Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Biochem Biophys Res Commun ; 594: 131-138, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081502

RESUMEN

Diabetic nephropathy (DN) is one of the most common causes for end-stage renal disease without effective therapies available. NLR family, pyrin domain-containing 3 (NLRP3) inflammasome possesses a fundamental effect to facilitate the pathogenesis of DN. Unfortunately, how NLRP3 inflammasome is mediated still remains largely unclear. In the present study, an E3 ubiquitin ligase Speckle-type BTB-POZ protein (Spop) was identified as a suppressor of NLRP3 inflammasome. We first showed that Spop expression was extensively down-regulated in kidney of DN patients, which was confirmed in kidney of streptozotocin (STZ)-challenged mice and in high glucose (HG)-stimulated podocytes. Intriguingly, we showed that conditional knockout (cKO) of Spop in podocytes considerably accelerated renal dysfunction and pathological changes in the glomerulus of STZ-induced mice with DN, along with severe podocyte injury. Furthermore, Spop specific ablation in podocytes dramatically facilitated inflammatory response in glomeruli of DN mice via enhancing NLRP3 inflammasome and nuclear factor κB (NF-κB) signaling pathways, which were confirmed in HG-cultured podocytes. Notably, our findings indicated that Spop directly interacted with NLRP3. More importantly, Spop promoted NLRP3 degradation via elevating K48-linked polyubiquitination of NLRP3. Collectively, our findings disclosed a mechanisms through which Spop limited NLRP3 inflammasome under HG condition, and illustrated that Spop may be a novel therapeutic target to suppress NLRP3 inflammasome, contributing to the DN management.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Animales , Glucemia/metabolismo , Regulación hacia Abajo , Células HEK293 , Humanos , Inflamación , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas Nucleares/metabolismo , Podocitos/metabolismo , Transducción de Señal , Estreptozocina , Ubiquitina/química , Ubiquitina-Proteína Ligasas/química
2.
Clin Cancer Res ; 27(17): 4898-4909, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34168048

RESUMEN

PURPOSE: Despite significant benefit for other cancer subtypes, immune checkpoint blockade (ICB) therapy has not yet been shown to significantly improve outcomes for men with castration-resistant prostate cancer (CRPC). Prior data have shown that DNA damage response (DDR) deficiency, via genetic alteration and/or pharmacologic induction using DDR inhibitors (DDRi), may improve ICB response in solid tumors in part due to induction of mitotic catastrophe and innate immune activation. Discerning the underlying mechanisms of this DDRi-ICB interaction in a prostate cancer-specific manner is vital to guide novel clinical trials and provide durable clinical responses for men with CRPC. EXPERIMENTAL DESIGN: We treated prostate cancer cell lines with potent, specific inhibitors of ATR kinase, as well as with PARP inhibitor, olaparib. We performed analyses of cGAS-STING and DDR signaling in treated cells, and treated a syngeneic androgen-indifferent, prostate cancer model with combined ATR inhibition and anti-programmed death ligand 1 (anti-PD-L1), and performed single-cell RNA sequencing analysis in treated tumors. RESULTS: ATR inhibitor (ATRi; BAY1895433) directly repressed ATR-CHK1 signaling, activated CDK1-SPOP axis, leading to destabilization of PD-L1 protein. These effects of ATRi are distinct from those of olaparib, and resulted in a cGAS-STING-initiated, IFN-ß-mediated, autocrine, apoptotic response in CRPC. The combination of ATRi with anti-PD-L1 therapy resulted in robust innate immune activation and a synergistic, T-cell-dependent therapeutic response in our syngeneic mouse model. CONCLUSIONS: This work provides a molecular mechanistic rationale for combining ATR-targeted agents with immune checkpoint blockade for patients with CRPC. Multiple early-phase clinical trials of this combination are underway.


Asunto(s)
Proteína Quinasa CDC2/fisiología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Represoras/fisiología , Transducción de Señal , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Masculino , Ratones
3.
J Am Chem Soc ; 143(13): 5141-5149, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33783207

RESUMEN

Ligand-induced protein degradation has emerged as a compelling approach to promote the targeted elimination of proteins from cells by directing these proteins to the ubiquitin-proteasome machinery. So far, only a limited number of E3 ligases have been found to support ligand-induced protein degradation, reflecting a dearth of E3-binding compounds for proteolysis-targeting chimera (PROTAC) design. Here, we describe a functional screening strategy performed with a focused library of candidate electrophilic PROTACs to discover bifunctional compounds that degrade proteins in human cells by covalently engaging E3 ligases. Mechanistic studies revealed that the electrophilic PROTACs act through modifying specific cysteines in DCAF11, a poorly characterized E3 ligase substrate adaptor. We further show that DCAF11-directed electrophilic PROTACs can degrade multiple endogenous proteins, including FBKP12 and the androgen receptor, in human prostate cancer cells. Our findings designate DCAF11 as an E3 ligase capable of supporting ligand-induced protein degradation via electrophilic PROTACs.


Asunto(s)
Complejos de Ubiquitina-Proteína Ligasa/fisiología , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Receptores Androgénicos/metabolismo , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443148

RESUMEN

Macroautophagy/autophagy is a highly conserved eukaryotic molecular process that facilitates the recycling of superfluous cytoplasmic materials, damaged organelles, and invading pathogens, resulting in proper cellular homeostasis and survival during stress conditions. Autophagy is stringently regulated at multiple stages, including control at transcriptional, translational, and posttranslational levels. In this work, we identified a mechanism by which regulation of autophagy is achieved through the posttranslational modification of Atg9. Here, we show that, in order to limit autophagy to a low, basal level during normal conditions, Atg9 is ubiquitinated and subsequently targeted for degradation in a proteasome-dependent manner through the action of the E3 ligase Met30. When cells require increased autophagy flux to respond to nutrient deprivation, the proteolysis of Atg9 is significantly reduced. Overall, this work reveals an additional layer of mechanistic regulation that allows cells to further maintain appropriate levels of autophagy and to rapidly induce this process in response to stress.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Proteínas F-Box/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/fisiología , Regulación hacia Abajo , Proteínas F-Box/fisiología , Lisosomas/metabolismo , Proteínas de la Membrana/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Autophagy ; 17(7): 1684-1699, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32543267

