Parasitol ; 230: 108176, 2021 Nov.
Article En | MEDLINE | ID: mdl-34740586

Foliar spray of silicon dioxide (SiO2 NPs), zinc oxide (ZnO NPs) and titanium dioxide (TiO2 NPs) nanoparticles were used for the management of Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot. Foliar spray of SiO2 NPs/ZnO NPs or TiO2 NPs increased plant growth attributes, chlorophyll and carotenoid of carrot. Foliar spray of 0.10 mg ml-1 SiO2 NPs caused the highest increase in plant growth, chlorophyll and carotenoid content of leaves followed by spray of 0.10 mg ml-1 ZnO NPs, 0.05 mg ml-1 SiO2 NPs, 0.05 mg ml-1 ZnO NPs, 0.10 mg ml-1 TiO2 NPs and 0.05 mg ml-1 TiO2 NPs. Use of SiO2 NPs caused a higher reduction in root galling, nematode multiplication and disease indices followed by ZnO NPs and TiO2 NPs. Two principal components analysis showed a total of 97.84% overall data variance in plants inoculated with single pathogen and 97.20% in plants inoculated with two or more pathogens. Therefore, foliar spray of SiO2 NPs appears interesting for the management of disease complex of carrot.


Alternaria/drug effects , Daucus carota , Plant Diseases/microbiology , Plant Diseases/parasitology , Rhizoctonia/drug effects , Tylenchoidea/drug effects , Aerosols , Alternaria/growth & development , Alternaria/pathogenicity , Animals , Carotenoids/analysis , Chlorophyll/analysis , Daucus carota/growth & development , Daucus carota/microbiology , Daucus carota/parasitology , Microscopy, Fluorescence , Nanoparticles/administration & dosage , Plant Leaves/chemistry , Principal Component Analysis , Rhizoctonia/growth & development , Rhizoctonia/pathogenicity , Silicon Dioxide/pharmacology , Titanium/pharmacology , Tylenchoidea/pathogenicity , Zinc Oxide/pharmacology
8.
Molecules ; 26(21)2021 Oct 26.
Article En | MEDLINE | ID: mdl-34770856

Essential oils (EOs) from lavandin are known for a large spectrum of biological properties but poorly and contrastingly documented for their activity against phytoparasitic nematodes. This study investigated the toxicity of EOs from three different lavandin cultivars, Abrialis, Rinaldi Cerioni, and Sumiens, either to juveniles (J2) and eggs of the root-knot nematode Meloidogyne incognita and to infective stages of the lesion nematode Pratylenchus vulnus. The suppressive activity of treatments with EOs from the three lavandin cultivars in soil infested by M. incognita was also investigated in a greenhouse experiment on potted tomato. The compositional profiles of tested EOs were also analyzed by GC-FID and GC-MS. Linalool was the major component of all the three EOs, as accounting for about 66%, 48%, and 40% of total EO from cv Rinaldi Cerioni, Sumiens, and Abrialis, respectively. Linalool acetate was the second most abundant compound in the EOs from cv Abrialis (18.3%) and Sumiens (14.9%), while significant amounts of camphor (11.5%) and 1,8-cineole (12.1%) were detected in cv Rinaldi Cerioni and Sumiens EOs, respectively. The mortality of M. incognita J2 peaked 82.0%, 95.8%, and 89.8% after a 24 h treatment with 100 mg·mL-1 solutions of cv Abrialis, Rinaldi Cerioni, and Sumiens EOs, respectively. Infective specimens of P. vulnus were largely more sensitive than M. incognita J2, as there were peak mortality rates of 65.5%, 67.7%, and 75.7% after 4 h of exposure to Abrialis, Rinaldi Cerioni, and Sumiens EO, respectively. All three lavandin EOs significantly affected also M. incognita egg hatchability, which reduced to 43.6% after a 48 h egg mass exposure to a 100 µg·mL-1 solution of cv Rinaldi Cerioni EO. Soil treatments with the three lavandin EOs strongly reduced, according to a dose-effect relationship, density of M. incognita eggs, and J2 both on tomato roots and in soil, as well as significantly reduced gall formation on tomato roots. Finally, almost all soil treatments with the lavandin EOs also resulted in a positive impact on tomato plant growth.


Antinematodal Agents/pharmacology , Lavandula/chemistry , Oils, Volatile/pharmacology , Tylenchoidea/drug effects , Animals , Antinematodal Agents/chemistry , Antinematodal Agents/isolation & purification , Dose-Response Relationship, Drug , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification
9.
Cells ; 10(9)2021 09 19.
Article En | MEDLINE | ID: mdl-34572130

BACKGROUND: Whole transgenic or non-transgenic organism model systems allow the screening of pharmacological compounds for protective actions in Alzheimer's disease (AD). AIM: In this study, a plant parasitic nematode, Globodera pallida, which assimilates intact peptides from the external environment, was investigated as a new potential non-transgenic model system of AD. Methods: Fresh second-stage juveniles of G. pallida were used to measure their chemosensory, perform immunocytochemistry on their neurological structures, evaluate their survival rate, measure reactive oxygen species, and determine total oxidized glutathione to reduced glutathione ratio (GSSG/GSH) levels, before and after treatment with 100 µM of various amyloid beta (Aß) peptides (1-40, 1-42, 17-42, 17-40, 1-28, or 1-16). Wild-type N2 C. elegans (strain N2) was cultured on Nematode Growth Medium and directly used, as control, for chemosensory assays. RESULTS: We demonstrated that: (i) G. pallida (unlike Caenorhabditis elegans) assimilates amyloid-ß (Aß) peptides which co-localise with its neurological structures; (ii) pre-treatment with various Aß isoforms (1-40, 1-42, 17-42, 17-40, 1-28, or 1-16) impairs G. pallida's chemotaxis to differing extents; (iii) Aß peptides reduced survival, increased the production of ROS, and increased GSSG/GSH levels in this model; (iv) this unique model can distinguish differences between different treatment concentrations, durations, and modalities, displaying good sensitivity; (v) clinically approved neuroprotective agents were effective in protecting G. pallida from Aß (1-42) exposure. Taken together, the data indicate that G. pallida is an interesting in vivo model with strong potential for discovery of novel bioactive compounds with anti-AD activity.


Alzheimer Disease/pathology , Amyloid beta-Peptides/toxicity , Animals, Genetically Modified/physiology , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Tylenchoidea/physiology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Chemotaxis , Tylenchoidea/drug effects
10.
Exp Parasitol ; 229: 108153, 2021 Oct.
Article En | MEDLINE | ID: mdl-34508716

Several economically important crops are susceptible to root-knot nematode (RKNs). Meloidogyne incognita and M. javanica are the two most reported species from the RKN complex, causing damage to several crops worldwide. The successful outcome of the Meloidogyne-plant interaction is associated with molecular factors secreted by the nematode to suppress the plant's immune response and promote nematode parasitism. In contrast, several plant factors are associated with defense against nematode infection. In this study, we identified and characterized the specific interaction of Minc00344 and Mj-NULG1a effectors with soybean GmHub10 (Glyma.19G008200) protein in vitro and in vivo. An Arabidopsis thaliana T-DNA mutant of AtHub10 (AT3G27960, an orthologous gene of GmHub10) showed higher susceptibility to M. incognita. Thus, since soybean and A. thaliana Hub10 proteins are involved in pollen tube growth and indirect activation of the defense response, our data suggest that effector-Hub10 interactions could be associated with an increase in plant susceptibility. These findings indicate the potential of these effector proteins to develop new biotechnological tools based on RNA interference and the overexpression of engineered Hub10 proteins for the efficient management of RKN in crops.


Glycine max/drug effects , Glycine max/parasitology , Plant Diseases/parasitology , Tylenchoidea/pathogenicity , Animals , Arabidopsis , Host-Parasite Interactions , Phenotype , Phylogeny , Protein Interaction Domains and Motifs , Glycine max/classification , Tylenchoidea/classification , Tylenchoidea/drug effects , Tylenchoidea/genetics
11.
ACS Appl Mater Interfaces ; 13(33): 39066-39075, 2021 Aug 25.
Article En | MEDLINE | ID: mdl-34387079

A controlled release formulation based on silica microcapsules is an ideal selection to improve both the effective utilization and duration of pesticides to decrease ecological damage. Herein, a simple and green method for preparing double-shelled microcapsules was developed using a newly prepared quaternary ammonium ionic liquid (IL) as the functional additive to entrap avermectin (Ave) in mesoporous silica nanospheres (MSNs) and tannic acid-Cu (TA-Cu) complex as the sealing agent to form the core-shell structure (Ave-IL@MSN@TA-Cu). The obtained microcapsules with an average size of 538 nm had pH-responsive release property and good stability in soil. The half-life of microcapsules (34.66 days) was 3 times that of Ave emulsifiable concentrate (EC) (11.55 days) in a test soil, which illustrated that microcapsules could protect Ave from rapid degradation by microorganisms by releasing TA, copper, and quaternary ammonium in the soil. Ave-IL@MSN@TA-Cu microcapsules had better nematicidal activity and antibacterial activity than Ave EC due to the synergistic effect of Ave, IL, and copper incorporated in the microcapsules. Pot experiments showed that the control efficacy of microcapsules was 87.10% against Meloidogyne incognita, which is better than that of Ave EC (41.94%) at the concentration of 1.0 mg/plant by the root-irrigation method after 60 days of treatment owing to the extended duration of Ave in microcapsules. The simple and green method for the preparation of double-shelled microcapsules based on natural quaternary ammonium IL would have tremendous potential for the extensive development of controlled release pesticide formulations.


Capsules/chemistry , Delayed-Action Preparations/chemistry , Pest Control/methods , Pesticides/chemistry , Silicon Dioxide/chemistry , Tylenchoidea/drug effects , Animals , Coordination Complexes/chemistry , Copper/chemistry , Delayed-Action Preparations/pharmacology , Drug Compounding , Drug Liberation , Green Chemistry Technology , Hydrogen-Ion Concentration , Ionic Liquids/chemistry , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/pharmacology , Pesticides/pharmacology , Porosity , Quaternary Ammonium Compounds/chemistry , Solubility , Tannins/chemistry , Time Factors
12.
Molecules ; 26(15)2021 Aug 02.
Article En | MEDLINE | ID: mdl-34361827

Grammicin, a polyketide metabolite produced by the endolichenic fungus Xylaria grammica KCTC 13121BP, shows strong nematicidal activity against Meloidogyne incognita. This study was performed to elucidate the grammicin biosynthesis pathway of X. grammica KCTC 13121BP and to examine the nematicidal activity of the biosynthesis intermediates and derivatives against M. incognita. Two grammicin biosynthesis intermediates were isolated from a T-DNA insertion transformant (strain TR-74) of X. grammica KCTC 13121BP and identified as 2-(hydroxymethyl)cyclohexa-2,5-diene-1,4-dione (compound 1) and 2,5-dihydroxybenzaldehyde (compound 2), which were also reported to be intermediates in the biosynthesis pathway of patulin, an isomer of grammicin. This indicates that the grammicin biosynthesis pathway overlaps almost with that of patulin, except for the last few steps. Among 13 grammicin biosynthesis intermediates and their derivatives (except grammicin), toluquinol caused the highest M. incognita J2 mortality, with an LC50/72 h value of 11.13 µg/mL, which is similar to grammicin with an LC50/72 h value of 15.95 µg/mL. In tomato pot experiments, the wettable powder type formulations (WP) of toluquinol (17.78 µg/mL) and grammicin (17.78 µg/mL) also effectively reduced gall formation on the roots of tomato plants with control values of 72.22% and 77.76%, respectively, which are much higher than abamectin (16.67%), but lower than fosthiazate (100%). The results suggest that toluquinol can be used directly as a biochemical nematicide or as a lead molecule for the development of new synthetic nematicides for the control of root-knot nematode diseases.


