Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.552
Filtrar
1.
Sci Rep ; 14(1): 15564, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971897

RESUMEN

Aortic dissection (AD) is a life-threatening condition with a high mortality rate and without effective pharmacological therapies. Our previous study illustrated that leukocyte immunoglobulin-like receptor B4 (LILRB4) knockdown promoted the contractile phenotypic switch and apoptosis of AD cells. This study aimed to further investigate the role of LILRB4 in animal models of AD and elucidate its underlying molecular mechanisms. Animal models of AD were established using 0.1% beta-aminopropionitrile and angiotensin II and an in vitro model was developed using platelet-derived growth factor BB (PDGF-BB). The effects of LILRB4 knockdown on histopathological changes, pyroptosis, phenotype transition, extracellular matrix (ECM), and Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathways were assessed using a series of in vivo and in vitro assays. The effects of the JAK2 inhibitor AG490 on AD cell function, phenotypic transition, and ECM were explored. LILRB4 was highly expressed in AD and its knockdown increased survival rate, reduced AD incidence, and alleviated histopathological changes in the AD mouse model. Furthermore, LILRB4 knockdown promoted contractile phenotype switch, stabilized the ECM, and inhibited pyroptosis. Mechanistically, LILRB4 knockdown inhibited the JAK2/STAT3 signaling pathway. JAK2 inhibitor AG490 inhibited cell viability and migration, enhanced apoptosis, induced G0/G1 cell cycle arrest, and suppressed S-phase progression in PDGF-BB-stimulated human aortic smooth muscle cells. LILRB4 knockdown suppresses AD development by inhibiting pyroptosis and the JAK2/STAT3 signaling pathway.


Asunto(s)
Disección Aórtica , Modelos Animales de Enfermedad , Janus Quinasa 2 , Piroptosis , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Disección Aórtica/metabolismo , Disección Aórtica/patología , Disección Aórtica/genética , Técnicas de Silenciamiento del Gen , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Ratones Endogámicos C57BL , Piroptosis/genética , Factor de Transcripción STAT3/metabolismo , Tirfostinos/farmacología
2.
Sci Rep ; 14(1): 13430, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862696

RESUMEN

Previous studies have shown that scutellarin inhibits the excessive activation of microglia, reduces neuronal apoptosis, and exerts neuroprotective effects. However, whether scutellarin regulates activated microglia-mediated neuronal apoptosis and its mechanisms remains unclear. This study aimed to investigate whether scutellarin can attenuate PC12 cell apoptosis induced by activated microglia via the JAK2/STAT3 signalling pathway. Microglia were cultured in oxygen-glucose deprivation (OGD) medium, which acted as a conditioning medium (CM) to activate PC12 cells, to investigate the expression of apoptosis and JAK2/STAT3 signalling-related proteins. We observed that PC12 cells apoptosis in CM was significantly increased, the expression and fluorescence intensity of the pro-apoptotic protein Bax and apoptosis-related protein cleaved caspase-3 were increased, and expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) was decreased. Phosphorylation levels and fluorescence intensity of the JAK2/STAT3 signalling pathway-related proteins JAK2 and STAT3 decreased. After treatment with scutellarin, PC12 cells apoptosis as well as cleaved caspase-3 and Bax protein expression and fluorescence intensity decreased. The expression and fluorescence intensity of Bcl-2, phosphorylated JAK2, and STAT3 increased. AG490, a specific inhibitor of the JAK2/STAT3 signalling pathway, was used. Our findings suggest that AG490 attenuates the effects of scutellarin. Our study revealed that scutellarin inhibited OGD-activated microglia-mediated PC12 cells apoptosis which was regulated via the JAK2/STAT3 signalling pathway.


Asunto(s)
Apigenina , Apoptosis , Glucuronatos , Janus Quinasa 2 , Microglía , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Apigenina/farmacología , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Glucuronatos/farmacología , Células PC12 , Apoptosis/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Ratones , Caspasa 3/metabolismo , Glucosa/metabolismo , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , Tirfostinos/farmacología
3.
Neuroscience ; 552: 65-75, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38885894

RESUMEN

Multiple sclerosis (MS) is an autoimmune inflammatory condition affecting the central nervous system, and experimental autoimmune encephalomyelitis (EAE) animal models have been extensively used to study it. T-helper 17 cells, which produce interleukin-17(IL-17), play crucial roles in MS pathogenesis, and the JAK2/STAT3 pathway has an essential function in their differentiation from naive CD4 + T cells. This study investigated the effects of the JAK2/STAT3 pathway inhibitor AG490 on EAE in vivo and in vitro, as well as the underlying mechanisms. AG490 ameliorated EAE severity and attenuated its typical symptoms by downregulating proteins associated with the JAK2/STAT3 pathway. Furthermore, it decreased T-helper 17 cell differentiation from naive CD4 + T cells by inactivating STAT3. In addition, it conferred protective effects against EAE by restoring autophagy. These findings indicate the potential of AG490 as a candidate anti-MS therapeutic.


