RESUMEN
The main amyloid-beta (Aß) variants detected in the human brain are full-length Aß1-40 and Aß1-42 peptides; however, a significant proportion of AD brain Aß consists also of N-terminal truncated/modified species. The majority of the previous immunotherapeutic strategies targeted the N-terminal immunodominant epitope of the full-length Aß; however, most of the pathological N-truncated forms of Aß lack this critical B cell epitope. Recently, virus-like particles (VLPs), self-assembled structures with highly ordered repetitive patterns on their surface and capable of inducing robust immune responses, were applied as a promising platform for various antigen expressions. In this study, we expressed in plants two chimeric HPV16 L1 capsid proteins obtained by introduction of the ß-amyloid 11-28 epitope (Aß 11-28) into the h4 helix or into the coil regions of the L1 protein. The Aß 11-28 epitope was chosen because it is present in the full-length Aß 1-42 as well as in the truncated/modified amyloid peptide species. After expression, we assembled the chimerical L1/Aß 11-28 into a VLP in which the Aß 11-28 epitope is exposed at very high density (360 times) on the surface of the VLP. The chimeric VLPs elicited in mice Aß-specific antibodies binding to ß-amyloid plaques in APP-tg mouse and AD brains. Our study is the first to demonstrate a successful production in plants and immunogenic properties in mice of chimeric HPV16 L1 VLPs bearing Aß epitope that may be of potential relevance for the development of multivalent vaccines for a multifactorial disease such as AD.