Antinematodal Agents/pharmacology , Ascomycota/physiology , Plant Diseases/prevention & control , Polyketides/pharmacology , Solanum lycopersicum/drug effects , Tylenchoidea/drug effects , Animals , Solanum lycopersicum/microbiology , Plant Diseases/parasitology
13.
Chem Biodivers ; 18(9): e2100320, 2021 Sep.
Article En | MEDLINE | ID: mdl-34245651

Root-knot nematode, Meloidogyne incognita is one of the most destructive nematodes worldwide. Essential oils (EOs) are being extensively utilized as eco-benign bionematicides, although the precise mechanism of action remains unclear. Pogostemon cablin Benth. is well-known as "Patchouli". It is native to South East Asia and known for ethno-pharmacological properties. In this study, chemical composition and potential nematicidal effect of EOs hydrodistilled from the leaves of P. cablin grown at three different locations in India were comprehensively investigated to correlate their mechanism of action for target specific binding affinities toward nematode proteins. Aromatic volatile Pogostemon essential oils (PEO) from Northern India (PEO-NI), Southern India (PEO-SI) and North Eastern India (PEO-NEI) were analyzed by Gas Chromatography-Mass Spectrometry (GC/MS) to characterize forty volatile compounds. Maximum thirty-three components were identified in PEO-NEI. Sesquiterpenes were predominant with higher content of α-guaiene (2.3-24.4 %), patchoulol (6.1-32.7 %) and α-bulnesene (5.9-27.1 %). Patchoulol was the major component in PEO-SI (32.7±1.2 %) and PEO-NEI (29.2±1.1 %), while α-guaiene in PEO-NI (24.4±1.2 %). In vitro nematicidal assay revealed significant nematicidal action (LC50 44.6-87.0 µg mL-1 ) against juveniles of M. incognita within 24 h exposure. Mortality increases with increasing time to 48 h (LC50 33.6-71.6 µg mL-1 ) and 72 h (LC50 27.7-61.2 µg mL-1 ). Molecular modelling and in silico studies revealed multi-modal inhibitive action of α-bulnesene (-22 to -13 kJ mol-1 ) and α-guaiene (-22 to -12 kJ mol-1 ) against three target proteins namely, acetyl cholinesterase (AChE), odorant response gene-1 (ODR1), odorant response gene-3 (ODR3). Most preferable binding mechanism was observed against AChE due to pi-alkyl, pi-sigma, and hydrophobic interactions. Structure nematicidal activity relationship suggested the presence of hydroxy group for nematicidal activity is nonessential, rather highly depends on synergistic composition of sesquiterpene hydrocarbons.


Antinematodal Agents/pharmacology , Molecular Docking Simulation , Pogostemon/chemistry , Tylenchoidea/drug effects , Animals , Antinematodal Agents/chemistry , Antinematodal Agents/isolation & purification , Dose-Response Relationship, Drug , India , Plant Leaves/chemistry
14.
Int J Mol Sci ; 22(13)2021 Jun 26.
Article En | MEDLINE | ID: mdl-34206764

Plant-parasitic nematodes cause severe economic losses annually which has been a persistent problem worldwide. As current nematicides are highly toxic, prone to drug resistance, and have poor stability, there is an urgent need to develop safe, efficient, and green strategies. Natural active polysaccharides such as chitin and chitosan with good biocompatibility and biodegradability and inducing plant disease resistance have attracted much attention, but their application is limited due to their poor solubility. Here, we prepared 6-oxychitin with good water solubility by introducing carboxylic acid groups based on retaining the original skeleton of chitin and evaluated its potential for nematode control. The results showed that 6-oxychitin is a better promoter of the nematicidal potential of Purpureocillium lilacinum than other water-soluble chitin derivatives. After treatment, the movement of J2s and egg hatching were obviously inhibited. Further plant experiments found that it can destroy the accumulation and invasion of nematodes, and has a growth-promoting effect. Therefore, 6-oxychitin has great application potential in the nematode control area.


Antinematodal Agents/pharmacology , Chitin/analogs & derivatives , Hypocreales/chemistry , Tylenchoidea/drug effects , Animals , Antinematodal Agents/chemistry , Cucumis sativus/parasitology , Locomotion , Reproduction , Tylenchoidea/pathogenicity , Tylenchoidea/physiology
15.
PLoS One ; 16(6): e0252987, 2021.
Article En | MEDLINE | ID: mdl-34133425

Root-knot nematodes cause damage to several crops and the importance of each species can vary according with the crop and the agricultural region. In Brazil, Meloidogyne javanica is one of the most important nematode species parasitizing mulberry. To define management strategies, it is important to know if the crop species is damaged by the parasitism of the nematode and the best choices for control, as the use of nematicides. Biological nematicides have been extensively used in Brazil, but no information regarding its efficiency to control M. javanica in mulberry is available. Besides, it is not known if biological nematicides could improve the quality of leaves or if they alter the nutrient composition of leaves, which could interfere in the development of the silkworms that are feed with these leaves or in the quality of the silk produced. With the aim to address these questions, we propose a study that will start in the phenotyping of the main Brazilian mulberry cultivars to Meloidogyne species, passing through the test of efficiency of biological nematicides in the control of M. javanica in mulberry cultivar Miura, evaluation of the amount and quality of leaves produced and, using these leaves to feed silkworms, in the analyzes of the impact of these diet in the health of silkworms, and in the production and quality of the silk.


Antinematodal Agents/pharmacology , Bombyx/growth & development , Host-Parasite Interactions , Morus/growth & development , Plant Leaves/growth & development , Silk/physiology , Tylenchoidea/physiology , Animals , Morus/drug effects , Morus/parasitology , Plant Leaves/drug effects , Plant Leaves/parasitology , Silk/drug effects , Tylenchoidea/drug effects
16.
Molecules ; 26(8)2021 Apr 12.
Article En | MEDLINE | ID: mdl-33921412

Nacobbus aberrans ranks among the "top ten" plant-parasitic nematodes of phytosanitary importance. It causes significant losses in commercial interest crops in America and is a potential risk in the European Union. The nematicidal and phytotoxic activities of seven plant extracts against N. aberrans and Solanum lycopersicum were evaluated in vitro, respectively. The chemical nature of three nematicidal extracts (EC50,48h ≤ 113 µg mL-1) was studied through NMR analysis. Plant extracts showed nematicidal activity on second-stage juveniles (J2): (≥87%) at 1000 µg mL-1 after 72 h, and their EC50 values were 71.4-468.1 and 31.5-299.8 µg mL-1 after 24 and 48 h, respectively. Extracts with the best nematicidal potential (EC50,48h < 113 µg mL-1) were those from Adenophyllum aurantium, Alloispermum integrifolium, and Tournefortia densiflora, which inhibited L. esculentum seed growth by 100% at 20 µg mL-1. Stigmasterol (1), ß-sitosterol (2), and α-terthienyl (3) were identified from A. aurantium, while 1, 2, lutein (4), centaurin (5), patuletin-7-ß-O-glucoside (6), pendulin (7), and penduletin (8) were identified from A. integrifolium. From T. densiflora extract, allantoin (9), 9-O-angeloyl-retronecine (10), and its N-oxide (11) were identified. The present research is the first to report the effect of T. densiflora, A. integrifolium, and A. aurantium against N. aberrans and chemically characterized nematicidal extracts that may provide alternative sources of botanical nematicides.


Antinematodal Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/toxicity , Solanum lycopersicum/drug effects , Animals , Antinematodal Agents/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Proton Magnetic Resonance Spectroscopy , Tylenchoidea/drug effects
17.
Bioorg Med Chem Lett ; 40: 127917, 2021 05 15.
Article En | MEDLINE | ID: mdl-33705904

Plant parasitic nematodes have always been a pressing problem in the field of plant protection. Well-established chemical nematicides, especially organophosphorus and carbamates are the most used products for nematode control worldwide. Due to long-term overuse, they have developed serious resistance and new innovative solutions are urgently required. In this study, thirty-one novel trifluorobutene amide derivatives were designed and synthesized, and their nematicidal activities were determined. Three different synthetic methods have been developed for the final amidation reaction enabling the successfully syntheses of the target compounds independently from the nucleophilicities of the substrate amino group. Most target compounds showed good nematicidal activity in our in vitro test. Among all the compounds, compounds A8 and A23 exhibited excellent nematicidal activity against Meloidogyne incognita, their LC50 values are 2.02 mg L-1 and 0.76 mg L-1, respectively. In particular, compound A23 has found to be almost as active as the commercial nematicide fluensulfone. Furthermore, most compounds gave full control (100% inhibition) of M. incognita at 40 mg L-1 in the in vivo tests in sandy soil, the best compounds were further investigated for in vivo activity in matrix soil. Among the compound tested, compound A8 showed excellent in vivo nematicidal activity. At a concentration of 5 mg L-1 still 56% inhibition was observed. The results of our study indicate that compound A8 possesses excellent in vitro and in vivo nematicidal activity, and can be considered as promising lead molecule for further modification.


Amides/chemical synthesis , Antinematodal Agents/chemical synthesis , Hydrocarbons, Fluorinated/chemical synthesis , Plant Diseases/prevention & control , Tylenchoidea/drug effects , Amides/pharmacology , Animals , Antinematodal Agents/pharmacology , Dose-Response Relationship, Drug , Drug Design , Humans , Inhibitory Concentration 50 , Kinetics , Pest Control , Plant Diseases/parasitology , Structure-Activity Relationship , Sulfones/pharmacology , Sulfones/standards , Thiazoles/pharmacology , Thiazoles/standards
18.
Sci Rep ; 11(1): 1135, 2021 01 13.
Article En | MEDLINE | ID: mdl-33441821

After hatch, second-stage juveniles (J2) of root-knot (Meloidogyne species) nematodes could spend at least 12 weeks in soil solutions searching for penetration sites of suitable host plants. The external covering of nematodes, the cuticle, consists of various layers that contain glycoproteins, lipids, soluble proteins (collagens) and insoluble proteins (cuticulins). Generally, cucurbitacins are lipophilic, but there is scant information on how cuticular proteins relate to these complex terpenoids. A study was conducted to investigate the nature and extent of damage post-exposure of J2 to a wide range of Nemafric-BL phytonematicide concentrations. Post-72 h exposure to Nemafric-BL phytonematicide, nematode morphometrics versus phytonematicides exhibited either negative quadratic, positive quadratic, or negative linear relations, with the models explained by significant (P < 0.05) associations (R-squared). Similarly, total proteins versus phytonematicide exhibited significant negative quadratic relations. The principal component analysis indicated that concentration level of 2-4% of Nemafric-BL phytonematicide have the highest impact on the morphometric changes of J2. In conclusion, the nature and extent of damage suggested that Nemafric-BL phytonematicide was highly nematicidal as opposed to being nematostatic, thereby explaining its potent suppressive effects on nematode population densities.


Antinematodal Agents/pharmacology , Helminth Proteins/metabolism , Tylenchoidea/drug effects , Animals , Cucurbitacins/metabolism , Humans , Secernentea Infections/drug therapy , Secernentea Infections/parasitology , Tylenchoidea/anatomy & histology , Tylenchoidea/physiology
19.
Molecules ; 27(1)2021 Dec 24.
Article En | MEDLINE | ID: mdl-35011333

Plant-parasitic nematodes cause severe losses to crop production and economies all over the world. Bacillus aryabhattai MCCC 1K02966, a deep-sea bacterium, was obtained from the Southwest Indian Ocean and showed nematicidal and fumigant activities against Meloidogyne incognita in vitro. The nematicidal volatile organic compounds (VOCs) from the fermentation broth of B. aryabhattai MCCC 1K02966 were investigated further using solid-phase microextraction gas chromatography-mass spectrometry. Four VOCs, namely, pentane, 1-butanol, methyl thioacetate, and dimethyl disulfide, were identified in the fermentation broth. Among these VOCs, methyl thioacetate exhibited multiple nematicidal activities, including contact nematicidal, fumigant, and repellent activities against M. incognita. Methyl thioacetate showed a significant contact nematicidal activity with 87.90% mortality at 0.01 mg/mL by 72 h, fumigant activity in mortality 91.10% at 1 mg/mL by 48 h, and repellent activity at 0.01-10 mg/mL. In addition, methyl thioacetate exhibited 80-100% egg-hatching inhibition on the 7th day over the range of 0.5 mg/mL to 5 mg/mL. These results showed that methyl thioacetate from MCCC 1K02966 control M. incognita with multiple nematicidal modes and can be used as a potential biological control agent.


Bacillus/metabolism , Tylenchoidea/drug effects , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology , Animals , Antinematodal Agents/chemistry , Antinematodal Agents/pharmacology , Aquatic Organisms , Fermentation , Gas Chromatography-Mass Spectrometry , Parasitic Sensitivity Tests , Volatile Organic Compounds/analysis , Water Microbiology
20.
J Appl Microbiol ; 130(2): 424-438, 2021 Feb.
Article En | MEDLINE | ID: mdl-32686259

AIMS: To ascertain the effectiveness of Aspergillus niger, Trichoderma harzianum, Pochonia chlamydosporia, Bacillus subtilis and Pseudomonas fluorescens against rice root-knot nematode, Meloidogyne graminicola, and to optimize their application methods. METHODS AND RESULTS: The relative effectiveness of five indigenous biocontrol agents (BCA) against M. graminicola on rice cv. PS-5 was tested initially in pot culture. The BCAs, A. niger, P. chlamydosporia and P. fluorescens proved more effective, and significantly reduced the nematode disease. It is hypothesized that success of a biocontrol module may vary with the BCA and application methods. Hence, the effectiveness of the above three BCAs as well as seven different treatment schemes were evaluated in naturally infested farmer's fields during 2 consecutive years. In nematode-infested plots without any BCA treatments, terminal galls formed on the roots, and plants suffered a 19-31% decrease in the growth and yield. The treatments with P. chlamydosporia or A. niger through root-dip (RD) plus one soil application (SA) at 15 days after planting were found to be highly effective against the nematode. CONCLUSIONS: Relatively greater nematode control was achieved with RD plus two SAs (15 + 30 DAP) but statistically the effect was on par with RD + one SA at 15 DAP. These treatments significantly reduced galling (22-25%), egg mass production (21-29%) and reproduction factor (63-70%) of M. graminicola, and subsequently increased the grain yield (11-21%). SIGNIFICANCE AND IMPACT OF THE STUDY: Application methods enhanced the effectiveness of BCAs against M. graminicola. The RD plus one SA at 15 DAP proved to be most effective treatment to control root-knot disease in rice. Use of multiple treatments (root dip and SA) appears cumbersome, but in view of effectiveness and limitation of chemical control in rice paddies, farmers may adopt the above module that may lead to 11-21% yield improvement.


Oryza/parasitology , Pest Control, Biological/methods , Plant Diseases/prevention & control , Tylenchoidea/drug effects , Animals , Aspergillus niger/physiology , Biological Control Agents/classification , Biological Control Agents/pharmacology , Hypocreales/physiology , Oryza/growth & development , Plant Diseases/parasitology , Plant Roots/growth & development , Plant Roots/parasitology , Reproduction/drug effects , Tylenchoidea/physiology
...