RESUMEN

Macroautophagy/autophagy is a membrane-mediated intracellular degradation pathway, through which bulky cytoplasmic content is digested in lysosomes. How the autophagy initiation and maturation steps are regulated is not clear. In this study, we found an E3 ubiquitin ligase complex, linear ubiquitin chain assembly complex (LUBAC) and a deubiquitinating enzyme (DUB) OTULIN localize to the phagophore area to control autophagy initiation and maturation. LUBAC key component RNF31/HOIP translocates to the LC3 puncta area when autophagy is induced. RNF31 knockdown inhibits autophagy initiation, and cells are more sensitive to bacterial infection. OTULIN knockdown, however, promotes autophagy initiation but blocks autophagy maturation. In OTULIN knockdown cells, excessive ubiquitinated ATG13 protein was recruited to the phagophore for prolonged expansion, and therefore inhibits autophagosome maturation. Together, our study provides evidence that LUBAC and OTULIN cooperatively regulate autophagy initiation and autophagosome maturation by mediating the linear ubiquitination and the stabilization of ATG13.Abbreviations: ATG: autophagy-related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CQ: chloroquine; CUL1-FBXL20: cullin 1-F-box and leucine rich repeat protein 20; CUL3-KLHL20: cullin 3-kelch like family member 20; CUL4-AMBRA1: cullin 4-autophagy and beclin 1 regulator 1; CYLD: CYLD lysine 63 deubiquitinase; DAPI: 4',6-diamidino-2-phenylindole; DUB: deubiquitinating enzyme; EBSS: Earle's Balanced Salt Solution; GFP: green fluorescent protein; GST: glutathione S-transferase; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; LUBAC: linear ubiquitin chain assembly complex; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3B; MIM: MIT-interacting motif; mRFP: monomeric red fluorescent protein; NEDD4: NEDD4 E3 ubiquitin protein ligase; NFKB: NF-kappaB complex; OPTN: optineurin; OTULIN: OTU deubiquitinase with linear linkage specificity; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns: phosphatidylinositol; PtdIns3K: class III phosphatidylinositol 3-kinase complex; PtdIns3P: phosphatidylinositol 3-phosphate; RBCK1/HOIL1: RANBP2-type and C3HC4-type zinc finger containing 1; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RIPK1: receptor interacting serine/threonine kinase 1; RNF216: ring finger protein 216; RNF31/HOIP: ring finger protein 31; RT-PCR: reverse transcriptase polymerase chain reaction; S. Typhimurium: Salmonella enterica serovar Typhimurium; SHARPIN: SHANK associated RH domain interactor; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING: stimulator of interferon response cGAMP interactor 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; TNF/TNF-alpha: tumor necrosis factor; TNFAIP3/A20: TNF alpha induced protein 3; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; UBAN: ubiquitin binding in TNIP/ABIN and IKBKG/NEMO proteins; ULK1/2: unc-51 like autophagy activating kinase 1/2; USP: ubiquitin specific peptidase; UVRAG: UV radiation resistance associated; VCPIP1: valosin containing protein interacting protein 1; WIPI2: WD repeat domain, phosphoinositide interacting protein 2; ZBTB16-CUL3-RBX1: zinc finger and BTB domain containing protein 16-cullin 3-ring-box 1; ZRANB1: zinc finger RANBP2-type containing 1.


Asunto(s)
Autofagia , Endopeptidasas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Endopeptidasas/fisiología , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Microscopía Fluorescente , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitinación
6.
Biomolecules ; 10(6)2020 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-32545869

RESUMEN

Recognition of danger signals by a cell initiates a powerful cascade of events generally leading to inflammation. Inflammatory caspases and several other proteases become activated and subsequently cleave their target proinflammatory mediators. The irreversible nature of this process implies that the newly generated proinflammatory fragments need to be sequestered, inhibited, or degraded in order to cancel the proinflammatory program or prevent chronic inflammation. The Arg/N-degron pathway is a ubiquitin-dependent proteolytic pathway that specifically degrades protein fragments bearing N-degrons, or destabilizing residues, which are recognized by the E3 ligases of the pathway. Here, we report that the Arg/N-degron pathway selectively degrades a number of proinflammatory fragments, including some activated inflammatory caspases, contributing in tuning inflammatory processes. Partial ablation of the Arg/N-degron pathway greatly increases IL-1ß secretion, indicating the importance of this ubiquitous pathway in the initiation and resolution of inflammation. Thus, we propose a model wherein the Arg/N-degron pathway participates in the control of inflammation in two ways: in the generation of inflammatory signals by the degradation of inhibitory anti-inflammatory domains and as an "off switch" for inflammatory responses through the selective degradation of proinflammatory fragments.


Asunto(s)
Caspasas/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Redes y Vías Metabólicas/fisiología , Proteolisis , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Retroalimentación Fisiológica/fisiología , Inflamación/patología , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitinación/fisiología
7.
Hepatology ; 70(5): 1674-1689, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31070797

RESUMEN

During biliary disease, cholangiocytes become activated by various pathological stimuli, including transforming growth factor ß (TGF-ß). The result is an epigenetically regulated transcriptional program leading to a pro-fibrogenic microenvironment, activation of hepatic stellate cells (HSCs), and progression of biliary fibrosis. This study evaluated how TGF-ß signaling intersects with epigenetic machinery in cholangiocytes to support fibrogenic gene transcription. We performed RNA sequencing in cholangiocytes with or without TGF-ß. Ingenuity pathway analysis identified "HSC Activation" as the highly up-regulated pathway, including overexpression of fibronectin 1 (FN), connective tissue growth factor, and other genes. Bioinformatics identified enhancer of zeste homologue 2 (EZH2) as an epigenetic regulator of the cholangiocyte TGF-ß response. EZH2 overexpression suppressed TGF-ß-induced FN protein in vitro, suggesting FN as a direct target of EZH2-based repression. Chromatin immunoprecipitation assays identified an FN promoter element in which EZH2-mediated tri-methylation of lysine 27 on histone 3 is diminished by TGF-ß. TGF-ß also caused a 50% reduction in EZH2 protein levels. Proteasome inhibition rescued EZH2 protein and led to reduced FN production. Immunoprecipitation followed by mass spectrometry identified ubiquitin protein ligase E3 component N-recognin 4 in complex with EZH2, which was validated by western blotting in vitro. Ubiquitin mutation studies suggested K63-based ubiquitin linkage and chain elongation on EZH2 in response to TGF-ß. A deletion mutant of EZH2, lacking its N-terminal domain, abrogates both TGF-ß-stimulated EZH2 degradation and FN release. In vivo, cholangiocyte-selective knockout of EZH2 exacerbates bile duct ligation-induced fibrosis whereas MDR2-/- mice are protected from fibrosis by the proteasome inhibitor bortezomib. Conclusion: TGF-ß regulates proteasomal degradation of EZH2 through N-terminal, K63-linked ubiquitination in cholangiocytes and activates transcription of a fibrogenic gene program that supports biliary fibrosis.


Asunto(s)
Enfermedades de los Conductos Biliares/metabolismo , Conductos Biliares/citología , Conductos Biliares/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Células Epiteliales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Animales , Células Cultivadas , Femenino , Fibrosis , Humanos , Masculino , Ratones
8.
J Cancer Res Clin Oncol ; 145(1): 87-96, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30341688

RESUMEN

BACKGROUND: Emerging evidences show that G-protein-coupled estrogen receptor (GPER) can regulate the progression of various cancers, while its roles in the progression of osteosarcoma (OS) are not well illustrated. METHODS: The expression of GPER in OS cells and tissues were checked. Its roles in cell migration and expression of Snail was checked by use of its agonist G-1. RESULTS: We found that the expression of GPER in OS cells and tissues were lower than that in their corresponding controls. OS patients with higher levels of GPER showed increased overall survival rate (OS) as compared with the lower ones. The activator of GPER (G-1) or overexpression of GPER can inhibit the migration and invasion of OS cells and downregulate mesenchymal markers. G-1 can rapidly decrease the expression of Snail, one powerful epithelial-mesenchymal transition transcription factor (EMT-TF). Overexpression of Snail can attenuate the suppression effects of G-1 on migration of OS cells, suggesting that Snail was involved in GPER-regulated migration of OS cells. Mechanically, G-1 rapidly decreased the protein of Snail but had no effect on its mRNA expression. This was because G-1 can decrease the protein stability of Snail. Further, G-1 increased the expression of FBXL5, which can trigger the proteasome-mediated degradation of Snail. Knockdown of FBXL5 can reverse G-1-induced downregulation of Snail in OS cells. CONCLUSION: Activation of GPER can suppress the migration and invasion of OS cells via FBXL5-mediated post-translational down regulation of Snail. It suggested that targeted activation of GPER might be a potent potential therapy approach to overcome the metastasis of OS patients.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Movimiento Celular/fisiología , Osteosarcoma/metabolismo , Osteosarcoma/patología , Procesamiento Proteico-Postraduccional/fisiología , Receptores de Estrógenos/fisiología , Receptores Acoplados a Proteínas G/fisiología , Factores de Transcripción de la Familia Snail/metabolismo , Línea Celular , Línea Celular Tumoral , Ciclopentanos/farmacología , Progresión de la Enfermedad , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Proteínas F-Box/fisiología , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Quinolinas/farmacología , ARN Mensajero/genética , Receptores Acoplados a Proteínas G/agonistas , Factores de Transcripción de la Familia Snail/genética , Tasa de Supervivencia , Complejos de Ubiquitina-Proteína Ligasa/fisiología
9.
Trends Cell Biol ; 28(1): 22-33, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985987

RESUMEN

During a single human lifetime, nearly one quintillion chromosomes separate from their sisters and transit to their destinations in daughter cells. Unlike DNA replication, chromosome segregation has no template, and, unlike transcription, errors frequently lead to a total loss of cell viability. Rapid progress in recent years has shown how kinetochores enable faithful execution of this process by connecting chromosomal DNA to microtubules. These findings have transformed our idea of kinetochores from cytological features to immense molecular machines and now allow molecular interpretation of many long-appreciated kinetochore functions. In this review we trace kinetochore protein connectivity from chromosomal DNA to microtubules, relating new findings to important points of regulation and function.


Asunto(s)
Cinetocoros/fisiología , Ciclosoma-Complejo Promotor de la Anafase/fisiología , Animales , Proteínas de Ciclo Celular/fisiología , Segregación Cromosómica/fisiología , Humanos , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Modelos Biológicos , Unión Proteica , Complejos de Ubiquitina-Proteína Ligasa/fisiología
10.
Mol Cell Biol ; 34(18): 3525-34, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25002535

RESUMEN

In yeast, external alkalization and alteration in plasma membrane lipid asymmetry are sensed by the Rim101 pathway. It is currently under debate whether the signal elicited by external alkalization is transduced to downstream molecules at the plasma membrane or via endocytosis of the Rim21 sensor protein at the late endosome. We found that the downstream molecules, including arrestin-related protein Rim8, calpain-like protein Rim13, and scaffold protein Rim20, accumulated at the plasma membrane upon external alkalization and that the accumulation was dependent on Rim21. Snf7, an endosomal sorting complex required for transport (ESCRT) III subunit also essential for the Rim101 pathway, localized to the plasma membrane, in addition to the late endosome, under alkaline conditions. Snf7 at the plasma membrane but not at the late endosome was shown to be involved in Rim101 signaling. In addition, the Rim101 pathway was normally activated, even when endocytosis was severely impaired. Considering this information as a whole, we propose that Rim101 signaling proceeds at the plasma membrane. We also found that activity of the Rsp5 ubiquitin ligase was required for recruiting the downstream molecules to the plasma membrane, suggesting that ubiquitination mediates Rim101 signaling at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Endosomas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Proteínas de Ciclo Celular , Proteasas de Cisteína/genética , Endocitosis/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Regiones Promotoras Genéticas , Receptores de Superficie Celular/genética , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación/genética , Ubiquitinación/fisiología
11.
Plant Cell ; 26(1): 485-96, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24449689

RESUMEN

Proteins with nucleotide binding and leucine-rich repeat domains (NLRs) serve as immune receptors in animals and plants that recognize pathogens and activate downstream defense responses. As high accumulation of NLRs can result in unwarranted autoimmune responses, their cellular concentrations must be tightly regulated. However, the molecular mechanisms of this process are poorly detailed. The F-box protein Constitutive expressor of PR genes 1 (CPR1) was previously identified as a component of a Skp1, Cullin1, F-box protein E3 complex that targets NLRs, including Suppressor of NPR1, Constitutive 1 (SNC1) and Resistance to Pseudomonas syringae 2 (RPS2), for ubiquitination and further protein degradation. From a forward genetic screen, we identified Mutant, snc1-enhancing 3 (MUSE3), an E4 ubiquitin ligase involved in polyubiquitination of its protein targets. Knocking out MUSE3 in Arabidopsis thaliana results in increased levels of NLRs, including SNC1 and RPS2, whereas overexpressing MUSE3 together with CPR1 enhances polyubiquitination and protein degradation of these immune receptors. This report on the functional role of an E4 ligase in plants provides insight into the scarcely understood NLR degradation pathway.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonación Molecular , Resistencia a la Enfermedad/genética , Inmunidad de la Planta , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación
12.
Neuromolecular Med ; 15(4): 707-19, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24052421

RESUMEN

Redox species are produced during the physiological cellular metabolism of a normal tissue. In turn, their presence is also attributed to pathological conditions including neurodegenerative diseases. Many are the molecular changes that occur during the unbalance of the redox homeostasis. Interestingly, posttranslational protein modifications (PTMs) play a remarkable role. In fact, several target proteins are modified in their activation, localization, aggregation, and expression after the cellular stress. Among PTMs, protein SUMOylation represents a very important molecular modification pathway during "oxidative stress". It has been reported that this ubiquitin-like modification is a fine sensor for redox species. Indeed, SUMOylation pathway efficiency is affected by the exposure to oxidative species in a different manner depending on the concentration and time of application. Thus, we here report updated evidence that states the role of SUMOylation in several pathological conditions, and we also outline the key involvement of c-Jun N-terminal kinase and small ubiquitin modifier pathway cross talk.


Asunto(s)
Estrés Oxidativo/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Animales , Diabetes Mellitus/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Ubiquitina/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología
13.
J Biochem ; 154(4): 313-23, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23969028

RESUMEN

Ubiquitination is a post-translational modification involved in the regulation of a broad variety of cellular functions, such as protein degradation and signal transduction, including nuclear factor-κB (NF-κB) signalling. NF-κB is crucial for inflammatory and immune responses, and aberrant NF-κB signalling is implicated in multiple disorders. We found that linear ubiquitin chain assembly complex (LUBAC), composed of HOIL-1L, HOIP and SHARPIN, generates a novel type of Met1 (M1)-linked linear polyubiquitin chain and specifically regulates the canonical NF-κB pathway. Moreover, specific deubiquitinases, such as CYLD, A20 (TNFAIP3) and OTULIN/gumby, inhibit LUBAC-induced NF-κB activation by different molecular mechanisms, and several M1-linked ubiquitin-specific binding domains have been structurally defined. LUBAC and these linear ubiquitination-regulating factors contribute to immune and inflammatory processes and apoptosis. Functional impairments of these factors are correlated with multiple disorders, including autoinflammation, immunodeficiencies, dermatitis, B-cell lymphomas and Parkinson's disease. This review summarizes the molecular basis and the pathophysiological implications of the linear ubiquitination-mediated NF-κB activation pathway regulation by LUBAC.


Asunto(s)
FN-kappa B/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina/metabolismo , Inmunidad Adaptativa , Apoptosis , Carcinogénesis/inmunología , Carcinogénesis/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , FN-kappa B/inmunología , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/metabolismo , Poliubiquitina/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Transducción de Señal , Ubiquitinación
14.
Neuromolecular Med ; 15(4): 677-91, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23907729

RESUMEN

Small ubiquitin-like modifiers (SUMOs) are polypeptides resembling ubiquitin that are covalently attached to specific lysine residue of target proteins through a specific enzymatic pathway. Sumoylation is now seen as a key posttranslational modification involved in many biological processes, but little is known about how this highly dynamic protein modification is regulated in the brain. Disruption of the sumoylation enzymatic pathway during the embryonic development leads to lethality revealing a pivotal role for this protein modification during development. The main aim of this review is to briefly describe the SUMO pathway and give an overview of the sumoylation regulations occurring in brain development, neuronal morphology and synapse formation.


Asunto(s)
Encéfalo/embriología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Médula Espinal/embriología , Sumoilación/fisiología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Desarrollo Embrionario , Células Eucariotas/metabolismo , Proteínas del Ojo/fisiología , Guanilato-Quinasas/fisiología , Humanos , Factores de Transcripción MEF2/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Factores de Transcripción Paired Box/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología
15.
Neuromolecular Med ; 15(4): 639-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23990202

RESUMEN

Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Fenómenos Fisiológicos del Sistema Nervioso/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Secuencias de Aminoácidos , Animales , Hipoxia de la Célula , Secuencia de Consenso , Cisteína Endopeptidasas/fisiología , Reparación del ADN , Regulación de la Expresión Génica , Humanos , Redes y Vías Metabólicas , Modelos Moleculares , Degeneración Nerviosa , Enfermedades del Sistema Nervioso/metabolismo , Conformación Proteica , Complejos de Ubiquitina-Proteína Ligasa/fisiología
16.
Neuromolecular Med ; 15(4): 720-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23979993

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and is the most common cause of dementia in the elderly. Histopathologically, AD features insoluble aggregates of two proteins in the brain, amyloid-ß (Aß) and the microtubule-associated protein tau, both of which have been linked to the small ubiquitin-like modifier (SUMO). A large body of research has elucidated many of the molecular and cellular pathways that underlie AD, including those involving the abnormal Aß and tau aggregates. However, a full understanding of the etiology and pathogenesis of the disease has remained elusive. Consequently, there are currently no effective therapeutic options that can modify the disease progression and slow or stop the decline of cognitive functioning. As part of the effort to address this lacking, there needs a better understanding of the signaling pathways that become impaired under AD pathology, including the regulatory mechanisms that normally control those networks. One such mechanism involves SUMOylation, which is a post-translational modification (PTM) that is involved in regulating many aspects of cell biology and has also been found to have several critical neuron-specific roles. Early studies have indicated that the SUMO system is likely altered with AD-type pathology, which may impact Aß levels and tau aggregation. Although still a relatively unexplored topic, SUMOylation will likely emerge as a significant factor in AD pathogenesis in ways which may be somewhat analogous to other regulatory PTMs such as phosphorylation. Thus, in addition to the upstream effects on tau and Aß processing, there may also be downstream effects mediated by Aß aggregates or other AD-related factors on SUMO-regulated signaling pathways. Multiple proteins that have functions relevant to AD pathology have been identified as SUMO substrates, including those involved in synaptic physiology, mitochondrial dynamics, and inflammatory signaling. Ongoing studies will determine how these SUMO-regulated functions in neurons and glial cells may be impacted by Aß and AD pathology. Here, we present a review of the current literature on the involvement of SUMO in AD, as well as an overview of the SUMOylated proteins and pathways that are potentially dysregulated with AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Ratones , Ovillos Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Proteínas tau/metabolismo
17.
Neuromolecular Med ; 15(4): 737-59, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23979994

RESUMEN

Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Enfermedad de Parkinson/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/fisiología , Proteínas del Tejido Nervioso/genética , Neurotoxinas/toxicidad , Proteínas Oncogénicas/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteína Desglicasa DJ-1 , Transducción de Señal/fisiología , Transcripción Genética , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/metabolismo
18.
Neuromolecular Med ; 15(4): 692-706, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23934328

RESUMEN

Timely and efficient information transfer at synapses is fundamental to brain function. Synapses are highly dynamic structures that exhibit long-lasting activity-dependent alterations to their structure and transmission efficiency, a phenomenon termed synaptic plasticity. These changes, which occur through alterations in presynaptic release or in the trafficking of postsynaptic receptor proteins, underpin the formation and stabilisation of neural circuits during brain development, and encode, process and store information essential for learning, memory and cognition. In recent years, it has emerged that the ubiquitin-like posttranslational modification SUMOylation is an important mediator of several aspects of neuronal and synaptic function. Through orchestrating synapse formation, presynaptic release and the trafficking of postsynaptic receptor proteins during forms of synaptic plasticity such as long-term potentiation, long-term depression and homeostatic scaling, SUMOylation is being increasingly appreciated to play a central role in neurotransmission. In this review, we outline key discoveries in this relatively new field, provide an update on recent progress regarding the targets and consequences of protein SUMOylation in synaptic function and plasticity, and highlight key outstanding questions regarding the roles of protein SUMOylation in the brain.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal , Transporte de Proteínas/fisiología , Receptores de Neurotransmisores/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Transmisión Sináptica/fisiología , Animales , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta , Guanilato-Quinasas/fisiología , Humanos , Factores de Transcripción MEF2/fisiología , Neurogénesis , Neuronas/metabolismo , Fosfohidrolasa PTEN/fisiología , Canales de Potasio/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Ácido Kaínico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Presinapticos/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología
19.
J Cell Biol ; 201(7): 1013-26, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23775192

RESUMEN

DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/C(Cdc20). Cyclin B1 and geminin are degraded simultaneously during metaphase, which directs Cdt1 accumulation on segregating sister chromatids. Subsequent activation of APC/C(Cdh1) leads to degradation of Cdc6 well before Cdt1 becomes unstable in a replication-coupled manner. In mitosis, the spindle checkpoint supports Cdt1 accumulation, which promotes S phase onset. We conclude that the spindle checkpoint, APC/C(Cdc20), and APC/C(Cdh1) act successively to ensure that the disappearance of licensing inhibitors coincides exactly with a peak of Cdt1 and Cdc6. Whereas cell cycle entry from quiescence requires Cdc6 resynthesis, our results indicate that proliferating cells use a window of time in mitosis, before Cdc6 is degraded, as an earlier opportunity to direct S phase.


Asunto(s)
Cadherinas/fisiología , Proteínas de Ciclo Celular/fisiología , Puntos de Control de la Fase M del Ciclo Celular , Mitosis/fisiología , Fase S/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Antígenos CD , Cadherinas/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ciclina B1/metabolismo , Geminina , Humanos , Proteínas Nucleares/metabolismo
20.
J Am Heart Assoc ; 2(2): e000016, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23568341

RESUMEN

BACKGROUND: Mechanical assist device therapy has emerged recently as an important and rapidly expanding therapy in advanced heart failure, triggering in some patients a beneficial reverse remodeling response. However, mechanisms underlying this benefit are unclear. METHODS AND RESULTS: In a model of mechanical unloading of the left ventricle, we observed progressive myocyte atrophy, autophagy, and robust activation of the transcription factor FoxO3, an established regulator of catabolic processes in other cell types. Evidence for FoxO3 activation was similarly detected in unloaded failing human myocardium. To determine the role of FoxO3 activation in cardiac muscle in vivo, we engineered transgenic mice harboring a cardiomyocyte-specific constitutively active FoxO3 mutant (caFoxO3(flox);αMHC-Mer-Cre-Mer). Expression of caFoxO3 triggered dramatic and progressive loss of cardiac mass, robust increases in cardiomyocyte autophagy, declines in mitochondrial biomass and function, and early mortality. Whereas increases in cardiomyocyte apoptosis were not apparent, we detected robust increases in Bnip3 (Bcl2/adenovirus E1B 19-kDa interacting protein 3), an established downstream target of FoxO3. To test the role of Bnip3, we crossed the caFoxO3(flox);αMHC-Mer-Cre-Mer mice with Bnip3-null animals. Remarkably, the atrophy and autophagy phenotypes were significantly blunted, yet the early mortality triggered by FoxO3 activation persisted. Rather, declines in cardiac performance were attenuated by proteasome inhibitors. Consistent with involvement of FoxO3-driven activation of the ubiquitin-proteasome system, we detected time-dependent activation of the atrogenes program and sarcomere protein breakdown. CONCLUSIONS: In aggregate, these data point to FoxO3, a protein activated by mechanical unloading, as a master regulator that governs both the autophagy-lysosomal and ubiquitin-proteasomal pathways to orchestrate cardiac muscle atrophy.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Insuficiencia Cardíaca/terapia , Corazón Auxiliar , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/fisiología , Animales , Atrofia , Autofagia , Modelos Animales de Enfermedad , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Trasplante de Corazón , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Transducción de Señal , Complejos de Ubiquitina-Proteína Ligasa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA