Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 212
1.
Proc Natl Acad Sci U S A ; 121(20): e2310348121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38709922

The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.


Bacterial Proteins , Bartonella , Type IV Secretion Systems , Bartonella/metabolism , Bartonella/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Type IV Secretion Systems/metabolism , Type IV Secretion Systems/genetics , Protein Transport , Animals
2.
mBio ; 15(5): e0075923, 2024 May 08.
Article En | MEDLINE | ID: mdl-38564675

Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.


Genome, Bacterial , Metagenome , Phylogeny , Rickettsia , Rickettsia/genetics , Rickettsia/classification , Evolution, Molecular , Rickettsiales/genetics , Rickettsiales/classification , Genetic Variation , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Gene Transfer, Horizontal , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Commun Biol ; 7(1): 499, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664513

Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.


Conjugation, Genetic , Plasmids , Type IV Secretion Systems , Plasmids/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
4.
PLoS Genet ; 20(3): e1011088, 2024 Mar.
Article En | MEDLINE | ID: mdl-38437248

Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.


F Factor , Type IV Secretion Systems , Type IV Secretion Systems/genetics , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/metabolism , Fimbriae Proteins/genetics , Plasmids/genetics , DNA, Bacterial , Bacterial Proteins/metabolism
5.
EMBO Rep ; 25(3): 1436-1452, 2024 Mar.
Article En | MEDLINE | ID: mdl-38332152

Many bacteria kill rival species by translocating toxic effectors into target cells. Effectors are often encoded along with cognate immunity proteins that could (i) protect against "friendly-fire" (trans-intoxication) from neighboring sister cells and/or (ii) protect against internal cis-intoxication (suicide). Here, we distinguish between these two mechanisms in the case of the bactericidal Xanthomonas citri Type IV Secretion System (X-T4SS). We use a set of X. citri mutants lacking multiple effector/immunity protein (X-Tfe/X-Tfi) pairs to show that X-Tfis are not absolutely required to protect against trans-intoxication by wild-type cells. Our investigation then focused on the in vivo function of the lysozyme-like effector X-TfeXAC2609 and its cognate immunity protein X-TfiXAC2610. In the absence of X-TfiXAC2610, we observe X-TfeXAC2609-dependent and X-T4SS-independent accumulation of damage in the X. citri cell envelope, cell death, and inhibition of biofilm formation. While immunity proteins in other systems have been shown to protect against attacks by sister cells (trans-intoxication), this is an example of an antibacterial secretion system in which the immunity proteins are dedicated to protecting cells against cis-intoxication.


Bacterial Proteins , Xanthomonas , Humans , Bacterial Proteins/metabolism , Xanthomonas/metabolism , Type IV Secretion Systems/metabolism , Anti-Bacterial Agents/metabolism
6.
Can J Microbiol ; 70(4): 119-127, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38176008

Helicobacter pylori resistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in H. pylori is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells. Here, we investigated the genetic variability of the cagPAI among 13 antibiotic-resistant H. pylori strains that were isolated from patient biopsies in Québec. Seven of the clinical strains carried the cagPAI, but only four could be readily cultivated under laboratory conditions. We observed variability of the sequences of CagA and CagL proteins that are encoded by the cagPAI. All clinical isolates induce interleukin-8 secretion and morphological changes upon co-incubation with gastric cancer cells and two of them produce extracellular T4SS pili. Finally, we demonstrate that molecule 1G2, a small molecule inhibitor of the Cagα protein from the model strain H. pylori 26695, reduces interleukin-8 secretion in one of the clinical isolates. Co-incubation with 1G2 also inhibits the assembly of T4SS pili, suggesting a mechanism for its action on T4SS function.


Helicobacter Infections , Helicobacter pylori , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Antigens, Bacterial/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Interleukin-8/metabolism , Helicobacter Infections/microbiology
7.
Front Cell Infect Microbiol ; 13: 1255852, 2023.
Article En | MEDLINE | ID: mdl-38089815

Many pathogens use Type III and Type IV protein secretion systems to secrete virulence factors from the bacterial cytosol into host cells. These systems operate through a one-step mechanism. The secreted substrates (protein or nucleo-protein complexes in the case of Type IV conjugative systems) are guided to the base of the secretion channel, where they are directly delivered into the host cell in an ATP-dependent unfolded state. Despite the numerous disparities between these secretion systems, here we have focused on the structural and functional similarities between both systems. In particular, on the structural similarity shared by one of the main ATPases (EscN and VirD4 in Type III and Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit a structural resemblance to F1-ATPases, which suggests a common mechanism for substrate secretion. The correlation between structure and function of essential components in both systems can provide significant insights into the molecular mechanisms involved. This approach is of great interest in the pursuit of identifying inhibitors that can effectively target these systems.


Bacterial Proteins , Type IV Secretion Systems , Type IV Secretion Systems/metabolism , Bacterial Proteins/metabolism , Bacteria/metabolism , Protein Transport , Adenosine Triphosphatases , Type III Secretion Systems/metabolism
8.
J Microbiol Biotechnol ; 33(12): 1543-1551, 2023 Dec 28.
Article En | MEDLINE | ID: mdl-37528551

The recently published high-resolution R388 T4SS structure provides exciting new details about the complete complex of T4SS, including the components making up the stalk and arches, numerous symmetry mismatches between regions of the complex, and an intriguing interpretation of the closed stalk and radial symmetry of the inner membrane complex, which is related to pilus biogenesis assembly. However, there are a few unidentified densities in the electron microscopy map and portions of the identified component sequences for which the structure is not yet known. It is also unclear how well this minimized DNA-transporting T4SS predicts the structure of other T4SSs, such as expanded systems and those that transport proteins rather than DNA. In this review, we evaluate what can be inferred from the recent high-resolution structure of the R388 T4SS with respect to the Cag and Dot/Icm systems. These systems were selected because, given what is currently known about these systems, we expect them to present most structural differences compared to the R388 T4SS structure. Furthermore, we discuss bacterial physiology and diversity, the T4SS structures and their variations between different bacterial species. These insights may prove beneficial for researchers who elucidate the structure and functions of T4SS in different bacterial species.


DNA , Type IV Secretion Systems , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Biological Transport , Bacterial Proteins/genetics
9.
Infect Immun ; 91(7): e0043622, 2023 07 18.
Article En | MEDLINE | ID: mdl-37338415

The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.


Bacterial Proteins , Type IV Secretion Systems , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Bacterial Proteins/metabolism , Bacteria/genetics , Biological Transport , DNA/metabolism , DNA, Bacterial/metabolism
10.
PLoS Pathog ; 19(5): e1011368, 2023 05.
Article En | MEDLINE | ID: mdl-37155700

The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development.


Helicobacter Infections , Helicobacter pylori , Humans , Bacterial Proteins/metabolism , Antigens, Bacterial/metabolism , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Designed Ankyrin Repeat Proteins , Helicobacter pylori/metabolism , Helicobacter Infections/microbiology
11.
J Proteomics ; 283-284: 104938, 2023 07 15.
Article En | MEDLINE | ID: mdl-37230328

GntR10 is a transcriptional regulator in Brucella. Nuclear factor-kappa B (NF-κB) is involved in many cellular activities, playing major roles in orchestrating the expression of inflammatory genes and regulating protein function that is essential for pathogenic bacteria during infection. GntR10 deletion was previously found to affect the growth and the virulence of Brucella and expression levels of target genes of GntR10 in mice. However, the mechanisms of affection of NF-κB regulated by Brucella GntR10 are still unclear. Here, GntR10 deletion could regulate the expression of LuxR-type transcriptional activators (VjbR and BlxR) of the quorum sensing system (QSS) and type IV secretion system (T4SS) effectors (BspE and BspF) of Brucella. It could further inhibit the activation of the regulator NF-κB and affect the virulence of Brucella. This research provides new insights into the designing of Brucella vaccines and the screening of drug targets. SIGNIFICANCE: Transcriptional regulators are predominant bacterial signal transduction factors. The pathogenicity of Brucella is due to its ability to regulate the expression of virulence related genes including quorum sensing system (QSS) and type IV secretion system (T4SS). Transcriptional regulators are designed to regulate gene expression and enact an appropriate adaptive physiological response. Here, we show that Brucella transcriptional regulator GntR10 regulated the expression of QSS and T4SS effectors, which affected the activation of NF-κB.


Brucella , Mice , Animals , Brucella/metabolism , NF-kappa B/metabolism , Type IV Secretion Systems/metabolism , Quorum Sensing/genetics , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism
12.
Infect Immun ; 91(5): e0013023, 2023 05 16.
Article En | MEDLINE | ID: mdl-37129527

Brucella abortus, the intracellular causative agent of brucellosis, relies on type IV secretion system (T4SS) effector-mediated modulation of host cell functions to establish a replicative niche, the Brucella-containing vacuole (BCV). Brucella exploits the host's endocytic, secretory, and autophagic pathways to modulate the nature and function of its vacuole from an endocytic BCV (eBCV) to an endoplasmic reticulum (ER)-derived replicative BCV (rBCV) to an autophagic egress BCV (aBCV). A role for the host ER-associated degradation pathway (ERAD) in the B. abortus intracellular cycle was recently uncovered, as it is enhanced by the T4SS effector BspL to control the timing of aBCV-mediated egress. Here, we show that the T4SS effector BspA also interferes with ERAD, yet to promote B. abortus intracellular proliferation. BspA was required for B. abortus replication in bone marrow-derived macrophages and interacts with membrane-associated RING-CH-type finger 6 (MARCH6), a host E3 ubiquitin ligase involved in ERAD. Pharmacological inhibition of ERAD and small interfering RNA (siRNA) depletion of MARCH6 did not affect the replication of wild-type B. abortus but rescued the replication defect of a bspA deletion mutant, while depletion of the ERAD component UbxD8 affected replication of B. abortus and rescued the replication defect of the bspA mutant. BspA affected the degradation of ERAD substrates and destabilized the MARCH6 E3 ligase complex. Taken together, these findings indicate that BspA inhibits the host ERAD pathway via targeting of MARCH6 to promote B. abortus intracellular growth. Our data reveal that targeting ERAD components by type IV effectors emerges as a multifaceted theme in Brucella pathogenesis.


Bacterial Proteins , Brucella abortus , Brucellosis , Membrane Proteins , Type IV Secretion Systems , Animals , Mice , Brucella abortus/physiology , Type IV Secretion Systems/metabolism , Brucellosis/microbiology , Mice, Inbred C57BL , Macrophages/microbiology , Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Endoplasmic Reticulum-Associated Degradation , Ubiquitin-Protein Ligases/metabolism , Endoplasmic Reticulum/microbiology
13.
Front Cell Infect Microbiol ; 13: 1146000, 2023.
Article En | MEDLINE | ID: mdl-36949816

Bacterial secretion systems mediate the selective exchange of macromolecules between bacteria and their environment, playing a pivotal role in processes such as horizontal gene transfer or virulence. Among the different families of secretion systems, Type III, IV and VI (T3SS, T4SS and T6SS) share the ability to inject their substrates into human cells, opening up the possibility of using them as customized injectors. For this to happen, it is necessary to understand how substrates are recruited and to be able to engineer secretion signals, so that the transmembrane machineries can recognize and translocate the desired substrates in place of their own. Other factors, such as recruiting proteins, chaperones, and the degree of unfolding required to cross through the secretion channel, may also affect transport. Advances in the knowledge of the secretion mechanism have allowed heterologous substrate engineering to accomplish translocation by T3SS, and to a lesser extent, T4SS and T6SS into human cells. In the case of T4SS, transport of nucleoprotein complexes adds a bonus to its biotechnological potential. Here, we review the current knowledge on substrate recognition by these secretion systems, the many examples of heterologous substrate translocation by engineering of secretion signals, and the current and future biotechnological and biomedical applications derived from this approach.


Bacteria , Bacterial Secretion Systems , Humans , Bacterial Secretion Systems/genetics , Bacteria/metabolism , Virulence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Type IV Secretion Systems/metabolism
14.
mSphere ; 8(1): e0051722, 2023 02 21.
Article En | MEDLINE | ID: mdl-36622251

In the marine environment, surface-associated bacteria often produce an array of antimicrobial secondary metabolites, which have predominantly been perceived as competition molecules. However, they may also affect other hallmarks of surface-associated living, such as motility and biofilm formation. Here, we investigate the ecological significance of an antibiotic secondary metabolite, tropodithietic acid (TDA), in the producing bacterium, Phaeobacter piscinae S26. We constructed a markerless in-frame deletion mutant deficient in TDA biosynthesis, S26ΔtdaB. Molecular networking demonstrated that other chemical sulfur-containing features, likely related to TDA, were also altered in the secondary metabolome. We found several changes in the physiology of the TDA-deficient mutant, ΔtdaB, compared to the wild type. Growth of the two strains was similar; however, ΔtdaB cells were shorter and more motile. Transcriptome and proteome profiling revealed an increase in gene expression and protein abundance related to a type IV secretion system, and to a prophage, and a gene transfer agent in ΔtdaB. All these systems may contribute to horizontal gene transfer (HGT), which may facilitate adaptation to novel niches. We speculate that once a TDA-producing population has been established in a new niche, the accumulation of TDA acts as a signal of successful colonization, prompting a switch to a sessile lifestyle. This would lead to a decrease in motility and the rate of HGT, while filamentous cells could form the base of a biofilm. In addition, the antibiotic properties of TDA may inhibit invading competing microorganisms. This points to a role of TDA in coordinating colonization and adaptation. IMPORTANCE Despite the broad clinical usage of microbial secondary metabolites with antibiotic activity, little is known about their role in natural microbiomes. Here, we studied the effect of production of the antibiotic tropodithietic acid (TDA) on the producing strain, Phaeobacter piscinae S26, a member of the Roseobacter group. We show that TDA affects several phenotypes of the producing strain, including motility, cell morphology, metal metabolism, and three horizontal gene transfer systems: a prophage, a type IV secretion system, and a gene transfer agent. Together, this indicates that TDA participates in coordinating the colonization process of the producer. TDA is thus an example of a multifunctional secondary metabolite that can mediate complex interactions in microbial communities. This work broadens our understanding of the ecological role that secondary metabolites have in microbial community dynamics.


Rhodobacteraceae , Type IV Secretion Systems , Type IV Secretion Systems/metabolism , Rhodobacteraceae/genetics , Anti-Bacterial Agents/metabolism
15.
Nat Commun ; 14(1): 479, 2023 01 30.
Article En | MEDLINE | ID: mdl-36717564

The transport of the CagA effector into gastric epithelial cells by the Cag Type IV secretion system (Cag T4SS) of Helicobacter pylori (H. pylori) is critical for pathogenesis. CagA is recruited to Cag T4SS by the Cagß ATPase. CagZ, a unique protein in H. pylori, regulates Cagß-mediated CagA transport, but the underlying mechanisms remain unclear. Here we report the crystal structure of the cytosolic region of Cagß, showing a typical ring-like hexameric assembly. The central channel of the ring is narrow, suggesting that CagA must unfold for transport through the channel. Our structure of CagZ in complex with the all-alpha domain (AAD) of Cagß shows that CagZ adopts an overall U-shape and tightly embraces Cagß. This binding mode of CagZ is incompatible with the formation of the Cagß hexamer essential for the ATPase activity. CagZ therefore inhibits Cagß by trapping it in the monomeric state. Based on these findings, we propose a refined model for the transport of CagA by Cagß.


Adenosine Triphosphatases , Bacterial Proteins , Helicobacter pylori , Adenosine Triphosphatases/metabolism , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Helicobacter pylori/metabolism , Type IV Secretion Systems/metabolism
16.
Cell Rep ; 41(6): 111609, 2022 11 08.
Article En | MEDLINE | ID: mdl-36351400

Bacterial type IV secretion systems (T4SSs) are the specific devices that mediate the dissemination of antibiotic resistant genes via horizontal gene transfer (HGT). Multi-drug-resistant Enterococcus faecalis (E. faecalis) represents a clinical public health threat because of its transferable plasmid with a functional plasmid-encoded (PE)-T4SS. Here, we report a chromosome-encoded (CE)-T4SS that exists in 40% of E. faecalis isolates. Compared with the PE-T4SS, CE-T4SS displays distinct characteristics in protein architecture and is capable of mediating large and genome-wide gene transfer in an imprecise manner. Reciprocal exchange of CE-T4SS- or PE-T4SS-associated origin of transfer (oriT) could disrupt HGT function, indicating that CE-T4SS is an independent system compared with PE-T4SS. Taken together, the CE-T4SS sheds light on the knowledge of HGT in gram-positive bacteria and triggers us to explore more evolutionary mechanisms in E. faecalis.


Enterococcus faecalis , Gene Transfer, Horizontal , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , Gene Transfer, Horizontal/genetics , Plasmids/genetics , Type IV Secretion Systems/metabolism , Chromosomes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
17.
Infect Immun ; 90(10): e0041022, 2022 10 20.
Article En | MEDLINE | ID: mdl-36190257

Coxiella burnetii is an obligate intracellular bacterial pathogen that has evolved a unique biphasic developmental cycle. The infectious form of C. burnetii is the dormant small cell variant (SCV), which transitions to a metabolically active large cell variant (LCV) that replicates inside the lysosome-derived host vacuole. A Dot/Icm type IV secretion system (T4SS), which can deliver over 100 effector proteins to host cells, is essential for the biogenesis of the vacuole and intracellular replication. How the distinct C. burnetii life cycle impacts the assembly and function of the Dot/Icm T4SS has remained unknown. Here, we combine advanced cryo-focused ion beam (cryo-FIB) milling and cryo-electron tomography (cryo-ET) imaging to visualize all developmental transitions and the assembly of the Dot/Icm T4SS in situ. Importantly, assembled Dot/Icm machines were not present in the infectious SCV. The appearance of the assembled Dot/Icm machine correlated with the transition of the SCV to the LCV intracellularly. Furthermore, temporal characterization of C. burnetii morphological changes revealed regions of the inner membrane that invaginate to form tightly packed stacks during the LCV-to-SCV transition at late stages of infection, which may enable the SCV-to-LCV transition that occurs upon infection of a new host cell. Overall, these data establish how C. burnetii developmental transitions control critical bacterial processes to promote intracellular replication and transmission.


Coxiella burnetii , Coxiella burnetii/metabolism , Type IV Secretion Systems/metabolism , Bacterial Proteins/metabolism , Vacuoles/microbiology , Lysosomes/metabolism , Host-Pathogen Interactions
18.
J Immunol ; 209(3): 488-497, 2022 08 01.
Article En | MEDLINE | ID: mdl-35840160

Mammalian GTPase-activating proteins (GAPs) can inhibit innate immunity signaling in a spatiotemporal fashion; however, the role of bacterial GAPs in mediating innate immunity remains unknown. In this study, we show that BspI, a Brucella type IV secretion system (T4SS) effector protein, containing a GAP domain at the C terminus, negatively regulates proinflammatory responses and host protection to Brucella abotus infection in a mouse model. In macrophages, BspI inhibits the activation of inositol-requiring enzyme 1 (IRE1) kinase, but it does not inhibit activation of ATF6 and PERK. BspI suppresses induction of proinflammatory cytokines via inhibiting the activity of IRE1 kinase caused by VceC, a type IV secretion system effector protein that localizes to the endoplasmic reticulum. Ectopically expressed BspI interacts with IRE1 in HeLa cells. The inhibitory function of BspI depends on its GAP domain but not on interaction with small GTPase Ras-associated binding protein 1B (RAB1B). Collectively, these data support a model where BspI, in a GAP domain-dependent manner, inhibits activation of IRE1 to prevent proinflammatory cytokine responses.


Brucellosis , Type IV Secretion Systems , Animals , Brucella abortus , Brucellosis/metabolism , Cytokines/metabolism , HeLa Cells , Humans , Inflammation , Mammals/metabolism , Mice , Protein Serine-Threonine Kinases/genetics , Type IV Secretion Systems/metabolism
19.
Front Cell Infect Microbiol ; 12: 867689, 2022.
Article En | MEDLINE | ID: mdl-35755850

HIF1α is an important transcription factor regulating not only cellular responses to hypoxia, but also anti-infective defense responses. We recently showed that HIF1α hampers replication of the obligate intracellular pathogen Coxiella burnetii which causes the zoonotic disease Q fever. Prior to development of chronic Q fever, it is assumed that the bacteria enter a persistent state. As HIF1α and/or hypoxia might be involved in the induction of C. burnetii persistence, we analyzed the role of HIF1α and hypoxia in the interaction of macrophages with C. burnetii to understand how the bacteria manipulate HIF1α stability and activity. We demonstrate that a C. burnetii-infection initially induces HIF1α stabilization, which decreases then over the course of an infection. This reduction depends on bacterial viability and a functional type IV secretion system (T4SS). While neither the responsible T4SS effector protein(s) nor the molecular mechanism leading to this partial HIF1α destabilization have been identified, our results demonstrate that C. burnetii influences the expression of HIF1α target genes in multiple ways. Therefore, a C. burnetii infection promotes HIF1α-mediated upregulation of several metabolic target genes; affects apoptosis-regulators towards a more pro-apoptotic signature; and under hypoxic conditions, shifts the ratio of the inflammatory genes analyzed towards a pro-inflammatory profile. Taken together, C. burnetii modulates HIF1α in a still elusive manner and alters the expression of multiple HIF1α target genes.


Coxiella burnetii , Q Fever , Coxiella burnetii/metabolism , Gene Expression , Host-Pathogen Interactions , Humans , Hypoxia , Q Fever/microbiology , Type IV Secretion Systems/metabolism
20.
Nature ; 607(7917): 191-196, 2022 07.
Article En | MEDLINE | ID: mdl-35732732

Bacterial conjugation is the fundamental process of unidirectional transfer of DNAs, often plasmid DNAs, from a donor cell to a recipient cell1. It is the primary means by which antibiotic resistance genes spread among bacterial populations2,3. In Gram-negative bacteria, conjugation is mediated by a large transport apparatus-the conjugative type IV secretion system (T4SS)-produced by the donor cell and embedded in both its outer and inner membranes. The T4SS also elaborates a long extracellular filament-the conjugative pilus-that is essential for DNA transfer4,5. Here we present a high-resolution cryo-electron microscopy (cryo-EM) structure of a 2.8 megadalton T4SS complex composed of 92 polypeptides representing 8 of the 10 essential T4SS components involved in pilus biogenesis. We added the two remaining components to the structural model using co-evolution analysis of protein interfaces, to enable the reconstitution of the entire system including the pilus. This structure describes the exceptionally large protein-protein interaction network required to assemble the many components that constitute a T4SS and provides insights on the unique mechanism by which they elaborate pili.


Bacterial Proteins , Cryoelectron Microscopy , Type IV Secretion Systems , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Conjugation, Genetic , DNA/genetics , Evolution, Molecular , Fimbriae, Bacterial/metabolism , Plasmids/genetics , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/metabolism , Type IV Secretion Systems/ultrastructure
...