Asunto(s)
Autofagia , Encefalomielitis Autoinmune Experimental , Janus Quinasa 2 , Ratones Endogámicos C57BL , Factor de Transcripción STAT3 , Transducción de Señal , Células Th17 , Tirfostinos , Animales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Factor de Transcripción STAT3/metabolismo , Tirfostinos/farmacología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Janus Quinasa 2/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Femenino , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Diferenciación Celular/efectos de los fármacos , Ratones
4.
Am J Hypertens ; 37(9): 682-691, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38782571

RESUMEN

BACKGROUND: In the hypothalamic paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHRs), the expression of the testis-specific protein, Y-encoded-like 2 (TSPYL2) and the phosphorylation level of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) are higher comparing with the normotensive Wistar Kyoto rats (WKY). But how they are involved in hypertension remains unclear. TSPYL2 may interact with JAK2/STAT3 in PVN to sustain high blood pressure during hypertension. METHODS: Knockdown of TSPYL2 via adeno-associated virus (AAV) carrying shRNA was conducted through bilateral microinjection into the PVN of SHR and WKY rats. JAK2/STAT3 inhibition was achieved by intraperitoneally or PVN injection of AG490 into the SHRs. Blood pressure (BP), plasma norepinephrine (NE), PVN inflammatory response, and PVN oxidative stress were measured. RESULTS: TSPYL2 knock-down in the PVN of SHRs but not WKYs led to reduced BP and plasma NE, deactivation of JAK2/STAT3, decreased expression of pro-inflammatory cytokine IL-1ß, and increased expression of anti-inflammatory cytokine IL-10 in the PVN. Meanwhile, AG490 administrated in both ways reduced the BP in the SHRs and deactivated JAK2/STAT3 but failed to change the expression of TSPYL2 in PVN. AG490 also downregulated expression of IL-1ß and upregulated expression of IL-10. Both knockdown of TSPYL2 and inhibition of JAK2/STAT3 can reduce the oxidative stress in the PVN of SHRs. CONCLUSION: JAK2/STAT3 is regulated by TSPYL2 in the PVN of SHRs, and PVN TSPYL2/JAK2/STAT3 is essential for maintaining high BP in hypertensive rats, making it a potential therapeutic target for hypertension.


Asunto(s)
Presión Sanguínea , Hipertensión , Janus Quinasa 2 , Núcleo Hipotalámico Paraventricular , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Masculino , Ratas , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Hipertensión/fisiopatología , Janus Quinasa 2/metabolismo , Norepinefrina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/enzimología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Fosforilación , Factor de Transcripción STAT3/metabolismo , Tirfostinos/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
Brain Res ; 1838: 148976, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705557

RESUMEN

Central poststroke pain (CPSP) is a type of central neuropathic pain whose mechanisms remain unknown. Recently, we showed that activated astrocytes and microglial cells are present in the spinal cord of CPSP model mice. Activated glial cells exacerbate cerebral ischemic pathology by increasing the expression of inflammatory factors. However, the involvement of spinal glial cells in CPSP remains unknown. We hypothesized that spinal glial cell-derived molecules cause hyperexcitability or promoted the development of CPSP. In this study, we identified glial cell-derived factors involved in the development of CPSP using a bilateral common carotid occlusion (BCAO)-induced CPSP mouse model. Male ddY mice were subjected to BCAO for 30 min. The von Frey test assessed mechanical hypersensitivity in the right hind paw of mice. BCAO mice showed hypersensitivity to mechanical stimuli and astrocyte activation in the spinal cord 3 days after treatment. DNA microarray analysis revealed a significant increase in lipocalin 2 (LCN2), is known as neutrophil gelatinase-associated lipocalin, in the superficial dorsal horns of BCAO-induced CPSP model mice. LCN2 colocalized with GFAP, an astrocyte marker. Spinal GFAP-positive cells in BCAO mice co-expressed signal transducer and activator of transcription 3 (STAT3). The increase in the fluorescence intensity of LCN2 and GFAP in BCAO mice was suppressed by intrathecal injection of AG490, an inhibitor of JAK2 and downstream STAT3 activation, or anti-LCN2 antibody. Our findings indicated that LCN2 in spinal astrocytes may be a key molecule and may be partly involved in the development of CPSP.


Asunto(s)
Astrocitos , Modelos Animales de Enfermedad , Lipocalina 2 , Médula Espinal , Accidente Cerebrovascular , Animales , Masculino , Lipocalina 2/metabolismo , Ratones , Médula Espinal/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/complicaciones , Astrocitos/metabolismo , Factor de Transcripción STAT3/metabolismo , Neuralgia/metabolismo , Neuralgia/etiología , Janus Quinasa 2/metabolismo , Tirfostinos/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo
6.
J Neuropathol Exp Neurol ; 83(7): 615-625, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38804899

RESUMEN

Breviscapine (Bre), an extract from Erigeron breviscapus, has been widely used to treat cerebral ischemia but the mechanisms of its neuroprotective effects need to be clarified. The present study investigated whether Bre could alleviate excessive autophagy induced by cerebral ischemia in the rat middle cerebral artery occlusion (MCAO) ischemia model via activating the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5)/B-cell lymphoma 2 (BCL2) pathway. Rats were randomly divided into 5 groups, i.e. Sham group, MCAO+saline group, MCAO+Bre group, MCAO+DMSO (Dimethyl sulfoxide) group, and MCAO+Bre+AG490 (Tyrphostin AG490, the inhibitor of STAT5) group. The model was established and neuroprotection was evaluated by determining infarct volumes and conducting neurological behavioral tests. Autophagy levels in the infarct penumbra were detected using transmission electron microscopy and Western blotting. The expression of proteins in the JAK2/STAT5/BCL2 pathway was tested by Western blotting. Compared to the MCAO+saline group, the infarct volumes in the MCAO+Bre group were significantly reduced and neurological behavior improved. Breviscapine administration also significantly increased p-JAK2, p-STAT5, and BCL2 expression but decreased autolysosome numbers; it also downregulated Beclin-1 expression and the LC3II/LCI ratio. The JAK2 inhibitor AG490 reversed these effects. These findings indicate that breviscapine can improve neural recovery following ischemia through alleviating excessive autophagy and activation of the JAK2/STAT5/BCL2 axis.


Asunto(s)
Autofagia , Modelos Animales de Enfermedad , Flavonoides , Janus Quinasa 2 , Proteínas Proto-Oncogénicas c-bcl-2 , Ratas Sprague-Dawley , Factor de Transcripción STAT5 , Transducción de Señal , Animales , Janus Quinasa 2/metabolismo , Flavonoides/farmacología , Masculino , Ratas , Autofagia/efectos de los fármacos , Autofagia/fisiología , Factor de Transcripción STAT5/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Ataque Isquémico Transitorio/tratamiento farmacológico , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/metabolismo , Fármacos Neuroprotectores/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Tirfostinos
7.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 258-262, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814206

RESUMEN

In recent years, bladder carcinoma (BC) has shown an increasing incidence, with poor patient outcomes. In clinical practice, BC is still mainly treated by surgery combined with chemoradiotherapy. However, as chemotherapy resistance of tumor cells becomes more and more obvious, it is urgent to find more effective BC treatment regimes. With the increasing application and growing attention paid to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in various neoplastic diseases, EGFR-TKIs have been considered as a new treatment direction in the future. In this study, the research team used AG1478, an EGFR-TKI, to intervene with the BC cell line T24. It was found that the cell activity was statistically decreased, the apoptosis was enhanced, and the cells were dominantly arrested in the G0/G1 phase, confirming the future therapeutic potential of EGFR-TKIs in BC. Besides, the research team further observed that AG1478 also promoted pyroptosis in T24 cells, and its mechanism is related to the induction of mitochondrial oxidative stress damage. The findings lay a more reliable foundation for the future application of EGFR-TKIs in BC.


Asunto(s)
Apoptosis , Puntos de Control del Ciclo Celular , Receptores ErbB , Mitocondrias , Inhibidores de Proteínas Quinasas , Quinazolinas , Tirfostinos , Neoplasias de la Vejiga Urinaria , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Tirfostinos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Piroptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
8.
Exp Neurol ; 377: 114780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38649091

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease characterized by dopaminergic neuron death and neuroinflammation. Emerging evidence points to the involvement of the transient receptor potential melastatin 2 (TRPM2) channel in neuron death and glial activation in several neurodegenerative diseases. However, the involvement of TRPM2 in PD and specifically its relation to the neuroinflammation aspect of the disease remains poorly understood. Here, we hypothesized that AG490, a TRPM2 inhibitor, can be used as a treatment in a mouse model of PD. Mice underwent stereotaxic surgery for 6-hydroxydopamine (6-OHDA) administration in the right striatum. Motor behavioral tests (apomorphine, cylinder, and rotarod) were performed on day 3 post-injection to confirm the PD model induction. AG490 was then daily injected i.p. between days 3 to 6 after surgery. On day 6, motor behavior was assessed again. Substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry, immunoblotting, and RT-qPCR analysis on day 7. Our results revealed that AG490 post-treatment reduced motor behavior impairment and nigrostriatal neurodegeneration. In addition, the compound prevented TRPM2 upregulation and changes of the Akt/GSK-3ß/caspase-3 signaling pathway. The TRPM2 inhibition also avoids the glial morphology changes observed in the PD group. Remarkably, the morphometrical analysis revealed that the ameboid-shaped microglia, found in 6-OHDA-injected animals, were no longer present in the AG490-treated group. These results indicate that AG490 treatment can reduce dopaminergic neuronal death and suppress neuroinflammation in a PD mouse model. Inhibition of TRPM2 by AG490 could then represent a potential therapeutical strategy to be evaluated for PD treatment.


Asunto(s)
Ratones Endogámicos C57BL , Neuroglía , Canales Catiónicos TRPM , Tirfostinos , Animales , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Ratones , Masculino , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Tirfostinos/farmacología , Tirfostinos/uso terapéutico , Progresión de la Enfermedad , Oxidopamina/toxicidad , Modelos Animales de Enfermedad , Degeneración Nerviosa/patología , Degeneración Nerviosa/tratamiento farmacológico , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/prevención & control , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Sustancia Negra/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico
9.
Mol Pharm ; 21(5): 2176-2186, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38625027

RESUMEN

The blood-brain barrier (BBB) is instrumental in clearing toxic metabolites from the brain, such as amyloid-ß (Aß) peptides, and in delivering essential nutrients to the brain, like insulin. In Alzheimer's disease (AD) brain, increased Aß levels are paralleled by decreased insulin levels, which are accompanied by insulin signaling deficits at the BBB. Thus, we investigated the impact of insulin-like growth factor and insulin receptor (IGF1R and IR) signaling on Aß and insulin trafficking at the BBB. Following intravenous infusion of an IGF1R/IR kinase inhibitor (AG1024) in wild-type mice, the BBB trafficking of 125I radiolabeled Aß peptides and insulin was assessed by dynamic SPECT/CT imaging. The brain efflux of [125I]iodo-Aß42 decreased upon AG1024 treatment. Additionally, the brain influx of [125I]iodoinsulin, [125I]iodo-Aß42, [125I]iodo-Aß40, and [125I]iodo-BSA (BBB integrity marker) was decreased, increased, unchanged, and unchanged, respectively, upon AG1024 treatment. Subsequent mechanistic studies were performed using an in vitro BBB cell model. The cell uptake of [125I]iodoinsulin, [125I]iodo-Aß42, and [125I]iodo-Aß40 was decreased, increased, and unchanged, respectively, upon AG1024 treatment. Further, AG1024 reduced the phosphorylation of insulin signaling kinases (Akt and Erk) and the membrane expression of Aß and insulin trafficking receptors (LRP-1 and IR-ß). These findings reveal that insulin signaling differentially regulates the BBB trafficking of Aß peptides and insulin. Moreover, deficits in IGF1R and IR signaling, as observed in the brains of type II diabetes and AD patients, are expected to increase Aß accumulation while decreasing insulin delivery to the brain, which has been linked to the progression of cognitive decline in AD.


Asunto(s)
Péptidos beta-Amiloides , Barrera Hematoencefálica , Insulina , Transducción de Señal , Animales , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Insulina/metabolismo , Radioisótopos de Yodo , Ratones Endogámicos C57BL , Fragmentos de Péptidos/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Tirfostinos/farmacología
10.
CNS Neurosci Ther ; 30(3): e14679, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38528842

RESUMEN

AIMS: Intracerebral hemorrhage (ICH) is a disease with high rates of disability and mortality. The role of epidermal growth factor receptor 1 (ERBB1) in ICH was elucidated in this study. METHODS: ICH model was constructed by injecting autologous arterial blood into the right basal ganglia. The protein level of ERBB1 was detected by western blot analysis. To up- and downregulation of ERBB1 in rats, intraventricular injection of a lentivirus overexpression vector of ERBB1 and AG1478 (a specific inhibitor of ERBB1) was used. The cell apoptosis, neuronal loss, and pro-inflammatory cytokines were assessed by TUNEL, Nissl staining, and ELISA. Meanwhile, behavioral cognitive impairment of ICH rats was evaluated after ERBB1-targeted interventions. RESULTS: ERBB1 increased significantly in brain tissue of ICH rats. Overexpression of ERBB1 remarkably reduced cell apoptosis and neuronal loss induced by ICH, as well as pro-inflammatory cytokines and oxidative stress. Meanwhile, the behavioral and cognitive impairment of ICH rats were alleviated after upregulation of ERBB1; however, the secondary brain injury (SBI) was aggravated by AG1478 treatment. Furthermore, the upregulation of PLC-γ and PKC in ICH rats was reversed by AG1478 treatment. CONCLUSIONS: ERBB1 can improve SBI and has a neuroprotective effect in experimental ICH rats via PLC-γ/PKC pathway.


Asunto(s)
Lesiones Encefálicas , Hemorragia Cerebral , Receptores ErbB , Quinazolinas , Animales , Ratas , Apoptosis , Lesiones Encefálicas/metabolismo , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/metabolismo , Citocinas/metabolismo , Fosfolipasa C gamma/metabolismo , Ratas Sprague-Dawley , Tirfostinos , Receptores ErbB/metabolismo , Proteína Quinasa C/metabolismo
11.
Phytomedicine ; 128: 155319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518637

RESUMEN

BACKGROUND: Myocardial infarction (MI) is one of the most deadly diseases in the world. Hyperoside (Hyp) has been shown to have a protective effect on cardiovascular function through various signaling pathways, but whether it can protect myocardial infarction by regulating JAK2/STAT3 signaling pathway is unknown. AIM OF THE STUDY: To investigate whether Hyp could protect the heart against myocardial infarction injury in mice by modulating JAK2/STAT3 signaling pathway and its potential mechanism. METHODS: In vivo experiments, the myocardial infarction model was established by ligating the left anterior descending coronary artery (LAD) of male C57BL/6 mice permanently. The mice were divided into seven groups: sham group, MI group, MI+Hyp (9 mg/kg), MI+Hyp (18 mg/kg) group, MI+Hyp (36 mg/kg) group, MI+Captopril group (15 mg/kg) group and MI+Hyp (36 mg/kg)+AG490 (7.5 mg/kg) group. Each group of animals were given different concentrations of hyperoside, positive control drug or inhibitor of JAK2/STAT3 singaling. After 14 days of administration, the electrocardiogram (ECG), echocardiography and serum myocardial injury markers were examined; Slices of mouse myocardial tissue were assessed for histopathological changes by HE, Masson and Sirius Red staining. TTC and TUNEL staining were used to evaluate the myocardial infarction area and cardiomyocytes apoptosis respectively. The expression of JAK2/STAT3 signaling pathway, apoptosis and autophagy-related proteins were detected by western blot. In vitro experiments, rat H9c2 cardiomyocytes were deprived of oxygen and glucose (OGD) to stimulate myocardial ischemia. The experiment was divided into seven groups: Control group, OGD group, OGD+Hyp (20 µM) group, OGD+Hyp (40 µM) group, OGD+Hyp (80 µM), OGD+Captopril (10 µM) group and OGD+Hyp (80 µM)+AG490 (100 µM) group. Myocardial cell damage and redox index were measured 12 h after OGD treatment. ROS content in cardiomyocytes was detected by immunofluorescence. Cardiomyocytes apoptosis was detected by flow cytometry. The expressions of JAK2/STAT3 signaling pathway-related proteins, apoptosis and autophagy related proteins were detected by western blot. RESULTS: In vivo, hyperoside could ameolirate ECG abnormality, increase cardiac function, reduce myocardial infarction size and significantly reduce myocardial fibrosis level and oxidation level. The experimental results in vitro showed that Hyp could reduce the ROS content in cardiomyocytes, decrease the level of oxidative stress and counteract the apoptosis induced by OGD injury . Both in vivo and in vitro experiments showed that hyperoside could increase phosphorylated JAK2 and STAT3, indicating that hyperoside could play a cardioprotective role by activating JAK2/STAT3 signaling pathway. It was also shown that hyperoside could increase the autophagy level of cardiomyocytes in vivo and in vitro. However the cardiomyocyte-protective effect of Hyp was abolished in combination with JAK2/ STAT3 signaling pathway inhibitor AG490. These results indicated that the protective effect of Hyp on cardiomyocyte injury was at least partially achieved through the activation of the JAK2/STAT3 signaling pathway. CONCLUSION: Hyp can significantly improve cardiac function, ameliorate myocardial hypertrophy and myocardial remodeling in MI mice. The mechanism may be related to improving mitochondrial autophagy of cardiomyocytes to maintain the advantage of autophagy, and blocking apoptosis pathway through phagocytosis, thus suppressing apoptosis level of cardiomyocytes. These effects of Hyp are achieved, at least in part, by activating the JAK2/STAT3 signaling pathway.


Asunto(s)
Janus Quinasa 2 , Ratones Endogámicos C57BL , Infarto del Miocardio , Miocitos Cardíacos , Quercetina , Quercetina/análogos & derivados , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Masculino , Miocitos Cardíacos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Quercetina/farmacología , Ratones , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Ratas , Tirfostinos/farmacología , Especies Reactivas de Oxígeno/metabolismo
12.
Biochem Pharmacol ; 221: 116040, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38311257

RESUMEN

Paclitaxel is widely used to treat cancer, however, drug resistance limits its clinical utility. STAT3 is constitutively activated in some cancers, and contributes to chemotherapy resistance. Currently, several STAT3 inhibitors including WP1066 are used in cancer clinical trials. However, whether WP1066 reverses paclitaxel resistance and the mechanismremains unknown. Here, we report that in contrast to paclitaxel-sensitive parental cells, the expressions of several pro-survival BCL2 family members such as BCL-2, BCL-XL and MCL-1 are higher in paclitaxel-resistant ovarian cancer cells. Meanwhile, STAT3 is constitutively activated while stathmin loses its activity in paclitaxel-resistant cells. Importantly, WP1066 amplifies the inhibition of cell proliferation, colony-forming ability and apoptosis of ovarian cancer cells induced by paclitaxel. Mechanistically, WP1066, on the one hand, interferes the STAT3/Stathmin interaction, causing unleash of STAT3/Stathmin from microtubule, thus destroying microtubule stability. This process results in reduction of Ac-α-tubulin, further causing MCL-1 reduction. On the other hand, WP1066 inhibits phosphorylation of STAT3 by JAK2, and blocks its nuclear translocation, therefore repressing the transcription of pro-survival targets such as BCL-2, BCL-XL and MCL-1. Finally, the two pathways jointly promote cell death. Our findings reveal a new mechanism wherein WP1066 reverses paclitaxel-resistance of ovarian cancer cells by dually inhibiting STAT3 activity and STAT3/Stathmin interaction, which may layfoundation for WP1066 combined with paclitaxel in treating paclitaxel-resistant ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Paclitaxel , Piridinas , Tirfostinos , Humanos , Femenino , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Estatmina/metabolismo , Transducción de Señal , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor de Transcripción STAT3/metabolismo
13.
Eur J Pharmacol ; 967: 176389, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38311282

RESUMEN

Vasoconstriction induced by levobupivacaine, a local anesthetic, is mediated by increased levels of calcium, tyrosine kinase, c-Jun NH2-terminal kinase (JNK), and phospholipase D, which are associated with prolonged local anesthesia. Epidermal growth factor receptor (EGFR) phosphorylation is associated with vasoconstriction. However, its role in levobupivacaine-induced contractions remains unknown. We determined whether EGFR phosphorylation is associated with levobupivacaine-induced contractions in isolated rat thoracic aortas and identified the underlying cellular signaling pathways. The effects of various inhibitors and a calcium-free solution alone or in combination on levobupivacaine-induced contractions were then assessed. Furthermore, we examined the effects of various inhibitors on levobupivacaine-induced EGFR and JNK phosphorylation and calcium levels in vascular smooth muscle cells (VSMCs) of rat aortas. The EGFR tyrosine kinase inhibitor AG1478, matrix metalloproteinase (MMP) inhibitor GM6001, Src kinase inhibitors PP1 and PP2, and JNK inhibitor SP600125 attenuated levobupivacaine-induced contractions. Moreover, although the calcium-free solution abolished levobupivacaine-induced contractions, calcium reversed this inhibitory effect. The magnitude of the calcium-mediated reversal of abolished levobupivacaine-induced contractions was lower in the combination treatment with calcium-free solution and AG1478 than in the treatment with calcium-free solution alone. Levobupivacaine induced EGFR and JNK phosphorylation. However, AG1478, GM6001, and PP2 attenuated levobupivacaine-induced EGFR and JNK phosphorylation. Moreover, although levobupivacaine induced JNK phosphorylation in control siRNA-transfected VSMCs, EGFR siRNA inhibited levobupivacaine-induced JNK phosphorylation. Furthermore, AG1478 inhibited levobupivacaine-induced calcium increases in VSMCs. Collectively, these findings suggest that levobupivacaine-induced EGFR phosphorylation, which may occur via the Src kinase-MMP pathway, contributes to vasoconstriction via JNK phosphorylation and increased calcium levels.


Asunto(s)
Calcio , Receptores ErbB , Quinazolinas , Tirfostinos , Animales , Ratas , Aorta Torácica , Calcio/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Levobupivacaína/farmacología , Fosforilación , ARN Interferente Pequeño/metabolismo , Familia-src Quinasas/metabolismo
14.
Ecotoxicol Environ Saf ; 272: 116069, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340601

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP), a common endocrine-disrupting chemical (EDC), is widely used in daily articles, early exposure to DEHP is associated with many behavioral changes in pups. This study aimed to investigate the effects and underlying mechanisms of maternal exposure to DEHP on the impaired social interaction in pups. Pregnant rats were administered 0, 30, 300, or 750 mg/kg/d DEHP daily by oral gavage. Highly aggressive proliferating immortalized (HAPI) cells were treated with mono-(2-ethylhexyl) phthalate (MEHP) and tyrosine phosphorylation inhibitor (AG490). Our results showed that DEHP exposure induced the activation of microglias (MGs) via activating the janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway, and increased the level of pro-inflammatory factors, then impaired the social behavior in male pups, but not female pups. Moreover, MEHP exposure could also activate HAPI via activating this signaling pathway, and AG490 could inhibit the activation of this signaling pathway caused by MEHP. Therefore, we indicated that maternal exposure to DEHP could cause the gender-specific impaired social interaction in pups that might be related to the activation of MGs.


Asunto(s)
Dietilhexil Ftalato , Dietilhexil Ftalato/análogos & derivados , Ácidos Ftálicos , Tirfostinos , Humanos , Embarazo , Femenino , Masculino , Ratas , Animales , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , Exposición Materna/efectos adversos , Microglía/metabolismo , Interacción Social
15.
Artículo en Inglés | MEDLINE | ID: mdl-38242426

RESUMEN

The core clinical characteristics of autism, which is a neurodevelopmental disease, involve repetitive behavior and impaired social interactions. Studies have shown that the Notch and Neuregulin1 (NRG1) signaling pathways are abnormally activated in autism, but the mechanism by which these two signaling pathways interact to contribute to the progression of autism has not been determined. Our results suggest that the levels of Notch1, Hes1, NRG1, and phosphorylated ErbB4 in the cerebellum (CB), hippocampus (HC), and prefrontal cortex (PFC) were increased in rats with valproic acid (VPA)-induced autism compared to those in the Con group. However, 3, 5-difluorophenyl-L-alanyl-L-2-phenylglycine tert-butyl (DAPT), which is a Notch pathway inhibitor, ameliorated autism-like behavioral abnormalities and decreased the protein levels of NRG1 and phosphorylated ErbB4 in rats with VPA-induced autism; these results demonstrated that the Notch1/Hes1 pathway could participate in the pathogenesis of autism by regulating the NRG1/ErbB4 signaling pathway. Studies have shown that the Notch pathway regulates microglial differentiation and activation during the onset of neurological disorders and that microglia affect autism-like behavior via synaptic pruning. Therefore, we hypothesized that the Notch1/Hes1 pathway could regulate the NRG1/ErbB4 pathway and thus participate in the development of autism by regulating microglial functions. The present study showed that AG1478, which is an ErbB4 inhibitor, ameliorated the autism-like behaviors in a VPA-induced autism rat model, reduced abnormal microglial activation, and decreased NRG1 and Iba-1 colocalization; however, AG1478 did not alter Notch1/Hes1 activity. These results demonstrated that Notch1/Hes1 may participate in the microglial activation in autism by regulating NRG1/ErbB4, revealing a new mechanism underlying the pathogenesis of autism.


Asunto(s)
Trastorno Autístico , Quinazolinas , Tirfostinos , Animales , Ratas , Trastorno Autístico/inducido químicamente , Neurregulina-1 , Microglía , Ácido Valproico , Factor de Transcripción HES-1 , Receptor Notch1
16.
Cell Mol Neurobiol ; 44(1): 17, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285192

RESUMEN

Exercise can promote adult neurogenesis and improve symptoms associated with schizophrenia and other mental disorders via parvalbumin (PV)-positive GABAergic interneurons in the dentate gyrus ErbB4 is the receptor of neurotrophic factor neuregulin 1, expressed mostly in PV-positive interneurons. Whether ErbB4 in PV-positive neurons mediates the beneficial effect of exercise and adult neurogenesis on mental disorder needs to be further investigation. Here, we first conducted a four-week study on the effects of AG1478, an ErbB4 inhibitor, on memory and neurogenesis. AG1478 significantly impaired the performance in several memory tasks, including the T-maze, Morris water maze, and contextual fear conditioning, downregulated the expression of total ErbB4 (T-ErbB4) and the ratio of phosphate-ErbB4 (p-ErbB4) to T-ErbB4, and associated with neurogenesis impairment. Interestingly, AG1478 also appeared to decrease intracellular calcium levels in PV neurons, which could be reversed by exercise. These results suggest exercise may regulate adult neurogenesis and PV neuron activity through ErbB4 signaling. Overall, these findings provide further evidence of the importance of exercise for neurogenesis and suggest that targeting ErbB4 may be a promising strategy for improving memory and other cognitive functions in individuals with mental disorders.


Asunto(s)
Actividad Motora , Neurogénesis , Parvalbúminas , Tirfostinos , Adulto , Humanos , Neuronas , Quinazolinas
17.
J Biomol Struct Dyn ; 42(3): 1455-1468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37114656

RESUMEN

Viral infections cause significant health problems all over the world, and it is critical to develop treatments for these problems. Antivirals that target viral genome-encoded proteins frequently cause the virus to become more resistant to treatment. Because viruses rely on several cellular proteins and phosphorylation processes that are essential to their life cycle, drugs targeting host-based targets could be a viable treatment option. To reduce costs and improve efficiency, existing kinase inhibitors could be repurposed as antiviral medications; however, this method rarely works, and specific biophysical approaches are required in the field. Because of the widespread use of FDA-approved kinase inhibitors, it is now possible to better understand how host kinases contribute to viral infection. The purpose of this article is to investigate the tyrphostin AG879 (Tyrosine kinase inhibitor) binding information in Bovine Serum Albumin (BSA), human ErbB2 (HER2), C-RAF1 Kinase (c-RAF), SARS-CoV-2 main protease (COVID 19), and Angiotensin-converting enzyme 2 (ACE-2).Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Humanos , Tirfostinos , SARS-CoV-2 , Albúmina Sérica Bovina , Enzima Convertidora de Angiotensina 2 , Antivirales/farmacología , Antivirales/uso terapéutico , Inhibidores de Proteasas
18.
Invest New Drugs ; 41(6): 791-801, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870738

RESUMEN

Because of a reduced sensitivity of BRAF-mutant colorectal cancers to BRAF inhibitor treatment when compared with BRAF-mutant melanoma, it is essential to develop efficient drugs to cope with this disease. The new 2-(4-bromophenyl)-3-arylacrylonitrile compound Briva was prepared in one step from commercially available starting compounds. Briva and two known thiophene analogs (Thio-Iva and Thio-Dam) were tested for their cytotoxic activity against various tumor cell lines including colorectal and breast cancer cells. The antitumor activities of the test compounds were assessed in vitro via the MTT assay, DAPI staining of nuclei, RT-PCR and immunoblotting, wound healing, clonogenic assay, collagen I adhesion assay, and kinase inhibition assays. A selective activity of Briva was observed against BRAFV600E-mutant HT-29 and COLO-201 colorectal carcinoma (CRC) cells. Briva caused inhibition of HT-29 clonogenic tumor growth and was found to induce cytotoxicity by activating the intrinsic apoptosis pathway. In addition, Briva reduced HT-29 cell adhesion and migration. Kinase inhibition experiments revealed that Briva inhibits VEGFR2. Thus, Briva can be considered as a promising antitumor compound against BRAFV600E-mutant colon carcinoma by targeting VEGFR2 tyrosine kinase and consequently reducing cell adhesion and metastasis formation.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Proteínas Proto-Oncogénicas B-raf , Tirfostinos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Mutación , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular
19.
Virology ; 588: 109900, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832343

RESUMEN

Chikungunya virus (CHIKV) is a globally public health threat. There are currently no medications available to treat CHIKV infection. High-throughput screening of 419 kinase inhibitors was performed based on the cytopathic effect method, and six kinase inhibitors with reduced cytopathic effects, including tyrphostin AG879 (AG879), tyrphostin 9 (A9), sorafenib, sorafenib tosylate, regorafenib, and TAK-632, were identified. The anti-CHIKV activities of two receptor tyrosine kinase inhibitors, AG879 and A9, that have not been previously reported, were selected for further evaluation. The results indicated that 50% cytotoxic concentration (CC50) of AG879 and A9 in Vero cells were greater than 30 µM and 6.50 µM, respectively and 50% effective concentration (EC50) were 0.84 µM and 0.36 µM, respectively. The time-of-addition and time-of-removal assays illustrated that both AG879 and A9 function in the middle stage of CHIKV life cycle. Further, AG879 and A9 do not affect viral attachment; however, they inhibit viral RNA replication, and exhibit antiviral activity against CHIKV Eastern/Central/South African and Asian strains, Ross River virus and Sindbis virus in vitro.


Asunto(s)
Antineoplásicos , Fiebre Chikungunya , Virus Chikungunya , Animales , Chlorocebus aethiops , Humanos , Virus Chikungunya/genética , Células Vero , Tirfostinos/farmacología , Tirfostinos/uso terapéutico , Línea Celular , Antivirales/farmacología , Antivirales/uso terapéutico , Replicación Viral , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología
20.
Vet Res Commun ; 47(3): 1177-1184, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37436554

RESUMEN

Intestinal infection with C. perfringens is responsible for outbreaks of diarrhea in piglets. Janus kinase / signal transducer and activator of transcription (JAK/STAT) is a vital signaling pathway that regulates cellular activity and inflammatory response, closely correlated with multiple diseases development and advances. Currently, the potential effect of JAK/STAT on C. perfringens beta2 (CPB2) treatment on porcine intestinal epithelial (IPEC-J2) cells has not been explored. The expression of JAK/STAT genes or proteins in IPEC-J2 cells induced by CPB2 were observed by qRT-PCR and Western blot, and further used WP1066 to explore the effect of JAK2/STAT3 on mechanism employed by CPB2 on apoptosis, cytotoxicity, oxidative stress and inflammatory cytokines of IPEC-J2 cells. JAK2, JAK3, STAT1, STAT3, STAT5A and STAT6 were highly expressed in CPB2-induced IPEC-J2 cells, among which STAT3 had the highest expression. Moreover, apoptosis, cytotoxicity and oxidative stress were attenuated via blocking the activation of JAK2/STAT3 by using WP1066 in CPB2-treated IPEC-J2 cells. Furthermore, WP1066 significantly suppressed the secretion of interleukin (IL)-6, IL-1ß and TNF-α induced by CPB2 in IPEC-J2 cells.Our findings provide some insights into the functional roles of JAK2/STAT3 in piglets against to C. perfringens infection.


Asunto(s)
Infecciones por Clostridium , Clostridium perfringens , Transducción de Señal , Enfermedades de los Porcinos , Clostridium perfringens/fisiología , Quinasas Janus/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular , Intestinos/citología , Intestinos/metabolismo , Animales , Porcinos , Perfilación de la Expresión Génica , Piridinas/farmacología , Tirfostinos/farmacología , Toxinas Bacterianas/toxicidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Western Blotting , Infecciones por Clostridium/metabolismo , Infecciones por Clostridium/patología , Infecciones por Clostridium/veterinaria , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA