Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacokinet Pharmacodyn ; 48(1): 149-163, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33090299

RESUMEN

Bispecific protein degraders (BPDs) engage the ubiquitin-proteasome system (UPS) to catalytically degrade intracellular proteins through the formation of ternary complexes with the target protein and E3 ubiquitin ligases. Here, we describe the development of a mechanistic modeling framework for BPDs that includes the reaction network governing ternary complex formation and degradation via the UPS. A critical element of the model framework is a multi-step process that results in a time delay between ternary complex formation and protein degradation, thereby balancing ternary complex stability against UPS degradation rates akin to the kinetic proofreading concept that has been proposed to explain the accuracy and specificity of biological processes including protein translation and T cell receptor signal transduction. Kinetic proofreading likely plays a central role in the cell's ability to regulate substrate recognition and degradation by the UPS, and the model presented here applies this concept in the context of a quantitative pharmacokinetic (PK)-pharmacodynamic (PD) framework to inform the design of potent and selective BPDs.


Asunto(s)
Diseño de Fármacos , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Proteolisis/efectos de los fármacos , Ubiquitina/agonistas , Simulación por Computador , Humanos , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
FEBS J ; 288(7): 2143-2165, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32867007

RESUMEN

Ubiquitination plays an essential role in signal transduction to regulate most if not all cellular processes. Among the enzymes that are involved in the ubiquitin (Ub) signaling cascade, tremendous efforts have been focused on elucidating the roles of E3 Ub ligases as they determine the complexity and specificity of ubiquitination. Not surprisingly, the malfunction of E3 ligases is directly implicated in many human diseases, including cancer. Therefore, there is an urgent need to develop potent and specific molecules to modulate E3 ligase activity as intracellular probes for target validation and as pharmacological agents in preclinical research. Unfortunately, the progress has been hampered by the dynamic regulation mechanisms for different types of E3 ligases. Here, we summarize the progress of using protein engineering to develop Ub variant (UbV) inhibitors for all major families of E3 ligases and UbV activators for homologous with E6-associated protein C terminus E3s and homodimeric RING E3s. We believe that this provides a general strategy and a valuable toolkit for the research community to inhibit or activate E3 ligases and these synthetic molecules have important implications in exploring protein degradation for drug discovery.


Asunto(s)
Inhibidores Enzimáticos/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina/genética , Ubiquitinación/efectos de los fármacos , Humanos , Transducción de Señal/genética , Ubiquitina/agonistas , Ubiquitina/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitinación/genética
3.
Cells ; 8(6)2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31181665

RESUMEN

Halophila stipulacea is a well-known invasive marine sea grass in the Mediterranean Sea. Having been introduced into the Mediterranean Sea via the Suez Channel, it is considered a Lessepsian migrant. Although, unlike other invasive marine seaweeds, it has not demonstrated serious negative impacts on indigenous species, it does have remarkable invasive properties. The present in-silico study reveals the biotechnological features of H. stipulacea by showing bioactive peptides from its rubisc/o protein. These are features such as antioxidant and hypolipideamic activities, dipeptidyl peptidase-IV and angiotensin converting enzyme inhibitions. The reported data open up new applications for such bioactive peptides in the field of pharmacy, medicine and also the food industry.


Asunto(s)
Hydrocharitaceae/metabolismo , Péptidos/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Hidrólisis , Inmunomodulación , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Péptidos/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ubiquitina/agonistas , Ubiquitina/metabolismo
4.
J Pept Sci ; 22(3): 174-80, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26856691

RESUMEN

Non-detergent sulfobetaines (NDSBs) are a new group of small, synthetic protein stabilizers, which have advantages over classical compatible osmolytes, such as polyol, amines, and amino acids: they do not increase solution viscosity, unlike polyols, and they are zwitterionic at all pH ranges, unlike amines and amino acids. NDSBs also facilitate the crystallization and refolding of proteins. The mechanism whereby NDSBs exhibit such activities, however, remains elusive. To gain insight into this mechanism, we studied, using nuclear magnetic resonance (NMR), the effects of dimethylethylammonium propane sulfonate (NDSB-195) on the dynamics of ubiquitin, on which a wealth of information has been accumulated. By analyzing the line width of amide proton resonances and the transverse relaxation rates of nitrogen atoms, we found that NDSB-195 enhances the microsecond-millisecond dynamics of a ß4 -α2 loop of ubiquitin. Although those compounds that enhance protein dynamics are generally considered to destabilize protein molecules, NDSB-195 enhanced the stability of ubiquitin against guanidium chloride denaturation. Thus, the simultaneous enhancement of stability and flexibility by a single compound can be attained.


Asunto(s)
Betaína/análogos & derivados , Protones , Ubiquitina/química , Betaína/química , Guanidina/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Desnaturalización Proteica , Estructura Secundaria de Proteína , Soluciones , Ubiquitina/agonistas , Ubiquitina/antagonistas & inhibidores
5.
Biochem Biophys Res Commun ; 430(2): 616-22, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23219816

RESUMEN

Zerumbone, a sesquiterpene present in Zingiber zerumbet Smith, has been implicated as a promising chemopreventive agent. Interestingly, a number of studies have revealed that its potent bioactivities are dependent on the electrophilic moiety of its α,ß-unsaturated carbonyl group, while our recent findings showed its chemical potential for binding to cellular proteins through a Michael reaction. In the present study, modifications of proteins by zerumbone led to their insolubilization in vitro. In living cell models, zerumbone induced ubiquitination and aggregation of cellular proteins, which demonstrated its substantial proteo-toxicity. On the other hand, it was also revealed that zerumbone possesses potential for activating intracellular proteolysis mechanisms of the ubiquitin-proteasome system and autophagy. Furthermore, it up-regulated expressions of pro-autophagic genes including p62, which is known as a cargo receptor of aggrephagy, the selective autophagic process for protein aggregates. Pretreatment of Hepa1c1c7 cells with zerumbone conferred a phenotype resistant to cytotoxicity and protein modifications by 4-hydroxy-2-nonenal, an endogenous lipid peroxidation product, in a p62-dependent manner. Together, these results suggest that protein modifications by zerumbone cause mild proteo-stress, thereby activating intracellular proteolysis machineries to maintain protein homeostasis. We consider these effects on proteolysis mechanisms to be hormesis, which provides beneficial functions through mild biological stresses.


Asunto(s)
Autofagia/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Sesquiterpenos/farmacología , Ubiquitina/agonistas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Proteínas de Choque Térmico/metabolismo , Ratones , Proteína Sequestosoma-1 , Ubiquitinación/efectos de los fármacos
6.
J Leukoc Biol ; 89(2): 205-19, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20689098

RESUMEN

Ubiquitin is a post-translational protein modifier and plays essential roles in all aspects of biology. Although the discovery of ubiquitin introduced this highly conserved protein as a molecule with extracellular actions, the identification of ubiquitin as the ATP-dependent proteolysis factor 1 has focused subsequent research on its important intracellular functions. Little attention has since been paid to its role outside of the cell. During recent years, multiple observations suggest that extracellular ubiquitin can modulate immune responses and that exogenous ubiquitin has therapeutic potential to attenuate exuberant inflammation and organ injury. These observations have not been integrated into a comprehensive assessment of its possible role as an endogenous immune modulator. This review recapitulates the current knowledge about extracellular ubiquitin and discusses an emerging facet of its role in biology during infectious and noninfectious inflammation. The synopsis of these data along with the recent identification of ubiquitin as a CXCR4 agonist suggest that extracellular ubiquitin may have pleiotropic roles in the immune system and functions as an endogenous opponent of DAMPs. Functions of extracellular ubiquitin could constitute an evolutionary conserved control mechanism aimed to balance the immune response and prevent exuberant inflammation. Further characterization of its mechanism of action and cellular signaling pathways is expected to provide novel insights into the regulation of the innate immune response and opportunities for therapeutic interventions.


Asunto(s)
Líquido Extracelular/inmunología , Líquido Extracelular/microbiología , Inmunomodulación/inmunología , Receptores de Reconocimiento de Patrones/fisiología , Ubiquitina/fisiología , Animales , Líquido Extracelular/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/prevención & control , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/fisiología , Ubiquitina/agonistas
7.
Neurobiol Dis ; 25(2): 331-41, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17157513

RESUMEN

The ubiquitin-proteasome system (UPS) is involved in the pathogenetic mechanisms of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Dorfin is a ubiquitin ligase (E3) that degrades mutant SOD1 proteins, which are responsible for familial ALS. Although Dorfin has potential as an anti-ALS molecule, its life in cells is short. To improve its stability and enhance its E3 activity, we developed chimeric proteins containing the substrate-binding hydrophobic portion of Dorfin and the U-box domain of the carboxyl terminus of Hsc70-interacting protein (CHIP), which has strong E3 activity through the U-box domain. All the Dorfin-CHIP chimeric proteins were more stable in cells than was wild-type Dorfin (Dorfin(WT)). One of the Dorfin-CHIP chimeric proteins, Dorfin-CHIP(L), ubiquitylated mutant SOD1 more effectively than did Dorfin(WT) and CHIP in vivo, and degraded mutant SOD1 protein more rapidly than Dorfin(WT) does. Furthermore, Dorfin-CHIP(L) rescued neuronal cells from mutant SOD1-associated toxicity and reduced the aggresome formation induced by mutant SOD1 more effectively than did Dorfin(WT).


