Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Nucleic Acids Res ; 51(22): 12031-12042, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37953355

RESUMEN

Molnupiravir (EIDD-2801) is an antiviral that received approval for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. Treatment of bacteria or cell lines with the active form of molnupiravir, ß-d-N4-hydroxycytidine (NHC, or EIDD-1931), induces mutations in DNA. Yet these results contrast in vivo genotoxicity studies conducted during registration of the drug. Using a CRISPR screen, we found that inactivating the pyrimidine salvage pathway component uridine-cytidine kinase 2 (Uck2) renders cells more tolerant of NHC. Short-term exposure to NHC increased the mutation rate in a mouse myeloid cell line, with most mutations being T:A to C:G transitions. Inactivating Uck2 impaired the mutagenic activity of NHC, whereas over-expression of Uck2 enhanced mutagenesis. UCK2 is upregulated in many cancers and cell lines. Our results suggest differences in ribonucleoside metabolism contribute to the variable mutagenicity of NHC observed in cancer cell lines and primary tissues.


Asunto(s)
Citidina , Mutágenos , Uridina Quinasa , Animales , Ratones , Antivirales/toxicidad , Citidina/análogos & derivados , Citidina/farmacología , Mutagénesis , Mutágenos/farmacología , ARN Viral , Uridina Quinasa/genética , Uridina Quinasa/metabolismo
2.
Curr Drug Targets ; 24(11): 919-928, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534791

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is associated with a high mortality rate due to early recurrence and its metastasis features. To this day, effective treatment options for metastatic HCC remain a major challenge to patient treatment. Flavokawain B (FKB) is a naturally occurring chalcone molecule capable of providing effective therapy against this life-threatening disease. OBJECTIVE: This study investigated the anti-metastatic effects of FKB on the growth and development of metastatic HCC. METHODS: HepG2 cells were used in this study and a neutral red assay was performed to determine the IC50 value of FKB. Cell scratch and exclusion zone assays were performed to assess the rate of cell migration and invasion. Relative mRNA levels of UCK2, STAT3, VEGF and HIF-1α genes were quantified using RT-qPCR. RESULTS: FKB inhibited the proliferation of HepG2 cells at an IC50 value of 28 µM after 72 h of incubation. Its cytotoxic effect was confirmed to induce apoptosis through the phase-contrast inverted microscope. Cell migration and invasion were significantly inhibited at 7, 14, and 28 µM of FKB as compared to untreated cells. The inhibition in the cell migration significantly increased with the increasing concentrations of the bioactive compound. The relative expression levels of the UCK2 gene and its downstream genes, STAT3, VEGF and HIF-1α, were significantly downregulated after 72 h exposure to FKB treatment. CONCLUSION: Our data suggest that FKB inhibited HepG2 proliferation and further suppressed its metastasis partly by regulating the STAT3/Hif-1α/VEGF signalling pathway. FKB could be a potential alternative and viable strategy against HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular , Línea Celular Tumoral , Uridina Quinasa , Factor de Transcripción STAT3/farmacología
3.
Cell Mol Biol Lett ; 27(1): 105, 2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36447138

RESUMEN

BACKGROUND: Pyrimidine metabolism is critical for tumour progression. Uridine-cytidine kinase 2 (UCK2), a key regulator of pyrimidine metabolism, is elevated during hepatocellular carcinoma (HCC) development and exhibits carcinogenic effects. However, the key mechanism of UCK2 promoting HCC and the therapeutic value of UCK2 are still undefined. The aim of this study is to investigate the potential of UCK2 as a therapeutic target for HCC. METHODS: Gene expression matrices were obtained from public databases. RNA-seq, co-immunoprecipitation and RNA-binding protein immunoprecipitation were used to determine the mechanism of UCK2 promoting HCC. Immune cell infiltration level and immune-related functional scores were evaluated to assess the link between tumour microenvironment and UCK2. RESULTS: In HCC, the expression of UCK2 was upregulated in part by TGFß1 stimulation. UCK2 promoted cell cycle progression of HCC by preventing the degradation of mTOR protein and maintaining the stability of PDPK1 mRNA. We also identified UCK2 as a novel RNA-binding protein. Downregulation of UCK2 induced cell cycle arrest and activated the TNFα/NFκB signalling pathway-related senescence-associated secretory phenotype to modify the tumour microenvironment. Additionally, UCK2 was a biomarker of the immunosuppressive microenvironment. Downregulated UCK2 induced a secretory phenotype, which could improve the microenvironment, and decreased UCK2 remodelling metabolism could lower the resistance of tumour cells to T-cell-mediated killing. CONCLUSIONS: Targeting UCK2 inhibits HCC progression and could improve the response to immunotherapy in patients with HCC. Our study suggests that UCK2 could be an ideal target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Uridina Quinasa , Humanos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/inmunología , Inmunidad/genética , Inmunidad/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Pirimidinas , Microambiente Tumoral , Uridina Quinasa/genética , Uridina Quinasa/inmunología
4.
Biochemistry ; 61(21): 2261-2266, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36190114

RESUMEN

Pyrimidine nucleotide biosynthesis in humans is a promising chemotherapeutic target for infectious diseases caused by RNA viruses. Because mammalian cells derive pyrimidine ribonucleotides through a combination of de novo biosynthesis and salvage, combined inhibition of dihydroorotate dehydrogenase (DHODH; the first committed step in de novo pyrimidine nucleotide biosynthesis) and uridine/cytidine kinase 2 (UCK2; the first step in salvage of exogenous nucleosides) strongly attenuates viral replication in infected cells. However, while several pharmacologically promising inhibitors of human DHODH are known, to date there are no reports of medicinally viable leads against UCK2. Here, we use structure-based drug prototyping to identify two classes of promising leads that noncompetitively inhibit UCK2 activity. In the process, we have identified a hitherto unknown allosteric site at the intersubunit interface of this homotetrameric enzyme. By reducing the kcat of human UCK2 without altering its KM, these new inhibitors have the potential to enable systematic dialing of the fractional inhibition of pyrimidine salvage to achieve the desired antiviral effect with minimal host toxicity.


Asunto(s)
Nucleótidos de Pirimidina , Uridina Quinasa , Humanos , Uridina , Uridina Quinasa/antagonistas & inhibidores
5.
Biochem J ; 479(11): 1149-1164, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35583288

RESUMEN

Uridine-cytidine kinase like-1 (UCKL-1) is a largely uncharacterized protein with high sequence similarity to other uridine-cytidine kinases (UCKs). UCKs play an important role in the pyrimidine salvage pathway, catalyzing the phosphorylation of uridine and cytidine to UMP and CMP, respectively. Only two human UCKs have been identified, UCK1 and UCK2. Previous studies have shown both enzymes phosphorylate uridine and cytidine using ATP as the phosphate donor. No studies have evaluated the kinase potential of UCKL-1. We cloned and purified UCKL-1 and found that it successfully phosphorylated uridine and cytidine using ATP as the phosphate donor. The catalytic efficiency (calculated as kcat/KM) was 1.2 × 104 s-1, M-1 for uridine and 0.7 × 104 s-1, M-1 for cytidine. Our lab has previously shown that UCKL-1 is up-regulated in tumor cells, providing protection against natural killer (NK) cell killing activity. We utilized small interfering RNA (siRNA) to down-regulate UCKL-1 in vitro and in vivo to determine the effect of UCKL-1 on tumor growth and metastasis. The down-regulation of UCKL-1 in YAC-1 lymphoma cells in vitro resulted in decreased cell counts and increased apoptotic activity. Down-regulation of UCKL-1 in K562 leukemia cells in vivo led to decreased primary tumor growth and less tumor cell dissemination and metastasis. These results identify UCKL-1 as a bona fide pyrimidine kinase with the therapeutic potential to be a target for tumor growth inhibition and for diminishing or preventing metastasis.


Asunto(s)
Citidina , Uridina Quinasa/metabolismo , Adenosina Trifosfato/metabolismo , Citidina/genética , Citidina/metabolismo , Citidina/farmacología , Humanos , Fosfatos , Fosforilación , Fosfotransferasas , Pirimidinas/metabolismo , ARN Interferente Pequeño/metabolismo , Uridina/metabolismo , Uridina Quinasa/genética
6.
Future Oncol ; 18(8): 979-990, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35137600

RESUMEN

Objective: This study mainly explores how UCK2 impacts the progression of hepatocellular carcinoma (HCC). Methods: Mature miRNA and mRNA expression data along with the clinical data of HCC were provided by The Cancer Genome Atlas to mine differentially expressed miRNAs and mRNAs. Expression levels of UCK2 and miR-139-3p in HCC were tested through quantitative real-time PCR. How UCK2 and miR-139-3p impacted HCC cell activities were detected by Transwell, wound healing and cell proliferation approaches. Whether miR-139-3p could bind to UCK2 was detected by dual-luciferase assay. Results: This investigation found evidently high levels of UCK2 in both HCC tissue and cells and its marked association with poor prognosis. Overexpression of UCK2 could significantly promote the behaviors of HCC cells. In addition, poorly expressed miR-139-3p was inversely associated with UCK2. Dual-luciferase method also proved the association. The rescue experiment showed that miR-139-3p regulated cell behaviors in HCC through targeting UCK2. Conclusion: Highly expressed UCK2 was mediated by miR-139-3p to modulate cell behaviors in HCC. It is assumed that UCK2 is a possible target of HCC for cancer therapy purposes.


Globally, a large number of patients succumb to hepatocellular carcinoma (HCC) each year. Only 10­37% patients can undergo surgery because of hepatic failure and advanced tumors. Though the recovery rate after excision is 20­30%, the 5-year survival rate is low, and postoperative recurrence rate is high. Despite the widespread application of HCC screening, only few patients in the early stage have been diagnosed. Hence, it is urgent to explore its potential mechanism. This study investigates the relationship between aberrant expression of mRNA and malignancy of HCC cells. Finally, the abnormally high expression of UCK2 is correlated with patients' low survival rate and poor prognosis.


Asunto(s)
Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , Uridina Quinasa/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Humanos
7.
Int J Cancer ; 150(7): 1184-1197, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34913485

RESUMEN

Adult T-cell leukemia-lymphoma (ATL) is an aggressive neoplasm derived from T-cells transformed by human T-cell lymphotropic virus-1 (HTLV-1). Recently, we reported that regional DNA hypermethylation in HTLV-1-infected T-cells reflects the disease status of ATL and the anti-ATL effects of DNA demethylating agents, including azacitidine (AZA), decitabine (DAC) and a new DAC prodrug, OR-2100 (OR21), which we developed. Here, to better understand the mechanisms underlying drug resistance, we generated AZA-, DAC- and OR21-resistant (AZA-R, DAC-R and OR21-R, respectively) cells from the ATL cell line TL-Om1 and the HTLV-1-infected cell line MT-2 via long-term drug exposure. The efficacy of OR21 was almost the same as that of DAC, indicating that the pharmacodynamics of OR21 were due to release of DAC from OR21. Resistant cells did not show cellular responses observed in parental cells induced by treatment with drugs, including growth suppression, depletion of DNA methyltransferase DNMT1 and DNA hypomethylation. We also found that reduced expression of deoxycytidine kinase (DCK) correlated with lower susceptibility to DAC/OR21 and that reduced expression of uridine cytidine kinase2 (UCK2) correlated with reduced susceptibility to AZA. DCK and UCK2 catalyze phosphorylation of DAC and AZA, respectively; reconstitution of expression reversed the resistant phenotypes. A large homozygous deletion in DCK and a homozygous splice donor site mutation in UCK2 were identified in DAC-R TL-Om1 and AZA-R TL-Om1, respectively. Both genomic mutations might lead to loss of protein expression. Thus, inactivation of UCK2 and DCK might be a putative cause of phenotypes that are resistant to AZA and DAC/OR21, respectively.


Asunto(s)
Antineoplásicos/uso terapéutico , Metilación de ADN/efectos de los fármacos , Desoxicitidina Quinasa/fisiología , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Pirimidinas/metabolismo , Uridina Quinasa/fisiología , Azacitidina/uso terapéutico , Línea Celular Tumoral , Decitabina/uso terapéutico , Resistencia a Antineoplásicos , Humanos , Leucemia-Linfoma de Células T del Adulto/metabolismo , Piridinas/uso terapéutico
8.
Leukemia ; 35(4): 1023-1036, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32770088

RESUMEN

Mechanisms-of-resistance to decitabine and 5-azacytidine, mainstay treatments for myeloid malignancies, require investigation and countermeasures. Both are nucleoside analog pro-drugs processed by pyrimidine metabolism into a deoxynucleotide analog that depletes the key epigenetic regulator DNA methyltranseferase 1 (DNMT1). Here, upon serial analyses of DNMT1 levels in patients' bone marrows on-therapy, we found DNMT1 was not depleted at relapse. Showing why, bone marrows at relapse exhibited shifts in expression of key pyrimidine metabolism enzymes in directions adverse to pro-drug activation. Further investigation revealed the origin of these shifts. Pyrimidine metabolism is a network that senses and regulates deoxynucleotide amounts. Deoxynucleotide amounts were disturbed by single exposures to decitabine or 5-azacytidine, via off-target depletion of thymidylate synthase and ribonucleotide reductase respectively. Compensating pyrimidine metabolism shifts peaked 72-96 h later. Continuous pro-drug exposures stabilized these adaptive metabolic responses to thereby prevent DNMT1-depletion and permit exponential leukemia out-growth as soon as day 40. The consistency of the acute metabolic responses enabled exploitation: simple treatment modifications in xenotransplant models of chemorefractory leukemia extended noncytotoxic DNMT1-depletion and leukemia control by several months. In sum, resistance to decitabine and 5-azacytidine originates from adaptive responses of the pyrimidine metabolism network; these responses can be anticipated and thus exploited.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Azacitidina/farmacología , Decitabina/farmacología , Resistencia a Antineoplásicos , Redes y Vías Metabólicas/efectos de los fármacos , Pirimidinas/metabolismo , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Azacitidina/uso terapéutico , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Decitabina/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/genética , Humanos , Ratones , Uridina Quinasa/genética , Uridina Quinasa/metabolismo
9.
J Agric Food Chem ; 68(34): 9188-9194, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32806118

RESUMEN

A rapid in vitro enzymatic biosynthesis system has been developed as a biological manufacturing platform with potential industrial uses. Cytidine 5'-monophosphate (5'-CMP) is a key intermediate in the preparation of several nucleotide derivatives and is widely used in food and pharmaceutical industries. In this study, a highly efficient biosynthesis system was constructed for manufacturing 5'-CMP in vitro. Cytidine kinase (CK) was used for the biotransformation of cytidine to 5'-CMP, while polyphosphate kinase (PPK) was coupled for adenosine triphosphate regeneration. Both CK and PPK were selected from extremophiles, possessing great potential for biocatalytic synthesis. The effects of temperature, substrate concentration, and enzyme ratios were investigated to enhance the titer and yield of 5'-CMP. After optimization, 96 mM 5'-CMP was produced within 6 h, and the yield reached nearly 100%. This work highlights the ease of 5'-CMP production by an in vitro biomanufacturing platform and provides a green and efficient approach for the industrial synthesis of 5'-CMP.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Citidina Monofosfato/biosíntesis , Extremófilos/metabolismo , Secuencia de Aminoácidos , Bacterias/química , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biotransformación , Citidina Monofosfato/química , Estabilidad de Enzimas , Extremófilos/química , Extremófilos/enzimología , Extremófilos/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Alineación de Secuencia , Uridina Quinasa/química , Uridina Quinasa/genética , Uridina Quinasa/metabolismo
10.
Circulation ; 142(9): 882-898, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32640834

RESUMEN

BACKGROUND: Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS: To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS: Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS: Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.


Asunto(s)
Cardiomegalia/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , Proteína Forkhead Box O1/metabolismo , Uridina Quinasa/metabolismo , Animales , Cardiomegalia/genética , Proteínas Relacionadas con la Folistatina/genética , Proteína Forkhead Box O1/genética , Ratones , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Uridina Quinasa/genética
11.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 1002-1011, 2020 May 25.
Artículo en Chino | MEDLINE | ID: mdl-32567283

RESUMEN

Uridine-cytidine kinase, an important catalyst in the compensation pathway of nucleotide metabolism, can catalyze the phosphorylation reaction of cytidine to 5'-cytidine monophosphate (CMP), but the reaction needs NTP as the phosphate donor. To increase the production efficiency of CMP, uridine-cytidine kinase gene from Thermus thermophilus HB8 and polyphosphate kinase gene from Rhodobacter sphaeroides were cloned and expressed in Escherichia coli BL21(DE3). Uridine-cytidine kinase was used for the generation of CMP from cytidine and ATP, and polyphosphate kinase was used for the regeneration of ATP. Then, the D403 metal chelate resin was used to adsorb Ni²âº to form an immobilized carrier, and the immobilized carrier was specifically combined with the recombinant enzymes to form the immobilized enzymes. Finally, single-factor optimization experiment was carried out to determine the reaction conditions of the immobilized enzyme. At 30 °C and pH 8.0, 60 mmol/L cytidine and 0.5 mmol/L ATP were used as substrates to achieve 5 batches of high-efficiency continuous catalytic reaction, and the average molar yield of CMP reached 91.2%. The above method has the advantages of low reaction cost, high product yield and high enzyme utilization rate, and has good applied value for industrial production.


Asunto(s)
Citidina Monofosfato , Microbiología Industrial , Fosfotransferasas (Aceptor del Grupo Fosfato) , Uridina Quinasa , Citidina Monofosfato/metabolismo , Escherichia coli/genética , Microbiología Industrial/métodos , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo
12.
Nat Methods ; 17(3): 311-318, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015544

RESUMEN

Tissues and organs are composed of diverse cell types, which poses a major challenge for cell-type-specific profiling of gene expression. Current metabolic labeling methods rely on exogenous pyrimidine analogs that are only incorporated into RNA in cells expressing an exogenous enzyme. This approach assumes that off-target cells cannot incorporate these analogs. We disprove this assumption and identify and characterize the enzymatic pathways responsible for high background incorporation. We demonstrate that mammalian cells can incorporate uracil analogs and characterize the enzymatic pathways responsible for high background incorporation. To overcome these limitations, we developed a new small molecule-enzyme pair consisting of uridine/cytidine kinase 2 and 2'-azidouridine. We demonstrate that 2'-azidouridine is only incorporated in cells expressing uridine/cytidine kinase 2 and characterize selectivity mechanisms using molecular dynamics and X-ray crystallography. Furthermore, this pair can be used to purify and track RNA from specific cellular populations, making it ideal for high-resolution cell-specific RNA labeling. Overall, these results reveal new aspects of mammalian salvage pathways and serve as a new benchmark for designing, characterizing and evaluating methodologies for cell-specific labeling of biomolecules.


Asunto(s)
ARN/química , Uracilo/química , Animales , Azidas/química , Biotinilación , Dominio Catalítico , Técnicas de Cocultivo , Desoxiuridina/análogos & derivados , Desoxiuridina/química , Células HEK293 , Células HeLa , Humanos , Cinética , Ratones , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Células 3T3 NIH , Nucleósido-Fosfato Quinasa/metabolismo , Dominios Proteicos , ARN Interferente Pequeño/genética , Uridina/química , Uridina Quinasa/metabolismo
13.
Theranostics ; 10(3): 1046-1059, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31938050

RESUMEN

Resistance to the chemotherapeutic drug 5'-azacytidine (5'-AZA) is a major obstacle in the treatment of patients with acute myeloid leukemia (AML). The uridine-cytidine kinase 1 (UCK1) has an established role in activating 5'-AZA and its protein level is significantly downregulated in patients resistant to the drug. However, the underlying molecular mechanism for the reduced UCK1 expression remains to be elucidated. Methods: Using mass spectrometry and molecular biochemistry analyses, we identified specific enzymes mediating UCK1 degradation. Human AML cell lines and murine AML model were used to characterize the effects of these enzymes on 5'-AZA resistance. Results: We demonstrated that the ubiquitin E3 ligase KLHL2 interacted with UCK1 and mediated its polyubiquitination at the K81 residue and degradation. We showed that deubiquitinase USP28 antagonized KLHL2-mediated polyubiquitylation of UCK1. We also provided evidence that ATM-mediated phosphorylation of USP28 resulted in its disassociation from KLHL2 and UCK1 destabilization. Conversely, UCK1 phosphorylation by 5'-AZA-activated ATM enhanced the KLHL2-UCK1 complex formation. Importantly, silencing KLHL2 or USP28 overexpression not only inhibited AML cell proliferation but also sensitized AML cells to 5'-AZA-induced apoptosis in vitro and in vivo. These results were no longer observed in USP28-deficient cells. Conclusions: Our study revealed a novel mechanism by which the KLHL2/USP28/ATM axis mediates resistance of AML cells to 5'-AZA by regulating UCK1 ubiquitination and phosphorylation. These results have direct clinical implications and provide a rationale for the combination drug treatment of AML patients.


Asunto(s)
Azacitidina , Resistencia a Antineoplásicos , Inhibidores Enzimáticos , Leucemia Mieloide Aguda , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Azacitidina/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Uridina Quinasa/metabolismo
14.
J Cell Physiol ; 235(2): 1624-1636, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31309563

RESUMEN

While hundreds of consistently altered metabolic genes had been identified in hepatocellular carcinoma (HCC), the prognostic role of them remains to be further elucidated. Messenger RNA expression profiles and clinicopathological data were downloaded from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma and GSE14520 data set from the Gene Expression Omnibus database. Univariate Cox regression analysis and lasso Cox regression model established a novel four-gene metabolic signature (including acetyl-CoA acetyltransferase 1, glutamic-oxaloacetic transaminase 2, phosphatidylserine synthase 2, and uridine-cytidine kinase 2) for HCC prognosis prediction. Patients in the high-risk group shown significantly poorer survival than patients in the low-risk group. The signature was significantly correlated with other negative prognostic factors such as higher α-fetoprotein. The signature was found to be an independent prognostic factor for HCC survival. Nomogram including the signature shown some clinical net benefit for overall survival prediction. Furthermore, gene set enrichment analyses revealed several significantly enriched pathways, which might help explain the underlying mechanisms. Our study identified a novel robust four-gene metabolic signature for HCC prognosis prediction. The signature might reflect the dysregulated metabolic microenvironment and provided potential biomarkers for metabolic therapy and treatment response prediction in HCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Transcriptoma/genética , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Adulto , Anciano , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Femenino , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Masculino , Persona de Mediana Edad , Transferasas de Grupos Nitrogenados/genética , Transferasas de Grupos Nitrogenados/metabolismo , Nomogramas , Pronóstico , Uridina Quinasa/genética , Uridina Quinasa/metabolismo
15.
Chinese Journal of Biotechnology ; (12): 1002-1011, 2020.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-826876

RESUMEN

Uridine-cytidine kinase, an important catalyst in the compensation pathway of nucleotide metabolism, can catalyze the phosphorylation reaction of cytidine to 5'-cytidine monophosphate (CMP), but the reaction needs NTP as the phosphate donor. To increase the production efficiency of CMP, uridine-cytidine kinase gene from Thermus thermophilus HB8 and polyphosphate kinase gene from Rhodobacter sphaeroides were cloned and expressed in Escherichia coli BL21(DE3). Uridine-cytidine kinase was used for the generation of CMP from cytidine and ATP, and polyphosphate kinase was used for the regeneration of ATP. Then, the D403 metal chelate resin was used to adsorb Ni²⁺ to form an immobilized carrier, and the immobilized carrier was specifically combined with the recombinant enzymes to form the immobilized enzymes. Finally, single-factor optimization experiment was carried out to determine the reaction conditions of the immobilized enzyme. At 30 °C and pH 8.0, 60 mmol/L cytidine and 0.5 mmol/L ATP were used as substrates to achieve 5 batches of high-efficiency continuous catalytic reaction, and the average molar yield of CMP reached 91.2%. The above method has the advantages of low reaction cost, high product yield and high enzyme utilization rate, and has good applied value for industrial production.


Asunto(s)
Citidina Monofosfato , Metabolismo , Escherichia coli , Genética , Microbiología Industrial , Métodos , Fosfotransferasas (Aceptor del Grupo Fosfato) , Metabolismo , Uridina Quinasa
16.
Bioorg Med Chem Lett ; 29(18): 2559-2564, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31420268

RESUMEN

Clinically relevant inhibitors of dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in mammalian de novo pyrimidine synthesis, have strong antiviral and anticancer activity in vitro. However, they are ineffective in vivo due to efficient uridine salvage by infected or rapidly dividing cells. The pyrimidine salvage enzyme uridine-cytidine kinase 2 (UCK2), a ∼29 kDa protein that forms a tetramer in its active state, is necessary for uridine salvage. Notwithstanding the pharmacological potential of this target, no medicinally tractable inhibitors of the human enzyme have been reported to date. We therefore established and miniaturized an in vitro assay for UCK2 activity and undertook a high-throughput screen against a ∼40,000-compound library to generate drug-like leads. The structures, activities, and modes of inhibition of the most promising hits are described. Notably, our screen yielded non-competitive UCK2 inhibitors which were able to suppress nucleoside salvage in cells both in the presence and absence of DHODH inhibitors.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas/farmacología , Uridina Quinasa/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Uridina Quinasa/metabolismo
17.
Cancer Sci ; 110(9): 2734-2747, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31278886

RESUMEN

Lung cancer has the highest morbidity and mortality among all cancers. Discovery of early diagnostic and prognostic biomarkers of lung cancer can greatly facilitate the survival rate and reduce its mortality. In our study, by analyzing Gene Expression Omnibus and Oncomine databases, we found a novel potential oncogene uridine-cytidine kinase 2 (UCK2), which was overexpressed in lung tumor tissues compared to adjacent nontumor tissues or normal lung. Then we confirmed this finding in clinical samples. Specifically, UCK2 was identified as highly expressed in stage IA lung cancer with a high diagnostic accuracy (area under the receiver operating characteristic curve > 0.9). We also found that high UCK2 expression was related to poorer clinicopathological features, such as higher T stage and N stage and higher probability of early recurrence. Furthermore, we found that patients with high UCK2 expression had poorer first progression survival and overall survival than patients with low UCK2 expression. Univariate and multivariate Cox regression analyses showed that UCK2 was an independent risk factor related with worse DFS and OS. By gene set enrichment analysis, tumor-associated biological processes and signaling pathways were enriched in the UCK2 overexpression group, which indicated that UCK2 might play a vital role in lung cancer. Furthermore, in cytology experiments, we found that knockdown of UCK2 could suppress the proliferation and migration of lung cancer cells. In conclusion, our study indicated that UCK2 might be a potential early diagnostic and prognostic biomarker for lung cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/patología , Recurrencia Local de Neoplasia/diagnóstico , Uridina Quinasa/metabolismo , Anciano , Línea Celular Tumoral , Proliferación Celular , Conjuntos de Datos como Asunto , Supervivencia sin Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Pulmón/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/terapia , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pronóstico , Análisis de Supervivencia , Uridina Quinasa/genética
18.
Anticancer Res ; 39(7): 3609-3614, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31262886

RESUMEN

BACKGROUND/AIM: The novel cytidine analog RX-3117, which is activated by uridine-cytidine kinase 2 (UCK2), shows encouraging activity in pancreatic and bladder cancer Phase IIa studies. In this study we highlight the potential role of UCK2 as a biomarker for selecting patients for RX-3117 treatment. PATIENTS AND METHODS: The online genomics analysis and visualization platform, R2, developed by the Oncogenomics department at the AMC (Amsterdam, The Netherlands) was used for in silico UCK2-mRNA correlation with overall survival of pancreatic cancer patients, while UCK2 protein expression was evaluated by immunohistochemistry on pancreatic tumor formalin-fixed-paraffin-embedded sections from independent pancreatic cancer patients. mRNA expression was also determined for SUIT-2, PANC-1 and PDAC-3. Lastly, the drug sensitivity to RX-3117 was investigated using the Sulforhodamine-B cytotoxicity assay. RESULTS: The in silico data showed that a high UCK2-mRNA expression was correlated with a shorter overall survival in pancreatic cancer patients. Moreover, UCK2 protein expression was high in 21/25 patients, showing a significantly shorter mean. Overall Survival (8.4 versus 34.3 months, p=0.045). Sensitivity to RX-3117 varied between 0.6 and 11 µM. CONCLUSION: Pancreatic cancer cells are sensitive to pharmacologically achievable RX-3117 concentrations and UCK2 might be exploited as a biomarker for patient treatment selection.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Citidina/análogos & derivados , Neoplasias Pancreáticas/tratamiento farmacológico , Uridina Quinasa/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Anciano , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Citidina/farmacología , Femenino , Humanos , Masculino , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , ARN Mensajero/metabolismo , Uridina Quinasa/genética
19.
IUBMB Life ; 71(1): 105-112, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30304569

RESUMEN

Uridine-cytidine kinases (encoded by UCK1, UCKL1, and UCK2) catalyze the phosphorylation of uridine and cytidine to uridine monophosphate (UMP) and cytidine monophosphate (CMP). In this study, using data from the Cancer Genome Atlas (TCGA), we analyzed the expression profile of uridine-cytidine kinase genes in hepatocellular carcinoma (HCC), their prognostic value, and the epigenetic alterations associated with their dysregulation. Results showed that UCKL1 and UCK2, but not UCK1 were significantly upregulated in HCC tissues than in adjacent normal tissues. Only UCK2 was significantly upregulated in the deceased group and the recurrence group, compared to the control groups. Multivariate analysis confirmed that increased UCK2 expression was an independent prognostic indicator of shorter overall survival (OS) (HR: 1.760, 95% CI: 1.398-2.216, P < 0.001) and recurrence-free survival (RFS) (HR: 1.543, 95% CI: 1.232-1.933, P < 0.001). Two CpG sites (cg09277749 and cg21143899) were significantly hypomethylated in HCC tissues than in adjacent normal tissues and were negatively correlated with UCK2 expression. However, survival analysis showed that only high methylation of cg0927774 was associated with better OS and RFS of HCC patients. Based on the findings above, we infer that UCK2 upregulation might be a valuable prognostic marker in HCC. The methylation of status cg0927774 might play a critical role in its expression. © 2018 IUBMB Life, 71(1):105-112, 2019.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Pronóstico , Uridina Quinasa/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Citidina/metabolismo , Metilación de ADN/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Nucleósido-Fosfato Quinasa/genética , Fosforilación , Uridina/metabolismo
20.
Mol Carcinog ; 58(4): 603-615, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30556610

RESUMEN

Patients with advanced hepatocellular carcinoma (HCC) continue to have a dismal prognosis. Potential biomarkers to determine prognosis and select targeted therapies are urgently needed for patients with HCC. This study aimed to elucidate the role of UCK2 in HCC prognosis and tumor progression. We performed a screen of public databases to identify functional genes associated with HCC tumorigenesis, progression, and outcome. We identified uridine-cytidine kinase 2 (UCK2) as a gene of interest for further study. UCK2 promoting HCC aggressiveness was demonstrated by evaluation of clinical samples, in vitro experiments, in vivo tumorigenicity, and transcript analysis. UCK2 expression was generally elevated in HCC and was significantly correlated with poor survival and inferior clinicopathological characteristics of HCC patients. A multivariate analysis revealed that high UCK2 expression was an independent factor for poor prognosis. In HCC cell lines, UCK2 knockdown suppressed cell migration and invasion and inhibited cell proliferation, while UCK2 overexpression had an opposite effect. Animal model experiments confirmed that knockdown of UCK2 suppressed tumor growth in vivo. The bioinformatics analysis demonstrated that UCK2 might associated with metabolsim, splicesome, and adherens junction. UCK2 is highly associated with HCC malignant behavior and is a potential prognostic predictor for HCC patients in the clinic.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Uridina Quinasa/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimiento Celular , Proliferación Celular , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Uridina Quinasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA