Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Bacteriol ; 206(6): e0016224, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38814092

RESUMEN

Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after the completion of successful antibiotic treatment. Many clinical isolates, including the well-characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex integration host factor and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two-hybrid assays. We report direct interactions between the succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions may enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility. IMPORTANCE: Uropathogenic Escherichia coli (UPEC) are the leading cause of urinary tract infections (UTIs). Upon invasion into bladder epithelial cells, UPEC establish quiescent intracellular reservoirs that may lead to antibiotic tolerance and recurrent UTIs. Here, we demonstrate using an in vitro system that quiescent UPEC cells are tolerant to ampicillin and have decreased metabolism characterized by succinyl-CoA limitation. We identify the global regulator integration host factor complex and the cell division protein ZapE as critical modifiers of quiescence and antibiotic tolerance. Finally, we show that ZapE interacts with components of both the cell division machinery and the tricarboxylic acid cycle, and this interaction is conserved in non-pathogenic E. coli, establishing a novel link between cell division and metabolism.


Asunto(s)
Antibacterianos , Ciclo del Ácido Cítrico , Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica , Escherichia coli Uropatógena , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/crecimiento & desarrollo , Antibacterianos/farmacología , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ciclo del Ácido Cítrico/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/microbiología
2.
Foodborne Pathog Dis ; 20(8): 343-350, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37410536

RESUMEN

Uropathogenic Escherichia coli (UPEC) is known to cause 65-75% of human urinary tract infection (UTI) cases. Poultry meat is a reservoir of UPEC, which is suspected to cause foodborne UTIs. In the present study, we aimed to determine the growth potential of UPEC in ready-to-eat chicken breasts prepared by sous-vide processing. Four reference strains isolated from the urine of UTI patients (Bioresource Collection and Research Center [BCRC] 10,675, 15,480, 15,483, and 17,383) were tested by polymerase chain reaction assay for related genes to identify their phylogenetic type and UPEC specificity. A cocktail of these UPEC strains was inoculated into sous-vide cooked chicken breast at 103-4 colony-forming unit (CFU)/g and stored at 4°C, 10°C, 15°C, 20°C, 30°C, and 40°C. Changes in the populations of UPEC during storage were analyzed by a one-step kinetic analysis method using the U.S. Department of Agriculture [USDA] Integrated Pathogen Modeling Program-Global Fit [IPMP-Global Fit]. The results showed that the combination of the no lag phase primary model and the Huang square-root secondary model fitted well with the growth curves to obtain the appropriate kinetic parameters. This combination for predicting UPEC growth kinetics was further validated using it to study additional growth curves at 25°C and 37°C, which showed that the root mean square error, bias factor, and accuracy factor were 0.49-0.59 (log CFU/g), 0.941-0.984, and 1.056-1.063, respectively. In conclusion, the models developed in this study are acceptable and can be used to predict the growth of UPEC in sous-vide chicken breast.


Asunto(s)
Pollos , Comida Rápida , Almacenamiento de Alimentos , Carne , Escherichia coli Uropatógena , Pollos/microbiología , Comida Rápida/microbiología , Cinética , Carne/microbiología , Modelos Biológicos , Temperatura , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/crecimiento & desarrollo , Animales
3.
Proc Natl Acad Sci U S A ; 119(33): e2117904119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939684

RESUMEN

Many urinary tract infections (UTIs) are recurrent because uropathogens persist within the bladder epithelial cells (BECs) for extended periods between bouts of infection. Because persistent uropathogens are intracellular, they are often refractive to antibiotic treatment. The recent discovery of endogenous Lactobacillus spp. in the bladders of healthy humans raised the question of whether these endogenous bacteria directly or indirectly impact intracellular bacterial burden in the bladder. Here, we report that in contrast to healthy women, female patients experiencing recurrent UTIs have a bladder population of Lactobacilli that is markedly reduced. Exposing infected human BECs to L. crispatus in vitro markedly reduced the intracellular uropathogenic Escherichia coli (UPEC) load. The adherence of Lactobacilli to BECs was found to result in increased type I interferon (IFN) production, which in turn enhanced the expression of cathepsin D within lysosomes harboring UPECs. This lysosomal cathepsin D-mediated UPEC killing was diminished in germ-free mice and type I IFN receptor-deficient mice. Secreted metabolites of L. crispatus seemed to be responsible for the increased expression of type I IFN in human BECs. Intravesicular administration of Lactobacilli into UPEC-infected murine bladders markedly reduced their intracellular bacterial load suggesting that components of the endogenous microflora can have therapeutic effects against UTIs.


Asunto(s)
Antibiosis , Infecciones por Escherichia coli , Interferón Tipo I , Lactobacillus crispatus , Vejiga Urinaria , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Terapia Biológica , Catepsina D/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/terapia , Femenino , Humanos , Inmunidad Innata , Interferón Tipo I/inmunología , Lactobacillus crispatus/fisiología , Masculino , Ratones , Vejiga Urinaria/inmunología , Vejiga Urinaria/microbiología , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , Infecciones Urinarias/terapia , Escherichia coli Uropatógena/crecimiento & desarrollo
4.
Sci Rep ; 12(1): 486, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017565

RESUMEN

Uropathogenic Escherichia coli (UPEC) may undergo a cyclic cascade of morphological alterations that are believed to enhance the potential of UPEC to evade host responses and re-infect host cell. However, knowledge on the pathogenic potential and host activation properties of UPEC during the morphological switch is limited. Microarray analysis was performed on mRNA isolated from human bladder epithelial cells (HBEP) after exposure to three different morphological states of UPEC (normal coliform, filamentous form and reverted form). Cells stimulated with filamentous bacteria showed the lowest number of significant gene alterations, although the number of enriched gene ontology classes was high suggesting diverse effects on many different classes of host genes. The normal coliform was in general superior in stimulating transcriptional activity in HBEP cells compared to the filamentous and reverted form. Top-scored gene entities activated by all three morphological states included IL17C, TNFAIP6, TNF, IL20, CXCL2, CXCL3, IL6 and CXCL8. The number of significantly changed canonical pathways was lower in HBEP cells stimulated with the reverted form (32 pathways), than in cells stimulated with the coliform (83 pathways) or filamentous bacteria (138 pathways). A host cell invasion assay showed that filamentous bacteria were unable to invade bladder cells, and that the number of intracellular bacteria was markedly lower in cells infected with the reverted form compared to the coliform. In conclusion, the morphological state of UPEC has major impact on the host bladder response both when evaluating the number and the identity of altered host genes and pathways.


Asunto(s)
Células Epiteliales/metabolismo , Infecciones por Escherichia coli/genética , Transcripción Genética , Vejiga Urinaria/microbiología , Escherichia coli Uropatógena/fisiología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Células Epiteliales/microbiología , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Vejiga Urinaria/metabolismo , Escherichia coli Uropatógena/crecimiento & desarrollo
5.
Microb Genom ; 7(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928200

RESUMEN

Uropathogenic Escherichia coli (UPEC) UTI89 is a well-characterized strain, which has mainly been used to study UPEC virulence during urinary tract infection (UTI). However, little is known on UTI89 key fitness-factors during growth in lab media and during UTI. Here, we used a transposon-insertion-sequencing approach (TraDIS) to reveal the UTI89 essential-genes for in vitro growth and fitness-gene-sets for growth in Luria broth (LB) and EZ-MOPS medium without glucose, as well as for human bacteriuria and mouse cystitis. A total of 293 essential genes for growth were identified and the set of fitness-genes was shown to differ depending on the growth media. A modified, previously validated UTI murine model, with administration of glucose prior to infection was applied. Selected fitness-genes for growth in urine and mouse-bladder colonization were validated using deletion-mutants. Novel fitness-genes, such as tusA, corA and rfaG; involved in sulphur-acquisition, magnesium-uptake, and LPS-biosynthesis, were proved to be important during UTI. Moreover, rfaG was confirmed as relevant in both niches, and therefore it may represent a target for novel UTI-treatment/prevention strategies.


Asunto(s)
Bacteriuria/microbiología , Medios de Cultivo/química , Cistitis/microbiología , Genes Esenciales , Glucosa/administración & dosificación , Análisis de Secuencia de ADN/métodos , Escherichia coli Uropatógena/crecimiento & desarrollo , Animales , Técnicas Bacteriológicas , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Aptitud Genética , Glucosa/química , Glucosa/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Mutagénesis Insercional , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/genética , Factores de Virulencia/genética
6.
Biomolecules ; 11(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34944398

RESUMEN

Urinary tract infections (UTIs) are a serious health problem in the human population due to their chronic and recurrent nature. Bacteria causing UTIs form multispecies biofilms being resistant to the activity of the conventionally used antibiotics. Therefore, compounds of plant origin are currently being searched for, which could constitute an alternative strategy to antibiotic therapy. Our study aimed to determine the activity of asiatic acid (AA) against biofilms formed by uropathogenic Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. The influence of AA on the survival, biofilm mass formation by bacteria living in mono-, dual-, and triple-species consortia as well as the metabolic activity and bacterial cell morphology were determined. The spectrophotometric methods were used for biofilm mass synthesis and metabolic activity determination. The survival of bacteria was established using the serial dilution assay. The decrease in survival and a weakening of the ability to create biofilms, both single and multi-species, as well as changes in the morphology of bacterial cells were noticed. As AA works best against young biofilms, the use of AA-containing formulations, especially during the initial stages of infection, seems to be reasonable. However, there is a need for further research concerning AA especially regarding its antibacterial mechanisms of action.


Asunto(s)
Biopelículas/efectos de los fármacos , Enterobacter cloacae/crecimiento & desarrollo , Triterpenos Pentacíclicos/farmacología , Pseudomonas aeruginosa/crecimiento & desarrollo , Escherichia coli Uropatógena/crecimiento & desarrollo , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Enterobacter cloacae/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Estructura Molecular , Triterpenos Pentacíclicos/química , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/efectos de los fármacos
7.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830342

RESUMEN

Fibrogenic and inflammatory processes in the prostate are linked to the development of lower urinary tract symptoms (LUTS) in men. Our previous studies identified that osteopontin (OPN), a pro-fibrotic cytokine, is abundant in the prostate of men with LUTS, and its secretion is stimulated by inflammatory cytokines potentially to drive fibrosis. This study investigates whether the lack of OPN ameliorates inflammation and fibrosis in the mouse prostate. We instilled uropathogenic E. coli (UTI89) or saline (control) transurethrally to C57BL/6J (WT) or Spp1tm1Blh/J (OPN-KO) mice and collected the prostates one or 8 weeks later. We found that OPN mRNA and protein expression were significantly induced by E. coli-instillation in the dorsal prostate (DP) after one week in WT mice. Deficiency in OPN expression led to decreased inflammation and fibrosis and the prevention of urinary dysfunction after 8 weeks. RNAseq analysis identified that E. coli-instilled WT mice expressed increased levels of inflammatory and fibrotic marker RNAs compared to OPN-KO mice including Col3a1, Dpt, Lum and Mmp3 which were confirmed by RNAscope. Our results indicate that OPN is induced by inflammation and prolongs the inflammatory state; genetic blockade of OPN accelerates recovery after inflammation, including a resolution of prostate fibrosis.


Asunto(s)
Infecciones por Escherichia coli/genética , Osteopontina/genética , Próstata/metabolismo , Infecciones Urinarias/genética , Escherichia coli Uropatógena/patogenicidad , Animales , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/patología , Infecciones por Escherichia coli/prevención & control , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibrosis , Regulación de la Expresión Génica , Humanos , Inflamación , Lumican/genética , Lumican/metabolismo , Masculino , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteopontina/deficiencia , Próstata/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Infecciones Urinarias/metabolismo , Infecciones Urinarias/patología , Infecciones Urinarias/prevención & control , Escherichia coli Uropatógena/crecimiento & desarrollo
8.
J Med Microbiol ; 70(10)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34665111

RESUMEN

Introduction. The resistance to quinolone reported in uropathogenic Escherichia coli (UPEC) is commonly caused by mutations in the target site encoding genes such as the gyrA gene. Bacterial plasmids carrying resistance genes such as qnr genes can also transfer resistance. Biofilms produced by UPEC can further aid the development of resistant urinary tract infections (UTIs).Hypothesis. Biofilm production is associated with higher prevalence of quinolones resistance genetic determinants.Aim. To detect the prevalence of qnr genes and gyrA gene mutation among quinolone-resistant UPEC and to investigate the relation between these genetic resistance determinants and biofilm production.Methodology. Catheterized urine samples were collected from 420 patients with evidence of UTIs and processed using standard techniques. Isolated UPEC were screened for quinolone resistance using an antimicrobial susceptibility test. Biofilm production among quinolone-resistant isolates was detected using the tissue culture plate method. All quinolone-resistant isolates were screened for qnr genes (qnrA, qnrB and qnrS) by multiplex PCR and for gyrA gene mutation by PCR-RFLP.Results. Two hundred and sixty-four UPEC isolates were detected from 420 processed urine samples. Out of the identified 264 UPEC, 123 (46.6 %) isolates were found to be quinolone-resistant, showing resistance to 1 or more of the tested quinolones. Of the 123 quinolone-resistant UPEC detected, 71(57.7 %) were biofilm producers. The qnr genes were detected among 62.6 % of the quinolone-resistant UPEC, with an estimated prevalence of 22.8, 32.5 and 37.4 % for qnrA, qnrB and qnrS genes, respectively. Additionally, the gyrA gene mutation was identified among 53.7 % of the quinolone-resistant isolates. We reported a significant association between biofilm production and the presence of qnrA, qnrB and qnrS genes. Furthermore, the gyrA gene mutation was significantly associated with biofilm-producing isolates. The coexistence of qnr genes, gyrA gene mutation and biofilm production was demonstrated in almost 40 % of the quinolone-resistant isolates.Conclusions. A significantly higher prevalence of qnr genes (qnrA, qnrB and qnrS) as well as the gyrA gene mutation was found among biofilm-forming UPEC. The reported coexistence of these different resistance mechanisms could aggravate quinolone resistance. Therefore, monitoring of resistance mechanisms and a proper stewardship programme are necessary.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena , Humanos , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/crecimiento & desarrollo
9.
Eur J Immunol ; 51(9): 2218-2224, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34268737

RESUMEN

Neutrophils play a crucial role in immune defense against and clearance of uropathogenic Escherichia coli (UPEC)-mediated urinary tract infection, the most common bacterial infection in healthy humans. CD300a is an inhibitory receptor that binds phosphatidylserine and phosphatidylethanolamine, presented on the membranes of apoptotic cells. CD300a binding to phosphatidylserine and phosphatidylethanolamine, also known as the "eat me" signal, mediates immune tolerance to dying cells. Here, we demonstrate for the first time that CD300a plays an important role in the neutrophil-mediated immune response to UPEC-induced urinary tract infection. We show that CD300a-deficient neutrophils have impaired phagocytic abilities and despite their increased accumulation at the site of infection, they are unable to reduce bacterial burden in the bladder, which results in significant exacerbation of infection and worse host outcome. Finally, we demonstrate that UPEC's pore forming toxin α-hemolysin induces upregulation of the CD300a ligand on infected bladder epithelial cells, signaling to neutrophils to be cleared.


Asunto(s)
Infecciones por Escherichia coli/prevención & control , Neutrófilos/inmunología , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/inmunología , Infecciones Urinarias/inmunología , Escherichia coli Uropatógena/inmunología , Animales , Apoptosis/inmunología , Infecciones por Escherichia coli/inmunología , Proteínas de Escherichia coli/metabolismo , Femenino , Técnicas de Inactivación de Genes , Proteínas Hemolisinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Fagocitosis/genética , Fagocitosis/inmunología , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Receptores Inmunológicos/genética , Vejiga Urinaria/inmunología , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/crecimiento & desarrollo
10.
Cell Rep ; 36(3): 109351, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289360

RESUMEN

Recurrence of uropathogenic Escherichia coli (UPEC) infections has been attributed to reactivation of quiescent intracellular reservoirs (QIRs) in deep layers of the bladder wall. QIRs are thought to arise late during infection following dispersal of bacteria from intracellular bacterial communities (IBCs) in superficial umbrella cells. Here, we track the formation of QIR-like bacteria in a bladder organoid model that recapitulates the stratified uroepithelium within a volume suitable for high-resolution live-cell imaging. Bacteria injected into the organoid lumen enter umbrella-like cells and proliferate to form IBC-like bodies. In parallel, single bacteria penetrate deeper layers of the organoid wall, where they localize within or between uroepithelial cells. These "solitary" bacteria evade killing by antibiotics and neutrophils and are morphologically distinct from bacteria in IBCs. We conclude that bacteria with QIR-like properties may arise at early stages of infection, independent of IBC formation and rupture.


Asunto(s)
Antibacterianos/farmacología , Modelos Biológicos , Neutrófilos/patología , Organoides/microbiología , Vejiga Urinaria/microbiología , Escherichia coli Uropatógena/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Femenino , Humanos , Imagenología Tridimensional , Ratones Endogámicos C57BL , Viabilidad Microbiana/efectos de los fármacos , Movimiento , Neutrófilos/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/ultraestructura , Vejiga Urinaria/patología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/ultraestructura
11.
Nucleic Acids Res ; 49(13): 7375-7388, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34181709

RESUMEN

DNA methylation is a common epigenetic mark that influences transcriptional regulation, and therefore cellular phenotype, across all domains of life. In particular, both orphan methyltransferases and those from phasevariable restriction modification systems (RMSs) have been co-opted to regulate virulence epigenetically in many bacteria. We now show that three distinct non-phasevariable Type I RMSs in Escherichia coli have no measurable impact on gene expression, in vivo virulence, or any of 1190 in vitro growth phenotypes. We demonstrated this using both Type I RMS knockout mutants as well as heterologous installation of Type I RMSs into two E. coli strains. These data provide three clear and currently rare examples of restriction modification systems that have no impact on their host organism's gene regulation. This leads to the possibility that other such nonregulatory methylation systems may exist, broadening our view of the potential role that RMSs may play in bacterial evolution.


Asunto(s)
Metilación de ADN , Enzimas de Restricción-Modificación del ADN , Escherichia coli/genética , Animales , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Regulación Bacteriana de la Expresión Génica , Ratones , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/patogenicidad
12.
PLoS Pathog ; 17(5): e1009617, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34043736

RESUMEN

Urinary tract infections (UTIs) are a common bacterial infectious disease in humans, and strains of uropathogenic Escherichia coli (UPEC) are the most frequent cause of UTIs. During infection, UPEC must cope with a variety of stressful conditions in the urinary tract. Here, we demonstrate that the small RNA (sRNA) RyfA of UPEC strains is required for resistance to oxidative and osmotic stresses. Transcriptomic analysis of the ryfA mutant showed changes in expression of genes associated with general stress responses, metabolism, biofilm formation and genes coding for cell surface proteins. Inactivation of ryfA in UPEC strain CFT073 decreased urinary tract colonization in mice and the ryfA mutant also had reduced production of type 1 and P fimbriae (pili), adhesins which are known to be important for UTI. Furthermore, loss of ryfA also reduced UPEC survival in human macrophages. Thus, ryfA plays a key regulatory role in UPEC adaptation to stress, which contributes to UTI and survival in macrophages.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Infecciones por Escherichia coli/microbiología , ARN Pequeño no Traducido/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética , Adaptación Fisiológica , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Animales , Fimbrias Bacterianas/metabolismo , Perfilación de la Expresión Génica , Humanos , Macrófagos/microbiología , Ratones , Osmorregulación , Estrés Oxidativo , ARN Bacteriano/genética , Eliminación de Secuencia , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/fisiología , Virulencia
13.
Am J Physiol Cell Physiol ; 321(1): C134-C146, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979212

RESUMEN

The local environment forces a selection of bacteria that might invade the urinary tract, allowing only the most virulent to access the kidney. Quite similar to the diet in setting the stage for the gut microbiome, renal function determines the conditions for bacteria-host interaction in the urinary tract. In the kidney, the term local environment or microenvironment is completely justified because the environment literally changes within a few micrometers. The precise composition of the urine is a function of the epithelium lining the microdomain, and the microenvironment in the kidney shows more variation in the content of nutrients, ion composition, osmolality, and pH than any other site of bacteria-host interaction. This review will cover some of the aspects of bacterial-host interaction in this unique setting and how uropathogenic bacteria can alter the condition for bacteria-host interaction. There will be a particular focus on the recent findings regarding how bacteria specifically trigger host paracrine signaling, via release of extracellular ATP and activation of P2 purinergic receptors. These finding will be discussed from the perspective of severe urinary tract infections, including pyelonephritis and urosepsis.


Asunto(s)
Infecciones por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Hemolisinas/genética , Pielonefritis/genética , Receptores Purinérgicos P2/genética , Sepsis/genética , Infecciones Urinarias/genética , Escherichia coli Uropatógena/genética , Adenosina Trifosfato/metabolismo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Proteínas de Escherichia coli/metabolismo , Regulación de la Expresión Génica , Proteínas Hemolisinas/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Comunicación Paracrina , Pielonefritis/metabolismo , Pielonefritis/microbiología , Pielonefritis/patología , Receptores Purinérgicos P2/metabolismo , Sepsis/metabolismo , Sepsis/microbiología , Sepsis/patología , Transducción de Señal , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/patogenicidad
14.
Nat Commun ; 12(1): 2587, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972537

RESUMEN

Host cells use several anti-bacterial pathways to defend against pathogens. Here, using a uropathogenic Escherichia coli (UPEC) infection model, we demonstrate that bacterial infection upregulates RhoB, which subsequently promotes intracellular bacteria clearance by inducing LC3 lipidation and autophagosome formation. RhoB binds with Beclin 1 through its residues at 118 to 140 and the Beclin 1 CCD domain, with RhoB Arg133 being the key binding residue. Binding of RhoB to Beclin 1 enhances the Hsp90-Beclin 1 interaction, preventing Beclin 1 degradation. RhoB also directly interacts with Hsp90, maintaining RhoB levels. UPEC infections increase RhoB, Beclin 1 and LC3 levels in bladder epithelium in vivo, whereas Beclin 1 and LC3 levels as well as UPEC clearance are substantially reduced in RhoB+/- and RhoB-/- mice upon infection. We conclude that when stimulated by UPEC infections, host cells promote UPEC clearance through the RhoB-Beclin 1-HSP90 complex, indicating RhoB may be a useful target when developing UPEC treatment strategies.


Asunto(s)
Autofagosomas/metabolismo , Beclina-1/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Infecciones Urinarias/metabolismo , Escherichia coli Uropatógena/crecimiento & desarrollo , Proteína de Unión al GTP rhoB/metabolismo , Animales , Autofagosomas/genética , Autofagosomas/ultraestructura , Beclina-1/genética , Línea Celular , Epitelio/metabolismo , Epitelio/microbiología , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Femenino , Técnicas de Silenciamiento del Gen , Proteínas HSP90 de Choque Térmico/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Estabilidad Proteica , ARN Interferente Pequeño , Proteínas Recombinantes , Vejiga Urinaria/metabolismo , Vejiga Urinaria/microbiología , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad , Proteína de Unión al GTP rhoB/genética
15.
Molecules ; 25(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33137930

RESUMEN

Berberine is an alkaloid of the protoberberine type used in traditional oriental medicine. Its biological activities include documented antibacterial properties against a wide variety of microorganisms; nonetheless, its use against Escherichia coli strains isolated from urinary infections has not yet been widely investigated in vivo. The emergence of antimicrobial resistance requires new therapeutic approaches to ensure the continued effectiveness of antibiotics for the treatment and prevention of urinary infections. Moreover, uropathogenic Escherichia coli (UPEC) has developed several virulence factors and resistance to routine antibiotic therapy. To this end, several in vitro and in vivo tests were conducted to assess the activity of berberine on uropathogenic E. coli strains. Galleria mellonella as an infection model was employed to confirm the in vivo translatability of in vitro data on berberine activity and its influence on adhesion and invasion proprieties of E. coli on human bladder cells. In vitro pre-treatment with berberine was able to decrease the adhesive and invasive UPEC ability. In vivo treatment increased the larvae survival infected with UPEC strains and reduced the number of circulating pathogens in larvae hemolymph. These preliminary findings demonstrated the efficacy and reliability of G. mellonella as in vivo model for pre-clinical studies of natural substances.


Asunto(s)
Antibacterianos/farmacología , Berberina/farmacología , Infecciones por Escherichia coli , Mariposas Nocturnas/microbiología , Escherichia coli Uropatógena/crecimiento & desarrollo , Animales , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/metabolismo , Hemolinfa/microbiología , Larva
16.
Nucleic Acids Res ; 48(17): 9571-9588, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32813023

RESUMEN

Iron is essential for all bacteria. In most bacteria, intracellular iron homeostasis is tightly regulated by the ferric uptake regulator Fur. However, how Fur activates the iron-uptake system during iron deficiency is not fully elucidated. In this study, we found that YdiV, the flagella gene inhibitor, is involved in iron homeostasis in Escherichia coli. Iron deficiency triggers overexpression of YdiV. High levels of YdiV then transforms Fur into a novel form which does not bind DNA in a peptidyl-prolyl cis-trans isomerase SlyD dependent manner. Thus, the cooperation of YdiV, SlyD and Fur activates the gene expression of iron-uptake systems under conditions of iron deficiency. Bacterial invasion assays also demonstrated that both ydiV and slyD are necessary for the survival and growth of uropathogenic E. coli in bladder epithelial cells. This reveals a mechanism where YdiV not only represses flagella expression to make E. coli invisible to the host immune system, but it also promotes iron acquisition to help E. coli overcome host nutritional immunity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Hierro/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas Represoras/metabolismo , Escherichia coli Uropatógena/patogenicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Línea Celular , ADN Bacteriano/metabolismo , Células Epiteliales/microbiología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Homeostasis , Humanos , Isomerasa de Peptidilprolil/genética , Conformación Proteica , Proteínas Represoras/química , Proteínas Represoras/genética , Vejiga Urinaria/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/metabolismo
17.
J Bacteriol ; 202(20)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32778561

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling.IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Peptidoglicano/metabolismo , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/crecimiento & desarrollo , Antibacterianos/uso terapéutico , División Celular , Células Epiteliales/microbiología , Humanos , Percepción de Quorum , Escherichia coli Uropatógena/metabolismo
18.
NPJ Biofilms Microbiomes ; 6(1): 6, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051417

RESUMEN

Current antibiotics cannot eradicate uropathogenic Escherichia coli (UPEC) biofilms, leading to recurrent urinary tract infections. Here, we show that the insect antimicrobial peptide cecropin A (CecA) can destroy planktonic and sessile biofilm-forming UPEC cells, either alone or when combined with the antibiotic nalidixic acid (NAL), synergistically clearing infection in vivo without off-target cytotoxicity. The multi-target mechanism of action involves outer membrane permeabilization followed by biofilm disruption triggered by the inhibition of efflux pump activity and interactions with extracellular and intracellular nucleic acids. These diverse targets ensure that resistance to the CecA + NAL combination emerges slowly. The antimicrobial mechanisms of CecA, thus, extend beyond pore-forming activity to include an unanticipated biofilm-eradication process, offering an alternative approach to combat antibiotic-resistant UPEC infections.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/administración & dosificación , Biopelículas/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Ácido Nalidíxico/farmacología , Proteínas Citotóxicas Formadoras de Poros/administración & dosificación , Escherichia coli Uropatógena/crecimiento & desarrollo , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Infecciones por Escherichia coli/mortalidad , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Lepidópteros , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Mortalidad , Proteínas Citotóxicas Formadoras de Poros/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/genética
19.
Life Sci Space Res (Amst) ; 24: 18-24, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31987476

RESUMEN

We report the results of the EcAMSat (Escherichia coli Antimicrobial Satellite) autonomous space flight experiment, investigating the role of σs in the development of antibiotic resistance in uropathogenic E. coli (UPEC) in microgravity (µ-g). The presence of σs, encoded by the rpoS gene, has been shown to increase antibiotic resistance in Earth gravity, but it was unknown if this effect occurs in µ-g. Two strains, wildtype (WT) UPEC and its isogenic ΔrpoS mutant, were grown to stationary phase aboard EcAMSat, an 11-kg small satellite, and in a parallel ground-based control experiment; cell growth rates for the two strains were found to be unaltered by µ-g. After starvation for over 24 h, stationary-phase cells were incubated with three doses of gentamicin (Gm), a common treatment for urinary tract infections (which have been reported in astronauts). Cellular metabolic activity was measured optically using the redox-based indicator alamarBlue (aB): both strains exhibited slower metabolism in µ-g, consistent with results from previous smallsat missions. The results also showed that µ-g did not enhance UPEC resistance to Gm; in fact, both strains were more susceptible to Gm in µ-g. It was also found, via a second ground-control experiment, that multi-week storage in the payload hardware stressed the cells, potentially obscuring small differential effects of the antibiotic between WT and mutant and/or between µ-g and ground. Overall, results showed that the ∆rpoS mutant was 34-37% less metabolically active than the WT for four different sets of conditions: ground without Gm, ground with Gm; µ-g without Gm, µ-g with Gm. We conclude therefore that the rpoS gene and its downstream products are important therapeutic targets for treating bacterial infections in space, much as they are on the ground.


Asunto(s)
Proteínas Bacterianas/fisiología , Farmacorresistencia Bacteriana , Factor sigma/fisiología , Escherichia coli Uropatógena/efectos de los fármacos , Ingravidez , Antibacterianos/farmacología , Vuelo Espacial , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/fisiología
20.
Genes (Basel) ; 12(1)2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396416

RESUMEN

Several methods are available to probe cellular responses to external stresses at the whole genome level. RNAseq can be used to measure changes in expression of all genes following exposure to stress, but gives no information about the contribution of these genes to an organism's ability to survive the stress. The relative contribution of each non-essential gene in the genome to the fitness of the organism under stress can be obtained using methods that use sequencing to estimate the frequencies of members of a dense transposon library grown under different conditions, for example by transposon-directed insertion sequencing (TraDIS). These two methods thus probe different aspects of the underlying biology of the organism. We were interested to determine the extent to which the data from these two methods converge on related genes and pathways. To do this, we looked at a combination of biologically meaningful stresses. The human gut contains different organic short-chain fatty acids (SCFAs) produced by fermentation of carbon compounds, and Escherichia coli is exposed to these in its passage through the gut. Their effect is likely to depend on both the ambient pH and the level of oxygen present. We, therefore, generated RNAseq and TraDIS data on a uropathogenic E. coli strain grown at either pH 7 or pH 5.5 in the presence or absence of three SCFAs (acetic, propionic and butyric), either aerobically or anaerobically. Our analysis identifies both known and novel pathways as being likely to be important under these conditions. There is no simple correlation between gene expression and fitness, but we found a significant overlap in KEGG pathways that are predicted to be enriched following analysis of the data from the two methods, and the majority of these showed a fitness signature that would be predicted from the gene expression data, assuming expression to be adaptive. Genes which are not in the E. coli core genome were found to be particularly likely to show a positive correlation between level of expression and contribution to fitness.


Asunto(s)
Medios de Cultivo/farmacología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Aptitud Genética , Transcripción Genética , Escherichia coli Uropatógena/efectos de los fármacos , Ácido Acético/farmacología , Aerobiosis , Anaerobiosis , Ácido Butírico/farmacología , Medios de Cultivo/química , Elementos Transponibles de ADN , Proteínas de Escherichia coli/metabolismo , Biblioteca de Genes , Genoma Bacteriano , Humanos , Concentración de Iones de Hidrógeno , Propionatos/farmacología , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...