Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.293
1.
Biol Pharm Bull ; 47(5): 1021-1027, 2024.
Article En | MEDLINE | ID: mdl-38797694

Learning and memory are affected by novel enriched environment, a condition where animals play and interact with a variety of toys and conspecifics. Exposure of animals to the novel enriched environments improves memory by altering neural plasticity during natural sleep, a process called memory consolidation. The hippocampus, a pivotal brain region for learning and memory, generates high-frequency oscillations called ripples during sleep, which is required for memory consolidation. Naturally occurring sleep shares characteristics in common with general anesthesia in terms of extracellular oscillations, guaranteeing anesthetized animals suitable to examine neural activity in a sleep-like state. However, it is poorly understood whether the preexposure of animals to the novel enriched environment modulates neural activity in the hippocampus under subsequent anesthesia. To ask this question, we allowed mice to freely explore the novel enriched environment or their standard environment, anesthetized them, and recorded local field potentials in the hippocampal CA1 area. We then compared the characteristics of hippocampal ripples between the two groups and found that the amplitude of ripples and the number of successive ripples were larger in the novel enriched environment group than in the standard environment group, suggesting that the afferent synaptic input from the CA3 area to the CA1 area was higher when the animals underwent the novel enriched environment. These results underscore the importance of prior experience that surpasses subsequent physical states from the neurophysiological point of view.


Hippocampus , Urethane , Animals , Urethane/pharmacology , Male , Hippocampus/physiology , Mice , Environment , Mice, Inbred C57BL , Sleep/physiology , CA1 Region, Hippocampal/physiology , Anesthetics, Intravenous/administration & dosage , Memory Consolidation/physiology
2.
Eur J Neurosci ; 59(7): 1536-1557, 2024 Apr.
Article En | MEDLINE | ID: mdl-38233998

For a long time, it has been assumed that dopaminergic (DA) neurons in both the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) uniformly respond to rewarding and aversive stimuli by either increasing or decreasing their activity, respectively. This response was believed to signal information about the perceived stimuli's values. The identification of VTA&SNc DA neurons that are excited by both rewarding and aversive stimuli has led to the categorisation of VTA&SNc DA neurons into two subpopulations: one signalling the value and the other signalling the salience of the stimuli. It has been shown that the general state of the brain can modulate the electrical activity of VTA&SNc DA neurons, but it remains unknown whether this factor may also influence responses to aversive stimuli, such as a footshock (FS). To address this question, we have recorded the responses of VTA&SNc DA neurons to FSs across cortical activation and slow wave activity brain states in urethane-anaesthetised rats. Adding to the knowledge of aversion signalling by midbrain DA neurons, we report that significant proportion of VTA&SNc DA neurons can change their responses to an aversive stimulus in a brain state-dependent manner. The majority of these neurons decreased their activity in response to FS during cortical activation but switched to increasing it during slow wave activity. It can be hypothesised that this subpopulation of DA neurons may be involved in the 'dual signalling' of both the value and the salience of the stimuli, depending on the general state of the brain.


Anesthesia , Dopaminergic Neurons , Rats , Animals , Urethane/pharmacology , Substantia Nigra/physiology , Mesencephalon , Ventral Tegmental Area/physiology , Anesthetics, Intravenous
3.
BMC Neurosci ; 24(1): 52, 2023 10 10.
Article En | MEDLINE | ID: mdl-37817064

BACKGROUND: Aspects of glutamate neurotransmission implicated in normal and pathological conditions are predominantly evaluated using in vivo recording paradigms in rats anesthetized with isoflurane or urethane. Urethane and isoflurane anesthesia influence glutamate neurotransmission through different mechanisms; however, real-time outcome measures of potassium chloride (KCl)-evoked glutamate overflow and glutamate clearance kinetics have not been compared within and between regions of the brain. In order to maintain rigor and reproducibility within the literature between the two most common methods of anesthetized in vivo recording of glutamate, we compared glutamate signaling as a function of anesthesia and brain region in the rat strain most used in neuroscience. METHODS: In the following experiments, in vivo amperometric recordings of KCl-evoked glutamate overflow and glutamate clearance kinetics (uptake rate and T80) in the cortex, hippocampus, and thalamus were performed using glutamate-selective microelectrode arrays (MEAs) in young adult male, Sprague-Dawley rats anesthetized with either isoflurane or urethane. RESULTS: Potassium chloride (KCl)-evoked glutamate overflow was similar under urethane and isoflurane anesthesia in all brain regions studied. Analysis of glutamate clearance determined that the uptake rate was significantly faster (53.2%, p < 0.05) within the thalamus under urethane compared to isoflurane, but no differences were measured in the cortex or hippocampus. Under urethane, glutamate clearance parameters were region-dependent, with significantly faster glutamate clearance in the thalamus compared to the cortex but not the hippocampus (p < 0.05). No region-dependent differences were measured for glutamate overflow using isoflurane. CONCLUSIONS: These data support that amperometric recordings of KCl-evoked glutamate under isoflurane and urethane anesthesia result in similar and comparable data. However, certain parameters of glutamate clearance can vary based on choice of anesthesia and brain region. In these circumstances, special considerations are needed when comparing previous literature and planning future experiments.


Anesthetics , Isoflurane , Rats , Male , Animals , Isoflurane/pharmacology , Urethane/pharmacology , Glutamic Acid , Rats, Sprague-Dawley , Potassium Chloride/pharmacology , Reproducibility of Results , Synaptic Transmission , Brain
4.
J Neuroinflammation ; 20(1): 176, 2023 Jul 28.
Article En | MEDLINE | ID: mdl-37507711

Systemic inflammation triggers protective as well as pro-inflammatory responses in the brain based on neuronal and/or cytokine signaling, and it associates with acutely and protractedly disrupted cognition. However, the multiple mechanisms underlying the peripheral-central inflammatory signaling are still not fully characterized. We used intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in freely moving mice with chronically implanted electrodes for recording of local field potentials (LFP) and electrocorticography (ECoG) in the hippocampus and neocortex, respectively. We show here that a sudden switch in the mode of network activity occurred in both areas starting at 10-15 min after the LPS injection, simultaneously with a robust change from exploration to sickness behavior. This switch in cortical mode commenced before any elevations in pro-inflammatory cytokines IL-1ß, TNFα, CCL2 or IL-6 were detected in brain tissue. Thereafter, this mode dominated cortical activity for the recording period of 3 h, except for a partial and transient recovery around 40 min post-LPS. These effects were closely paralleled by changes in ECoG spectral entropy. Continuous recordings for up to 72 h showed a protracted attenuation in hippocampal activity, while neocortical activity recovered after 48 h. The acute sickness behavior recovered by 72 h post-LPS. Notably, urethane (1.3 mg/kg) administered prior to LPS blocked the early effect of LPS on cortical activity. However, experiments under urethane anesthesia which were started 24 h post-LPS (with neuroinflammation fully developed before application of urethane) showed that both theta-supratheta and fast gamma CA1 activity were reduced, DG delta activity was increased, and sharp-wave ripples were abolished. Finally, we observed that experimental compensation of inflammation-induced hypothermia 24-48 h post-LPS promoted seizures and status epilepticus; and that LPS decreased the threshold of kainate-provoked seizures beyond the duration of acute sickness behavior indicating post-acute inflammatory hyperexcitability. Taken together, the strikingly fast development and initial independence of brain cytokines of the LPS-induced cortical mode, its spectral characteristics and simultaneity in hippocampus and neocortex, as well as inhibition by pre-applied urethane, strongly suggest that the underlying mechanisms are based on activation of the afferent vagus nerve and its mainly cholinergic ascending projections to higher brain areas.


Cytokines , Illness Behavior , Mice , Animals , Cytokines/metabolism , Lipopolysaccharides/toxicity , Brain/metabolism , Inflammation/chemically induced , Seizures , Urethane/pharmacology
5.
Sci Rep ; 13(1): 12258, 2023 07 28.
Article En | MEDLINE | ID: mdl-37507456

Recent pre-clinical and clinical spinal cord epidural stimulation (scES) experiments specifically targeting the thoracolumbar and lumbosacral circuitries mediating lower urinary tract (LUT) function have shown improvements in storage, detrusor pressure, and emptying. With the existence of a lumbar spinal coordinating center in rats that is involved with external urethral sphincter (EUS) functionality during micturition, the mid-lumbar spinal cord (specifically L3) was targeted in the current study with scES to determine if the EUS and thus the void pattern could be modulated, using both intact and chronic complete spinal cord injured female rats under urethane anesthesia. L3 scES at select frequencies and intensities of stimulation produced a reduction in void volumes and EUS burst duration in intact rats. After chronic transection, three different subgroups of LUT dysfunction were identified and the response to L3 scES promoted different cystometry outcomes, including changes in EUS bursting. The current findings suggest that scES at the L3 level can generate functional neuromodulation of both the urinary bladder and the EUS in intact and SCI rats to enhance voiding in a variety of clinical scenarios.


Spinal Cord Injuries , Urinary Bladder , Rats , Female , Animals , Urethra , Urethane/pharmacology , Rats, Sprague-Dawley , Spinal Cord Injuries/therapy , Electromyography , Urination/physiology , Carbamates/pharmacology , Carcinogens/pharmacology
6.
J Nutr Biochem ; 120: 109416, 2023 10.
Article En | MEDLINE | ID: mdl-37451475

Leptin is a nutritional cytokine, and it is closely related to the progression of cancer. However, the detailed effect of leptin in lung cancer remains poorly known. We found leptin-induced A549 cell proliferation, migration, and invasion, which was reversed by epigallocatechin gallate (EGCG) from green tea. Currently, we found that leptin-triggered M2 polarization of tumor-associated macrophages was inhibited by EGCG. Then, to investigate the underlying mechanism effect of leptin on A549 cells was studied. Aberrant activities of STAT1 are implicated in cancer development. Based on the cancer genome atlas data, STAT1 acted as an oncogene in lung cancer and EGCG greatly reduced STAT1 expression in A549 cells. Ferroptosis is an iron-dependent nonapoptotic cell death. STAT1 served as a transcriptional activator for SLC7A11. EGCG restrained lung cancer cell growth induced by leptin via targeting STAT1-SLC7A11 mediated ferroptosis. A high-fat diet (HFD) feeding condition was combined with a multi-dose urethane-induced lung tumorigenesis model using C57BL/6J mice. Obesity was induced with a 60 kcal% HFD feeding. Serum leptin levels increased in urethane-administered and HFD-fed mice. Compared to the control diet-fed mice, the HFD-fed mice exhibited increased lung tumor burden and typical pro-tumorigenic STAT1 activation in lung tissues after urethane administration. In addition, HFD alters the gut microbiome by decreasing the abundance of Clostridia and by increasing the abundance of Deltaproteobacteria and Epsilonproteobacteria while EGCG exhibited a reversed effect. These findings suggested that leptin promoted the development of lung tumorigenesis in vitro and in vivo via mediating activation of the STAT-SLC7A11 pathway and gut microbiota.


Gastrointestinal Microbiome , Lung Neoplasms , Mice , Animals , Leptin/pharmacology , Mice, Inbred C57BL , Obesity/metabolism , Lung/metabolism , Carcinogenesis , Urethane/pharmacology , Diet, High-Fat
7.
J Zhejiang Univ Sci B ; 24(7): 574-586, 2023 Jul 15.
Article En, Zh | MEDLINE | ID: mdl-37455135

Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)|-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:|3.94:|4.45:|8.56:|8.86:|30.82:|39.78:|1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)|-Araf-(1→, →3)|-Galp-(1→, →3)|-Araf-|(1→, and →6)|-Galp-|(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.


Syzygium , Humans , Syzygium/chemistry , Urethane/pharmacology , Spectroscopy, Fourier Transform Infrared , Oxidative Stress , Glutathione/pharmacology , Hepatocytes , Polysaccharides/pharmacology
8.
J Pharmacol Sci ; 152(2): 144-150, 2023 Jun.
Article En | MEDLINE | ID: mdl-37169479

We compared the effects of two anesthetics, isoflurane and urethane on bladder function in rats. Arterial pressure, cystometry (CMG), and rhythmic bladder contractions (RBCs) under isovolumetric conditions, mechanosensitive single-unit afferent activities (SAAs), bladder compliance and bladder myogenic microcontractions (bladder microcontractions), and bladder blood flow, and blood and urine biochemical tests were investigated in isoflurane- or urethane-anesthetized female rats. In results of the CMG, 3/8 rats in the isoflurane group and 7/7 rats in the urethane group showed constant bladder neurogenic contractions for micturition, whereas 5/8 rats in the isoflurane group showed unstable contractions or overflow incontinence. The RBCs appeared in the urethane group but not in the isoflurane group, and SAAs in both the Aδ- and C-fibers, bladder compliance, and bladder microcontractions in the isoflurane group were higher than those in the urethane group during bladder distension. The blood biochemical test showed that the serum calcium level was higher in the isoflurane group. The mean arterial pressure and bladder blood flow were not different between the groups. The results showed that urethane anesthesia more retains bladder neurogenic contractions for micturition compared to isoflurane. In contrast, isoflurane anesthesia more retains bladder function during the storage phase compared to urethane.


Anesthetics , Isoflurane , Urinary Bladder, Neurogenic , Rats , Female , Animals , Urethane/pharmacology , Urinary Bladder , Isoflurane/pharmacology , Rats, Sprague-Dawley , Muscle Contraction , Carbamates/pharmacology , Amides/pharmacology , Anesthetics/pharmacology , Urination , Anesthetics, Intravenous/pharmacology
9.
Hippocampus ; 33(11): 1228-1232, 2023 11.
Article En | MEDLINE | ID: mdl-37221699

Breathing and heartbeat synchronize to each other and to brain function and affect cognition in humans. However, it is not clear how cardiorespiratory rhythms modulate such basic processes as synaptic plasticity thought to underlie learning. Thus, we studied if respiration and cardiac cycle phases at burst stimulation onset affect hippocampal long-term potentiation (LTP) in the CA3-CA1 synapse in urethane-anesthetized adult male Sprague-Dawley rats. In a between-subjects design, we timed burst stimulation of the ventral hippocampal commissure (vHC) to systole or diastole either during expiration or inspiration and recorded responses throughout the hippocampus with a linear probe. As classical conditioning in humans seems to be most efficient at expiration-diastole, we also expected LTP to be most efficient if burst stimulation was targeted to expiration-diastole. However, LTP was induced equally in all four groups and respiration and cardiac cycle phase did not modulate CA1 responses to vHC stimulation overall. This could be perhaps because we bypassed all natural routes of external influences on the CA1 by directly stimulating the vHC. In the future, the effect of cardiorespiratory rhythms on synaptic plasticity could also be studied in awake state and in other parts of the hippocampal tri-synaptic loop.


Long-Term Potentiation , Urethane , Humans , Rats , Male , Animals , Long-Term Potentiation/physiology , Urethane/pharmacology , Rats, Sprague-Dawley , Hippocampus/physiology , Anesthetics, Intravenous/pharmacology , Neuronal Plasticity , Enzyme Inhibitors/pharmacology , Respiration , Electric Stimulation
10.
Article En | MEDLINE | ID: mdl-36799986

Urethane and MS-222 are agents widely employed for general anesthesia, yet, besides inducing a state of unconsciousness, little is known about their neurophysiological effects. To investigate these effects, we developed an in vivo assay using the electric organ discharge (EOD) of the weakly electric fish Apteronotus leptorhynchus as a proxy for the neural output of the pacemaker nucleus. The oscillatory neural activity of this brainstem nucleus drives the fish's EOD in a one-to-one fashion. Anesthesia induced by urethane or MS-222 resulted in pronounced decreases of the EOD frequency, which lasted for up to 3 h. In addition, each of the two agents caused a manifold increase in the generation of transient modulations of the EOD known as chirps. The reduction in EOD frequency can be explained by the modulatory effect of urethane on neurotransmission, and by the blocking of voltage-gated sodium channels by MS-222, both within the circuitry controlling the neural oscillations of the pacemaker nucleus. The present study demonstrates a marked effect of urethane and MS-222 on neural activity within the central nervous system and on the associated animal's behavior. This calls for caution when conducting neurophysiological experiments under general anesthesia and interpreting their results.


Anesthesia , Electric Fish , Gymnotiformes , Animals , Electric Fish/physiology , Electric Organ/physiology , Urethane/pharmacology , Gymnotiformes/physiology
11.
Environ Sci Pollut Res Int ; 30(13): 37280-37294, 2023 Mar.
Article En | MEDLINE | ID: mdl-36567388

Lung cancer is one of the most common malignancies in the world, and chemotherapy can have unfavorable side effects. The aim of the present study is to evaluate the therapeutic anticancer role of Moringa oleifera leaf extracts (MLE) in urethane-induced lung cancer in adult male albino rats as compared to standard chemotherapy. Rats were categorized into four groups (10 rats/group), including negative control rats, urethane lung cancer model rats, MLE-treated lung cancer rats, and cisplatin-treated rats. Estimation of lung index, some biochemical markers of oxidative stress, quantitative real-time polymerase chain reaction (qRT-PCR), and histopathology and transmission electron microscopy were performed. The lung index was significantly increased about one-fold in urethane lung cancer model rats, but it decreased after MLE treatment. Also, MLE was able to improve the induced changes in glutathione, superoxide dismutase, and malondialdehyde concentration to be 3.8 ± 0.4 mg/g, 900.6 ± 58 U/g, and 172 ± 24 nmol/g, respectively. Additionally, after MLE treatment, the expression of EGFR-mRNA increased by about 50%. Our light and electron microscopic examination revealed that urethane group showed abnormally distributed excessive collagen fibers and the development of papillary adenocarcinoma from hyperplastic Clara cells in the lumen of terminal bronchiole with bronchiolar wall thickening, alveolar collapse, and inflammation. MLE group has moderate amount of collagen fiber and absence of tumor mass and provided more or less restoration of normal lung histology. Moreover, MLE was able to ameliorate the induced changes in mucin and PCNA positive cells in the lung by 10.8 ± 2.3%. Collectively, the current study showed that MLE could be used as anticancer agents alleviating changes associated with lung cancer in a urethane-induced lung cancer bearing rats thereby representing alternative options to toxic chemotherapy.


Lung Neoplasms , Moringa oleifera , Animals , Collagen , Lung Neoplasms/chemically induced , Oxidative Stress , Plant Extracts/pharmacology , Plant Leaves , Urethane/pharmacology , Rats
12.
Int Urol Nephrol ; 55(2): 285-293, 2023 Feb.
Article En | MEDLINE | ID: mdl-36327005

PURPOSE: To examine the effects of i.v. administration of MK-571, a MRP4/5 pump inhibitor, on urethral function in the urethane-anesthetized rat, and the changes of urethral multidrug resistance protein 5 (MRP5) pump in streptozotocin (STZ)-induced diabetes mellitus (DM) rats. METHODS: Isovolumetric cystometry and urethral perfusion pressure (UPP) measurements were carried out in normal control (NC) group and 8week DM groups under urethane anesthesia. When stable rhythmic bladder contractions were showed, UPP parameters were recorded after successive administration of various dose of MK-571. Additionally, urethral cyclic guanosine monophosphate (cGMP) protein level was evaluated by ELISA, and changes of MRP5 pump and neurogenic nitric oxide synthase (nNOs) in the urethra were examined with immunohistochemical staining and Western blot analysis. RESULTS: In NC group, UPPnadir was significantly decreased but UPP change increased after administration of MK-571, while no significant differences in UPP parameters were observed in 8-week DM group. Furthermore, urethral MRP5 protein level was up-regulated, whereas urethral cGMP and nNOS protein levels were down-regulated in 8-week DM group. CONCLUSIONS: MK-571 could not restore NO-mediated urethral relaxation dysfunction in DM rats, which may be attributed to the up-regulation of urethral MRP5 pump, and thus decrease of intracellular cGMP concentration in the urethra. These novel results would be useful for a better understanding of DM-related lower urinary tract dysfunction LUT (LUTD). Also, they could be helpful to study the importance of MRP pumps in the control of urethral relaxation mechanisms under physiological and pathological states.


Diabetes Mellitus, Experimental , Multidrug Resistance-Associated Proteins , Urethra , Animals , Rats , Diabetes Mellitus, Experimental/complications , Enzyme Inhibitors/pharmacology , Rats, Sprague-Dawley , Streptozocin , Urethane/pharmacology , Urethra/physiopathology , Multidrug Resistance-Associated Proteins/antagonists & inhibitors
13.
Article En | WPRIM | ID: wpr-982401

Wax apple (Syzygium samarangense) has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide, organic acids, flavonoids, minerals, and other substances. In this study, wax apple polysaccharide (WAP) was isolated from this plant and its protective effect against ethyl carbamate (EC)‍-induced oxidative damage was evaluated in human hepatocytes (L02 cells). Firstly, a series of analyses such as high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC/MS), and 1H and 13C nuclear magnetic resonance (NMR) were conducted to identify the structure of WAP. Thereafter, in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity, genotoxicity, and oxidative damage in L02 cells. Our results revealed that WAP is composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, arabinose, and fucose in a molar ratio of 2.20:‍3.94:‍4.45:‍8.56:‍8.86:‍30.82:‍39.78:‍1.48. Using a combination of methylation and NMR spectroscopic analysis, the primary structure of WAP was identified as Araf-(1→, Glcp-(1→, →2)‍-Araf-(1→, →3)‍-Galp-(1→, →3)‍-Araf-‍(1→, and →6)‍-Galp-‍(1→. Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity, reducing reactive oxygen species (ROS) and O2•- formation, as well as improving mitochondrial membrane potential (MMP) and glutathione (GSH). In a nutshell, WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage. Meanwhile, further studies are needed to prove the above effects in vivo at the biological and clinical levels.


Humans , Syzygium/chemistry , Urethane/pharmacology , Spectroscopy, Fourier Transform Infrared , Oxidative Stress , Glutathione/pharmacology , Hepatocytes , Polysaccharides/pharmacology
14.
Physiol Rep ; 10(22): e15517, 2022 11.
Article En | MEDLINE | ID: mdl-36411973

To better understand the effects of saphenous nerve (SN) stimulation on bladder function, we investigated the duration of electrical stimulation as a key variable in eliciting urodynamic changes. SN stimulation is a novel approach to electrically modulating bladder function. In previous animal studies, bladder-inhibitory responses were evoked by low-amplitude (25 µA) stimulus pulses applied in short-duration (10 min) trials and at frequencies between 10 and 20 Hz. Experiments were performed in urethane-anesthetized rats that were separated into three groups: intravesical saline infusion + SN stimulation (group A), intravesical 0.1% acetic acid infusion + SN stimulation (group B), and intravesical saline infusion + no SN stimulation (group C). Changes in bladder function- basal bladder pressure (P base ), contraction amplitude (ΔP), and inter-contraction interval (T ICI )-were measured in response to stimulation trials applied for different durations (10, 20, and 40 min). Trials were also repeated at frequencies of 10 and 20 Hz. In group A, longer-duration (40 min) stimulation trials applied at 10 Hz evoked overflow incontinence (OI) episodes that were characterized by significant changes in P base (122.7 ± 9.1%, p = 0.026), ΔP (-60.8 ± 12.8%, p = 0.044), and T ICI (-43.2 ± 13.0%, p = 0.031). Stimulation-evoked OI was observed in 5 of 8 animals and lasted for 56.5 ± 10.7 min. In contrast, no significant changes in bladder function were observed in either group B or group C. Our findings show that longer-duration trials consisting of electrical pulses applied at 10 Hz are important stimulation parameters that elicit inhibitory bladder responses in anesthetized rodents.


Urethane , Urinary Bladder , Rats , Animals , Urethane/pharmacology , Urinary Bladder/physiology , Tibial Nerve/physiology , Spinal Nerves , Electric Stimulation , Anesthetics, Intravenous/pharmacology
15.
J Physiol ; 600(24): 5311-5332, 2022 12.
Article En | MEDLINE | ID: mdl-36271640

The ability to discriminate competing external stimuli and initiate contextually appropriate behaviours is a key brain function. Neurons in the deep superior colliculus (dSC) integrate multisensory inputs and activate descending projections to premotor pathways responsible for orienting, attention and defence, behaviours which involve adjustments to respiratory and cardiovascular parameters. However, the neural pathways that subserve the physiological components of orienting are poorly understood. We report that orienting responses to optogenetic dSC stimulation are accompanied by short-latency autonomic, respiratory and electroencephalographic effects in awake rats, closely mimicking those evoked by naturalistic alerting stimuli. Physiological responses were not accompanied by detectable aversion or fear, and persisted under urethane anaesthesia, indicating independence from emotional stress. Anterograde and trans-synaptic viral tracing identified a monosynaptic pathway that links the dSC to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA), a key hub for the coordination of orienting and locomotor behaviours. In urethane-anaesthetized animals, sympathoexcitatory and cardiovascular, but not respiratory, responses to dSC stimulation were replicated by optogenetic stimulation of the dSC-GiA terminals, suggesting a likely role for this pathway in mediating the autonomic components of dSC-mediated responses. Similarly, extracellular recordings from putative GiA sympathetic premotor neurons confirmed short-latency excitatory inputs from the dSC. This pathway represents a likely substrate for autonomic components of orienting responses that are mediated by dSC neurons and suggests a mechanism through which physiological and motor components of orienting behaviours may be integrated without the involvement of higher centres that mediate affective components of defensive responses. KEY POINTS: Neurons in the deep superior colliculus (dSC) integrate multimodal sensory signals to elicit context-dependent innate behaviours that are accompanied by stereotypical cardiovascular and respiratory activities. The pathways responsible for mediating the physiological components of colliculus-mediated orienting behaviours are unknown. We show that optogenetic dSC stimulation evokes transient orienting, respiratory and autonomic effects in awake rats which persist under urethane anaesthesia. Anterograde tracing from the dSC identified projections to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA). Stimulation of this pathway recapitulated autonomic effects evoked by stimulation of dSC neurons. Electrophysiological recordings from putative GiA sympathetic premotor neurons confirmed short latency excitatory input from dSC neurons. This disynaptic dSC-GiA-spinal sympathoexcitatory pathway may underlie autonomic adjustments to salient environmental cues independent of input from higher centres.


Reticular Formation , Superior Colliculi , Animals , Rats , Superior Colliculi/physiology , Reticular Formation/physiology , Autonomic Nervous System/physiology , Neurons/physiology , Neural Pathways/physiology , Urethane/pharmacology
16.
Eur J Pharmacol ; 933: 175272, 2022 Oct 15.
Article En | MEDLINE | ID: mdl-36108733

To determine the role of ß3-adrenoceptor agonists on bladder sensory facilitation related to bladder myogenic contractile activities in bladder hyperactivity, we investigated the effects of vibegron, a ß3-adrenoceptor agonist, on the bladder and sensory function by evaluating cystometry and mechanosensitive single-unit afferent activities (SAAs), respectively, in a male rat model of bladder outlet obstruction (BOO). BOO was created by partial ligation of the urethra. Ten days after the surgical procedure, cystometric and SAA measurements were taken under two distinct conditions: a conscious-restrained condition, in which the bladder was constantly filled with saline, and a urethane-anesthetized condition involving an isovolumetric process with saline. For each measurement, vibegron (3 mg/kg) or its vehicle was administered intravenously after the data were reproducibly stable. In addition, the expression of ß3-adrenoceptor and substance P (SP), a sensory neuropeptide, in the bladder was further evaluated following immunohistochemical procedures. Number of non-voiding contractions (NVCs) in cystometry was decreased after vibegron-administration, which was a significant change from vehicle group. Number of microcontractions and SAAs of Aδ- and C-fibers were significantly decreased by vibegron-administration. Furthermore, ß3-adrenocepor and SP were co-expressed in the suburothelium layer of the bladder. These findings indicated that vibegron showed inhibitory effects on NVCs and microcontractions of the bladder, and SAAs of the Aδ- and C-fibers in BOO rats. The study suggested that vibegron can partly inhibit the mechanosensitive afferent transduction via Aδ- and C-fibers by suppressing bladder myogenic contractile activities in the rat bladder hyperactivity associated with BOO.


Urinary Bladder Neck Obstruction , Urinary Bladder , Animals , Male , Neurons, Afferent , Pyrimidinones , Pyrrolidines , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic/metabolism , Substance P/metabolism , Substance P/pharmacology , Urethane/metabolism , Urethane/pharmacology , Urinary Bladder Neck Obstruction/drug therapy
17.
J Biochem Mol Toxicol ; 36(10): e23162, 2022 Oct.
Article En | MEDLINE | ID: mdl-35822566

BACKGROUND: Lung cancer has risen to the top of the list of cancer-related deaths worldwide. Aliskiren is a direct renin inhibitor. AIM: This study aims to investigate the impact of cell signaling of Renin-Angiotensin system (RAS)/NF-κB on lung cancer by investigating the potential therapeutic effects of aliskiren for lung cancer treatment in urethane-induced lung cancer in mice. METHODS: Male BALB/c mice were randomly assigned to one of five treatment groups for 150 days, including (1) normal control; (2) aliskiren (25 mg/kg/i.p) daily, (3) urethane at a dose of 1.5 g/kg (i.p) at Day 1 and 60 (nonsmall cell lung cancer[NSCLC] group) (4) NSCLC mice received carboplatin (15 mg/kg/i.p) every other day for the last 4 successive weeks and (5) NSCLC mice treated with aliskiren daily. Tumor size was determined based on blood sampling, and lungs were isolated for biochemical analysis, western blot analysis assay, and histopathological examination. RESULTS: Urethane demonstrated significant changes in all biochemical and molecular parameters and histological patterns. Aliskiren-treated mice had significantly lower levels of NF-κB p65, Bcl-2, cyclin D1, ICAM-1, MMP-2, and Nrf2, with an increase in the catalytic activity of caspase-3 due to its RAS inhibitory mechanism. The combined urethane administration with aliskiren demonstrated a significant improvement in the histopathological examination. CONCLUSION: RAS/NF-B cell signaling is a potential therapeutic target for preventing and treating lung adenocarcinoma, evidenced by the fundamental cytotoxic mechanism and attenuation of metastasis and angiogenesis induced by the treatment of NSCLC mice with aliskiren.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Amides , Animals , Apoptosis , Carboplatin/pharmacology , Carcinoma, Non-Small-Cell Lung/chemically induced , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Caspase 3/metabolism , Cell Cycle Checkpoints , Cyclin D1/metabolism , Fumarates , Intercellular Adhesion Molecule-1/metabolism , Lung Neoplasms/chemically induced , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Male , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Inbred BALB C , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Renin/metabolism , Renin-Angiotensin System , Signal Transduction , Urethane/pharmacology
18.
J Biomed Mater Res B Appl Biomater ; 110(8): 1839-1852, 2022 08.
Article En | MEDLINE | ID: mdl-35226412

Hydrogels are very promising human cartilage replacement materials since they are able to mimic its structure and properties. Besides, they can be used as platforms for drug delivery to reduce inflammatory postsurgical reactions. Polycarbonate urethane (PCU) has been used in orthopedic applications due to its long-term biocompatibility and bio-durability. In this work, PCU-based hydrogels with the ability to release an anti-inflammatory (diclofenac) were developed, for the first time, for such purpose. The materials were reinforced with different amounts of cellulose acetate (CA, 10%, 15%, and 25% w/w) or carbon nanotubes (CNT, 1% and 2% w/w) in order to improve their mechanical properties. Samples were characterized in terms of compressive and tensile mechanical behavior. It was found that 15% CA and 2% CNT reinforcement led to the best mechanical properties. Thus, these materials were further characterized in terms of morphology, wettability, and friction coefficient (CoF). Contrarily to CNTs, the addition of CA significantly increased the material's porosity. Both materials became more hydrophilic, and the CoF slightly increased for PCU + 15%CA. The materials were loaded by soaking with diclofenac, and drug release experiments were conducted. PCU, PCU + 15%CA and PCU + 2%CNT presented similar release profiles, being able to ensure a controlled release of DFN for at least 4 days. Finally, in vitro cytotoxicity tests using human chondrocytes were also performed and confirmed a high biocompatibility for the three studied materials.


Nanotubes, Carbon , Urethane , Cartilage , Diclofenac/pharmacology , Humans , Hydrogels/chemistry , Nanotubes, Carbon/chemistry , Polycarboxylate Cement , Urethane/chemistry , Urethane/pharmacology
19.
SAR QSAR Environ Res ; 32(11): 941-962, 2021 Nov.
Article En | MEDLINE | ID: mdl-34787532

A detailed computational study was performed to investigate the conformational changes of flap region and the mechanism underlying the binding of the inhibitor TMC-126 to HIV-1 protease (PR1) and its mutant variants through molecular dynamics simulations in conjunction with the molecular mechanics Poisson-Boltzmann (MM-PBSA) free energy calculation. Further, we have studied the effectiveness of the inhibitor against HIV-2 protease (PR2). The MM-PBSA calculation suggests that TMC-126 loses its potency against mutant variants and PR2 compared to wild-type PR1 mainly due to the loss in intermolecular electrostatic interactions. The potency of the inhibitor decreases in the order: wild type PR1 > M46L > MDR20 > I50V > PR2 > V32I > A28S. Our study reveals that the flap of PR1 adopts a semi-open conformation due to the mutation I50V or MDR20. The dissimilar nature of the movement of the flap tip of both monomers is evident from the dynamic cross-correlation map. The protein structural network analysis displays that mutation causes structural rearrangements and changes the communication path between residues. Overall, we believe our study may help explore and accelerate the development of novel HIV-1/HIV-2 protease inhibitors with better potency.


Anti-HIV Agents/pharmacology , HIV Protease/metabolism , Molecular Dynamics Simulation , Sulfonamides/pharmacology , Urethane/analogs & derivatives , Urethane/pharmacology
20.
PLoS One ; 16(10): e0258939, 2021.
Article En | MEDLINE | ID: mdl-34695166

Urethane, an acute laboratory anesthetic, produces distinct neurophysiological and physiological effects creating an effective model of the dynamics of natural sleep. As a model of both sleep-like neurophysiological activity and the downstream peripheral function urethane is used to model a variety of physiological and pathophysiological processes. As urethane is typically administered as a single-bolus dose, it is unclear the stability of peripheral physiological functions both within and between brain-states under urethane anesthesia. In this present study, we recorded respiration rate and heart rate concurrently with local field potentials from the neocortex and hippocampus to determine the stability of peripheral physiological functions within and between brain-states under urethane anesthesia. Our data shows electroencephalographic characteristics and breathing rate are remarkable stable over long-term recordings within minor reductions in heart rate on the same time scale. Our findings indicate that the use of urethane to model peripheral physiological functions associated with changing brain states are stable during long duration experiments.


Anesthetics, Intravenous/pharmacology , Brain/drug effects , Theta Rhythm/drug effects , Urethane/pharmacology , Animals , Brain/physiology , Electroencephalography , Male , Rats , Rats, Sprague-Dawley , Respiratory Rate/drug effects , Sleep/drug effects , Sleep/physiology , Theta Rhythm/physiology
...