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Superóxido Dismutasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/farmacología , Humanos , Ratones , Mutación/genética , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Neurotoxinas/antagonistas & inhibidores , Neurotoxinas/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Superóxido Dismutasa/genética , Superóxido Dismutasa/toxicidad , Superóxido Dismutasa-1 , Ubiquitina/agonistas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/farmacología
8.
Free Radic Biol Med ; 40(12): 2112-25, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16785025

RESUMEN

Recently, a role for NF-kappaB in upregulation of proteolytic systems and protein degradation has emerged. Reactive nitrogen species (RNS) have been demonstrated to induce NF-kappaB activation. The aim of this study was to investigate whether RNS caused increased proteolysis in skeletal muscle cells, and whether this process was mediated through the activation of NF-kappaB. Fully differentiated L6 myotubes were treated with NO donor SNAP, peroxynitrite donor SIN-1, and authentic peroxynitrite, in a time-dependent manner. NF-kappaB activation, the activation of the ubiquitin-proteasome pathway and matrix metalloproteinases, and the levels of muscle-specific proteins (myosin heavy chain and telethonin) were investigated under the conditions of nitrosative stress. RNS donors caused NF-kappaB activation and increased activation of proteolytic systems, as well as the degradation of muscle-specific proteins. Antioxidant treatment, tyrosine nitration inhibition, and NF-kappaB molecular inhibition were proven effective in downregulation of NF-kappaB activation and slowing down the degradation of muscle-specific proteins. Peroxynitrite, but not NO, causes proteolytic system activation and the degradation of muscle-specific proteins in cultured myotubes, mediated through NF-kappaB. NF-kappaB inhibition by antioxidants, tyrosine nitration, and molecular inhibitors may be beneficial for decreasing the extent of muscle damage induced by RNS.


Asunto(s)
Proteínas Musculares/metabolismo , Cadenas Pesadas de Miosina/metabolismo , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Animales , Antioxidantes/farmacología , Células Cultivadas , Metaloendopeptidasas/metabolismo , Molsidomina/análogos & derivados , Molsidomina/farmacología , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , FN-kappa B/agonistas , Donantes de Óxido Nítrico/farmacología , Penicilamina/análogos & derivados , Penicilamina/farmacología , Ácido Peroxinitroso/farmacología , Complejo de la Endopetidasa Proteasomal/farmacología , Ratas , Tirosina/metabolismo , Ubiquitina/agonistas
9.
Neurosci Lett ; 380(3): 229-33, 2005 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15862891

RESUMEN

Our prior work demonstrated that geldanamycin (GA) reduced injury due to oxygen-glucose deprivation (OGD) in primary astrocyte cultures. Using medium with an ionic composition similar to that observed during in vivo global ischemia, the selectivity and temporal profile of CA1 neuronal damage seen in vivo was mimicked with OGD in mouse hippocampal organotypic slice cultures. The present study tested the ability of GA to reduce delayed neuronal death in such cultures. Treating organotypic cultures with 100 nM GA for 24 h prior to OGD induced Hsp70 and significantly reduced CA1 neuronal damage. Staining with ubiquitin to identify protein aggregates revealed reduced redistribution of ubiquitin, consistent with reduced protein aggregation likely due at least in part to induction of Hsp70 by GA.


Asunto(s)
Hipocampo/efectos de los fármacos , Hipoxia-Isquemia Encefálica/metabolismo , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores/farmacología , Quinonas/farmacología , Animales , Benzoquinonas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Inhibidores Enzimáticos/farmacología , Glucosa/deficiencia , Proteínas HSP70 de Choque Térmico/agonistas , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia-Isquemia Encefálica/patología , Lactamas Macrocíclicas , Ratones , Modelos Biológicos , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Técnicas de Cultivo de Órganos , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Factores de Tiempo , Resultado del Tratamiento , Ubiquitina/agonistas , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA