Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 148
1.
Sci Rep ; 14(1): 10842, 2024 05 12.
Article En | MEDLINE | ID: mdl-38735993

Yellow fever outbreaks are prevalent, particularly in endemic regions. Given the lack of an established treatment for this disease, significant attention has been directed toward managing this arbovirus. In response, we developed a multiepitope vaccine designed to elicit an immune response, utilizing advanced immunoinformatic and molecular modeling techniques. To achieve this, we predicted B- and T-cell epitopes using the sequences from all structural (E, prM, and C) and nonstructural proteins of 196 YFV strains. Through comprehensive analysis, we identified 10 cytotoxic T-lymphocyte (CTL) and 5T-helper (Th) epitopes that exhibited overlap with B-lymphocyte epitopes. These epitopes were further evaluated for their affinity to a wide range of human leukocyte antigen system alleles and were rigorously tested for antigenicity, immunogenicity, allergenicity, toxicity, and conservation. These epitopes were linked to an adjuvant ( ß -defensin) and to each other using ligands, resulting in a vaccine sequence with appropriate physicochemical properties. The 3D structure of this sequence was created, improved, and quality checked; then it was anchored to the Toll-like receptor. Molecular Dynamics and Quantum Mechanics/Molecular Mechanics simulations were employed to enhance the accuracy of docking calculations, with the QM portion of the simulations carried out utilizing the density functional theory formalism. Moreover, the inoculation model was able to provide an optimal codon sequence that was inserted into the pET-28a( +) vector for in silico cloning and could even stimulate highly relevant humoral and cellular immunological responses. Overall, these results suggest that the designed multi-epitope vaccine can serve as prophylaxis against the yellow fever virus.


Epitopes, T-Lymphocyte , Yellow Fever Vaccine , Yellow Fever , Yellow fever virus , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology , Yellow fever virus/genetics , Humans , Yellow Fever/prevention & control , Yellow Fever/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Vaccinology/methods , Models, Molecular , Vaccine Development , Molecular Dynamics Simulation , T-Lymphocytes, Cytotoxic/immunology
3.
Int Immunopharmacol ; 133: 112120, 2024 May 30.
Article En | MEDLINE | ID: mdl-38657497

Despite the efforts of global programme to eliminate lymphatic filariasis (GPELF), the threat of lymphatic filariasis (LF) still looms over humanity in terms of long-term disabilities, and morbidities across the globe. In light of this situation, investigators have chosen to focus on the development of immunotherapeutics targeting the physiologically important filarial-specific proteins. Glutaredoxin (16.43 kDa) plays a pivotal role in filarial redox biology, serving as a vital contributor. In the context of the intra-host survival of filarial parasites, this antioxidant helps in mitigating the oxidative stress imposed by the host immune system. Given its significant contribution, the development of a vaccine targeting glutaredoxin holds promise as a new avenue for achieving a filaria-free world. Herein, multi-epitope-based vaccine was designed using advanced immunoinformatics approach. Initially, 4B-cell epitopes and 6 T-cell epitopes (4 MHC I and 2 MHC II) were identified from the 146 amino acid long sequence of glutaredoxin of the human filarid, Wuchereria bancrofti. Subsequent clustering of these epitopes with linker peptides finalized the vaccine structure. To boost TLR-mediated innate immunity, TLR-specific adjuvants were incorporated into the designed vaccine. After that, experimental analyses confirm the designed vaccine, Vac4 as anefficient ligand of human TLR5 to elicit protective innate immunity against filarial glutaredoxin. Immune simulation further demonstrated abundant levels of IgG and IgM as crucial contributors in triggering vaccine-induced adaptive responses in the recipients. Hence, to facilitate the validation of immunogenicity of the designed vaccine, Vac4 was cloned in silico in pET28a(+) expression vector for recombinant production. Taken together, our findings suggest that vaccine-mediated targeting of filarial glutaredoxin could be a future option for intervening LF on a global scale.


Elephantiasis, Filarial , Glutaredoxins , Wuchereria bancrofti , Glutaredoxins/immunology , Glutaredoxins/metabolism , Animals , Elephantiasis, Filarial/prevention & control , Elephantiasis, Filarial/immunology , Humans , Wuchereria bancrofti/immunology , Epitopes, T-Lymphocyte/immunology , Vaccinology/methods , Epitopes, B-Lymphocyte/immunology , Vaccines, Subunit/immunology , Mice , Antigens, Helminth/immunology , Female , Mice, Inbred BALB C
4.
Expert Rev Vaccines ; 23(1): 535-545, 2024.
Article En | MEDLINE | ID: mdl-38664959

INTRODUCTION: Zebrafishes represent a proven model for human diseases and systems biology, exhibiting physiological and genetic similarities and having innate and adaptive immune systems. However, they are underexplored for human vaccinology, vaccine development, and testing. Here we summarize gaps and challenges. AREAS COVERED: Zebrafish models have four potential applications: 1) Vaccine safety: The past successes in using zebrafishes to test xenobiotics could extend to vaccine and adjuvant formulations for general safety or target organs due to the zebrafish embryos' optical transparency. 2) Innate immunity: The zebrafish offers refined ways to examine vaccine effects through signaling via Toll-like or NOD-like receptors in zebrafish myeloid cells. 3) Adaptive immunity: Zebrafishes produce IgM, IgD,and two IgZ immunoglobulins, but these are understudied, due to a lack of immunological reagents for challenge studies. 4) Systems vaccinology: Due to the availability of a well-referenced zebrafish genome, transcriptome, proteome, and epigenome, this model offers potential here. EXPERT OPINION: It remains unproven whether zebrafishes can be employed for testing and developing human vaccines. We are still at the hypothesis-generating stage, although it is possible to begin outlining experiments for this purpose. Through transgenic manipulation, zebrafish models could offer new paths for shaping animal models and systems vaccinology.


Adaptive Immunity , Adjuvants, Immunologic , Immunity, Innate , Models, Animal , Vaccine Development , Vaccines , Zebrafish , Zebrafish/immunology , Animals , Adjuvants, Immunologic/administration & dosage , Humans , Vaccines/immunology , Vaccines/administration & dosage , Vaccinology/methods
5.
Ann Ig ; 36(4): 446-461, 2024.
Article En | MEDLINE | ID: mdl-38436081

Introduction: The COVID-19 pandemic had a profound impact on vaccines' Research and Development, on vaccines' market, and on immunization programmes and policies. The need to promptly respond to the health emergency boostered resources' al-location and innovation, while new technologies were made available. Regulatory procedures were revised and expedited, and global production and distribution capacities significantly increased. Aim of this review is to outline the trajectory of research in vaccinology and vaccines' pipeline, highlighting major challenges and opportunities, and projecting future perspectives in vaccine preventables diseases' prevention and control. Study Design: Narrative review. Methods: We comprehensively consulted key biomedical databases including "Medline" and "Embase", preprint platforms, including"MedRxiv" and "BioRxiv", clinical trial registries, selected grey literature sources and scientific reports. Further data and insights were collected from experts in the field. We first reflect on the impact that the COVID-19 had on vaccines' Research and Development, regulatory frameworks, and market, we then present updated figures of vaccines pipeline, by different technologies, comparatively highlighting advantages and disadvantages. We conclude summarizing future perspectives in vaccines' development and immunizations strategies, outlining key challenges, knowledge gaps and opportunities for prevention strategies. Results: COVID-19 vaccines' development has been largely supported by public funding. New technologies and expetited autho-rization and distribution processes allowed to control the pandemic, leading vaccines' market to grow exponentially. In the post-pandemic era investments in prevention are projected to decrease but advancements in technology offer great potential to future immunization strategies. As of 2023, the vaccine pipeline include almost 1,000 candidates, at different Research and Development phase, including innovative recombinant protein vaccines, nucleic acid vaccines and viral vector vaccines. Vaccines' technology platforms development varies by disease. Overall, vaccinology is progressing towards increasingly safe and effective products that are easily manufacturable and swiftly convertible. Conclusions: Vaccine research is rapidly evolving, emerging technologies and new immunization models offer public health new tools and large potential to fight vaccines preventables diseases, with promising new platforms and broadened target populations. Real-life data analysis and operational research is needed to evaluate how such potential is exploited in public health practice to improve population health.


COVID-19 Vaccines , COVID-19 , Vaccine Development , Humans , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Pandemics/prevention & control , Forecasting , Biomedical Research/trends , Vaccinology/trends , Vaccinology/methods , Immunization Programs/trends , Drug Development/trends
6.
Cell Rep Methods ; 4(3): 100731, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38490204

Systems vaccinology studies have identified factors affecting individual vaccine responses, but comparing these findings is challenging due to varying study designs. To address this lack of reproducibility, we established a community resource for comparing Bordetella pertussis booster responses and to host annual contests for predicting patients' vaccination outcomes. We report here on our experiences with the "dry-run" prediction contest. We found that, among 20+ models adopted from the literature, the most successful model predicting vaccination outcome was based on age alone. This confirms our concerns about the reproducibility of conclusions between different vaccinology studies. Further, we found that, for newly trained models, handling of baseline information on the target variables was crucial. Overall, multiple co-inertia analysis gave the best results of the tested modeling approaches. Our goal is to engage community in these prediction challenges by making data and models available and opening a public contest in August 2024.


Multiomics , Vaccines , Humans , Vaccinology/methods , Reproducibility of Results , Computer Simulation
7.
Vaccine ; 42(10): 2503-2518, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38523003

Vaccines have significantly reduced the impact of numerous deadly viral infections. However, there is an increasing need to expedite vaccine development in light of the recurrent pandemics and epidemics. Also, identifying vaccines against certain viruses is challenging due to various factors, notably the inability to culture certain viruses in cell cultures and the wide-ranging diversity of MHC profiles in humans. Fortunately, reverse vaccinology (RV) efficiently overcomes these limitations and has simplified the identification of epitopes from antigenic proteins across the entire proteome, streamlining the vaccine development process. Furthermore, it enables the creation of multiepitope vaccines that can effectively account for the variations in MHC profiles within the human population. The RV approach offers numerous advantages in developing precise and effective vaccines against viral pathogens, including extensive proteome coverage, accurate epitope identification, cross-protection capabilities, and MHC compatibility. With the introduction of RV, there is a growing emphasis among researchers on creating multiepitope-based vaccines aiming to stimulate the host's immune responses against multiple serotypes, as opposed to single-component monovalent alternatives. Regardless of how promising the RV-based vaccine candidates may appear, they must undergo experimental validation to probe their protection efficacy for real-world applications. The time, effort, and resources allocated to the laborious epitope identification process can now be redirected toward validating vaccine candidates identified through the RV approach. However, to overcome failures in the RV-based approach, efforts must be made to incorporate immunological principles and consider targeting the epitope regions involved in disease pathogenesis, immune responses, and neutralizing antibody maturation. Integrating multi-omics and incorporating artificial intelligence and machine learning-based tools and techniques in RV would increase the chances of developing an effective vaccine. This review thoroughly explains the RV approach, ideal RV-based vaccine construct components, RV-based vaccines designed to combat viral pathogens, its challenges, and future perspectives.


Artificial Intelligence , Vaccines , Humans , Proteome , Vaccinology/methods , Epitopes , Computational Biology/methods , Vaccines, Subunit , Epitopes, T-Lymphocyte , Molecular Docking Simulation , Epitopes, B-Lymphocyte
8.
Immunol Res ; 72(1): 82-95, 2024 Feb.
Article En | MEDLINE | ID: mdl-37608125

Rickettsia prowazekii is an intracellular, obligate, gram-negative coccobacillus responsible for epidemic typhus. Usually, the infected body louse or its excrement when rubbed into the skin abrasions transmits the disease. The infection with R. prowazekii causes the highest death rate (> 20% without antibiotic treatment and now 1-7%), followed by epidemic typhus, which often manifests in unsanitary conditions (up to 15-30%). Conventionally, vaccine design has required pathogen growth and both assays (in vivo and in vitro), which are costly and time-consuming. However, advancements in bioinformatics and computational biology have accelerated the development of effective vaccine designs, reducing the need for traditional, time-consuming laboratory experiments. Subtractive genomics and reverse vaccinology have become prominent computational methods for vaccine model construction. Therefore, the RefSeq sequence of Rickettsia prowazekii (strain Madrid E) (Proteome ID: UP000002480) was subjected to subtractive genomic analysis, including factors such as non-similarity to host proteome, essentiality, subcellular localization, antigenicity, non-allergenicity, and stability. Based on these parameters, the vaccine design process selected specific proteins such as outer membrane protein R (O05971_RICPR PETR; OmpR). Eventually, the OmpR was subjected to a reverse vaccinology approach that included molecular docking, immunological simulation, and the discovery of B-cell epitopes and MHC-I and MHC-II epitopes. Consequently, a chimeric or multi-epitope-based vaccine was proposed by selecting the V11 vaccine and its 3D structure modeling along with molecular docking against TLR and HLA protein, in silico simulation, and vector designing. The obtained results from this investigation resulted in a new perception of inhibitory ways against Rickettsia prowazekii by instigating novel immunogenic targets. To further assess the efficacy and protective ability of the newly designed V11 vaccine against Rickettsia prowazekii infections, additional evaluation such as in vitro or in vivo immunoassays is recommended.


Rickettsia prowazekii , Typhus, Endemic Flea-Borne , Typhus, Epidemic Louse-Borne , Humans , Proteomics , Rickettsia prowazekii/genetics , Rickettsia prowazekii/metabolism , Typhus, Epidemic Louse-Borne/microbiology , Molecular Docking Simulation , Proteome , Vaccinology/methods , Computational Biology/methods , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte/genetics , Vaccines, Subunit
9.
Int J Biol Macromol ; 258(Pt 1): 128753, 2024 Feb.
Article En | MEDLINE | ID: mdl-38104690

Viruses transmitted by arthropods, such as Dengue, Zika, and Chikungunya, represent substantial worldwide health threats, particularly in countries like India. The lack of approved vaccines and effective antiviral therapies calls for developing innovative strategies to tackle these arboviruses. In this study, we employed immunoinformatics methodologies, incorporating reverse vaccinology, to design a multivalent vaccine targeting the predominant arboviruses. Epitopes of B and T cells were recognized within the non-structural proteins of Dengue, Zika, and Chikungunya viruses. The predicted epitopes were enhanced with adjuvants ß-defensin and RS-09 to boost the vaccine's immunogenicity. Sixteen distinct vaccine candidates were constructed, each incorporating epitopes from all three viruses. FUVAC-11 emerged as the most promising vaccine candidate through molecular docking and molecular dynamics simulations, demonstrating favorable binding interactions and stability. Its effectiveness was further evaluated using computational immunological studies confirming strong immune responses. The in silico cloning performed using the pET-28a(+) plasmid facilitates the future experimental implementation of this vaccine candidate, paving the way for potential advancements in combating these significant arboviral threats. However, further in vitro and in vivo studies are warranted to confirm the results obtained in this computational study, which highlights the effectiveness of immunoinformatics and reverse vaccinology in creating vaccines against major Arboviruses, offering a promising model for developing vaccines for other vector-borne diseases and enhancing global health security.


Arboviruses , Chikungunya Fever , Dengue , Vaccines , Zika Virus Infection , Zika Virus , Humans , Molecular Docking Simulation , Chikungunya Fever/prevention & control , Vaccines, Combined , Vaccinology/methods , Epitopes, T-Lymphocyte/chemistry , Computational Biology/methods , Epitopes, B-Lymphocyte , Vaccines, Subunit
10.
Viruses ; 15(10)2023 10 21.
Article En | MEDLINE | ID: mdl-37896907

mRNA vaccines are a new class of vaccine that can induce potent and specific immune responses against various pathogens. However, the design of mRNA vaccines requires the identification and optimization of suitable antigens, which can be challenging and time consuming. Reverse vaccinology is a computational approach that can accelerate the discovery and development of mRNA vaccines by using genomic and proteomic data of the target pathogen. In this article, we review the advances of reverse vaccinology for mRNA vaccine design against SARS-CoV-2, the causative agent of COVID-19. We describe the steps of reverse vaccinology and compare the in silico tools used by different studies to design mRNA vaccines against SARS-CoV-2. We also discuss the challenges and limitations of reverse vaccinology and suggest future directions for its improvement. We conclude that reverse vaccinology is a promising and powerful approach to designing mRNA vaccines against SARS-CoV-2 and other emerging pathogens.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Vaccines , Vaccinology/methods , Proteomics , mRNA Vaccines , Vaccines, Synthetic
11.
Biologicals ; 84: 101715, 2023 Nov.
Article En | MEDLINE | ID: mdl-37793308

Maedi Visna Virus (MVV) causes a chronic viral disease in sheep. Since there is no specific therapeutic drug that targets MVV, development of a vaccine against the MVV is inevitable. This study aimed to analyze the gag and env proteins as vaccine candidate proteins and to identify epitopes in these proteins. In addition, it was aimed to construct a multi-epitope vaccine candidate. According to the obtained results, the gag protein was detected to be more conserved and had a higher antigenicity value. Also, the number of alpha helix in the secondary structure was higher and transmembrane helices were not detected. Although many B cell and MHC-I/II epitopes were predicted, only 19 of them were detected to have the properties of antigenic, non-allergenic, non-toxic, soluble, and non-hemolytic. Of these epitopes, five were remarkable due to having the highest antigenicity value. However, the final multi-epitope vaccine was constructed with 19 epitopes. A strong affinity was shown between the final multi-epitope vaccine and TLR-2/4. In conclusion, the gag protein was a better antigen. However, both proteins had epitopes with high antigenicity value. Also, the final multi-epitope vaccine construct had a potential to be used as a peptide vaccine due to its immuno-informatics results.


Visna-maedi virus , Animals , Sheep , Epitopes , Gene Products, env , Vaccinology/methods , Gene Products, gag/genetics , Vaccines, Subunit , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , Molecular Docking Simulation , Computational Biology/methods
12.
J Chem Theory Comput ; 19(16): 5315-5333, 2023 Aug 22.
Article En | MEDLINE | ID: mdl-37527403

The design of new biomolecules able to harness immune mechanisms for the treatment of diseases is a prime challenge for computational and simulative approaches. For instance, in recent years, antibodies have emerged as an important class of therapeutics against a spectrum of pathologies. In cancer, immune-inspired approaches are witnessing a surge thanks to a better understanding of tumor-associated antigens and the mechanisms of their engagement or evasion from the human immune system. Here, we provide a summary of the main state-of-the-art computational approaches that are used to design antibodies and antigens, and in parallel, we review key methodologies for epitope identification for both B- and T-cell mediated responses. A special focus is devoted to the description of structure- and physics-based models, privileged over purely sequence-based approaches. We discuss the implications of novel methods in engineering biomolecules with tailored immunological properties for possible therapeutic uses. Finally, we highlight the extraordinary challenges and opportunities presented by the possible integration of structure- and physics-based methods with emerging Artificial Intelligence technologies for the prediction and design of novel antigens, epitopes, and antibodies.


Artificial Intelligence , Vaccinology , Humans , Vaccinology/methods , Antibodies , Epitopes , Computer Simulation , Computational Biology/methods
13.
BMC Bioinformatics ; 24(1): 231, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37271819

When it was first introduced in 2000, reverse vaccinology was defined as an in silico approach that begins with the pathogen's genomic sequence. It concludes with a list of potential proteins with a possible, but not necessarily, list of peptide candidates that need to be experimentally confirmed for vaccine production. During the subsequent years, reverse vaccinology has dramatically changed: now it consists of a large number of bioinformatics tools and processes, namely subtractive proteomics, computational vaccinology, immunoinformatics, and in silico related procedures. However, the state of the art of reverse vaccinology still misses the ability to predict the efficacy of the proposed vaccine formulation. Here, we describe how to fill the gap by introducing an advanced immune system simulator that tests the efficacy of a vaccine formulation against the disease for which it has been designed. As a working example, we entirely apply this advanced reverse vaccinology approach to design and predict the efficacy of a potential vaccine formulation against influenza H5N1. Climate change and melting glaciers are critical due to reactivating frozen viruses and emerging new pandemics. H5N1 is one of the potential strains present in icy lakes that can raise a pandemic. Investigating structural antigen protein is the most profitable therapeutic pipeline to generate an effective vaccine against H5N1. In particular, we designed a multi-epitope vaccine based on predicted epitopes of hemagglutinin and neuraminidase proteins that potentially trigger B-cells, CD4, and CD8 T-cell immune responses. Antigenicity and toxicity of all predicted CTL, Helper T-lymphocytes, and B-cells epitopes were evaluated, and both antigenic and non-allergenic epitopes were selected. From the perspective of advanced reverse vaccinology, the Universal Immune System Simulator, an in silico trial computational framework, was applied to estimate vaccine efficacy using a cohort of 100 digital patients.


Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Vaccinology/methods , Vaccine Efficacy , Epitopes, B-Lymphocyte , Proteins , Computational Biology/methods , Immune System , Epitopes, T-Lymphocyte/chemistry , Molecular Docking Simulation , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics
14.
Acta Biochim Pol ; 70(2): 407-418, 2023 Jun 17.
Article En | MEDLINE | ID: mdl-37329562

There have been substantial advances in HIV research over the past three decades, but we are still far from our goal of eliminating HIV-1 infection entirely. Numerous ever-evolving antigens are produced as a result of HIV-1's genetic variability. Developing an effective vaccination is challenging because of the structural properties of the viral envelope glycoprotein that obscure conserved receptor-binding sites and the presence of carbohydrate moieties that prevent antibodies from reaching potential epitopes. To work on an HIV-specific vaccine, this study identified 5 HIV-surface proteins, from the literature, to screen potential epitopes and construct an mRNA vaccine. A wide range of immunological-informatics techniques were utilized to develop a construct that efficiently stimulated cellular and humoral immune responses. The vaccine was produced with 31 epitopes, a TLR4 agonist termed RpfE that acts as an adjuvant, secretion boosters, subcellular trafficking structures, and linkers. It was determined that this suggested vaccine would cover 98.9 percent of the population, making it widely available. We, furthermore, carried out an immunological simulation of the vaccine illustrating the active and stable responses from innate and adaptive immune cells, the memory cells remained active for up to 350 days after vaccine injection, whereas the antigen was excreted from the body within 24 hours. Docking performed with TLR-4 and TLR-3 showed significant interaction with -11.9kcal/mol and -18.2kcal/mol-1 respectively. Molecular dynamics simulations further validated the vaccine's stability, with a dissociation constant of 1.7E-11 for the TLR3-vaccine complex and 5.8E-11 for the TLR4-vaccine complex. Lastly, codon optimization was carried out to guarantee that the designed mRNA construct would be translated into the host successfully. This vaccine adaptation, if tested in-vitro, would be efficacious and potent as predicted.


HIV-1 , HIV-1/genetics , Vaccinology/methods , Toll-Like Receptor 4/genetics , Epitopes/genetics , Molecular Dynamics Simulation , Immunity , Molecular Docking Simulation , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Computational Biology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , mRNA Vaccines
15.
Saudi Med J ; 44(6): 544-559, 2023 Jun.
Article En | MEDLINE | ID: mdl-37343981

OBJECTIVES: To develop a candidate vaccine aginst the Sphingobacterium spiritivorum. METHODS: Since there is currently no vaccine against this pathogen, we employed in-silico methods to extensively explore the outer membrane toxin-producing proteins found specifically in S. spiritivorum to forecast a multi-epitope chimeric vaccine design. This computational study was conducted in Saudi Arabia in 2022 (study design: computational; ethical approval not applicable). RESULTS: TThe vaccine peptide comprises multiple linear and conformational B-cell epitopes, which have the potential to elicit humoral immunity. Projected B-cell- derived T-cell epitopes for outer membrane proteins are present in the produced protein. The docking and molecular dynamic simulation results indicating that the chimeric vaccine had adequate binding stability with TLR-4. Following the immunological simulation, significant levels of immune cell expression were observed as immunoglobulin (Ig) M and IgG, IgM, IgM1, and IgM2, and independently IgG1 and IgG2. CONCLUSION: The developed vaccine candidate is suitable for further testing and can assist experimental vaccinologists in developing an effective vaccine against S. spiritivorum.


Sphingobacterium , Vaccinology , Humans , Vaccinology/methods , Epitopes, B-Lymphocyte/chemistry , Saudi Arabia
16.
Methods Mol Biol ; 2673: 401-410, 2023.
Article En | MEDLINE | ID: mdl-37258929

Reverse vaccinology (RV) consists in the identification of potentially protective antigens expressed by any organism starting from genomic information and derived from in silico analysis, with the aim of promoting the discovery of new candidate vaccines against different types of pathogens. This approach makes use of bioinformatics techniques to screen the whole genomic sequence of a specific pathogen for the identification of the epitopes that could elicit the best immune response. The use of in silico techniques allows to reduce dramatically both the time and cost required for the identification of a potential vaccine, also facilitating the laborious process of selection of those antigens that, with a traditional approach, would be completely impossible to detect or culture. RV methodologies have been successfully applied for the identification of new vaccines against serogroup B meningococcus (MenB), Bacillus anthracis, Streptococcus pneumonia, Staphylococcus aureus, Chlamydia pneumoniae, Porphyromonas gingivalis, Edwardsiella tarda, and Mycobacterium tuberculosis. As a case of study, we will go in depth into the application of RV techniques on Influenza A virus.


Influenza A virus , Vaccines , Influenza A virus/genetics , Vaccinology/methods , Vaccines/genetics , Genomics/methods , Computational Biology/methods
17.
Methods Mol Biol ; 2673: 453-474, 2023.
Article En | MEDLINE | ID: mdl-37258932

For the development of multi-peptide vaccine, identification of antigenic epitopes is crucial. If it is done using wet lab techniques, the identification process can be time-consuming, laborious, and cost-intensive. In silico tools, on the other hand, enable researchers to predict potential epitopes with little to no cost for further in vivo and in vitro testing. The rapid identification process using in silico tools helps in responding to health emergencies faster. Developing an efficient and high coverage vaccine is one of the ways to reduce morbidity and mortality rates of the diseases and protect the affected populations. In this chapter, we introduce the necessary tools and methodology for the identification and characterization of antigenic epitopes to design a multi-epitope vaccine using varicella-zoster virus as an example vector model.


Chickenpox , Herpes Zoster , Humans , Chickenpox/prevention & control , Vaccinology/methods , Epitopes , Vaccines, Subunit , Antigens , Herpes Zoster/prevention & control , Computational Biology/methods , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , Molecular Docking Simulation
18.
Curr Pharm Des ; 29(19): 1504-1515, 2023.
Article En | MEDLINE | ID: mdl-37073655

BACKGROUND: Borrelia burgdorferi is regarded as an extremely dangerous bacteria causing infectious disease in humans, resulting in musculoskeletal pain, fatigue, fever and cardiac symptom. Because of all alarming concerns, no such prophylaxis setup has been available against Borrelia burgdorferi till now. In fact, vaccine construction using traditional methods is so expensive and time-consuming. Therefore, considering all concerns, we designed a multi-epitope-based vaccine design against Borrelia burgdorferi using in silico approaches. OBJECTIVE: To design an effective and safe vaccine that can activate cell-mediated and humoral immunity against Borrelia burgdorferi by using various bioinformatics tools. METHODS: The present study utilized different computational methodologies, covering different ideas and elements in bioinformatics tools. The protein sequence of Borrelia burgdorferi was retrieved from the NCBI database. Different B and T cell epitopes were predicated using the IEDB tool. Efficient B and T cell epitopes were further assessed for vaccine construction using linkers AAY, EAAAK and GPGPG, respectively. Furthermore, the tertiary structure of constructed vaccine was predicated, and its interaction was determined with TLR9 using ClusPro software. In addition, further atomic level detail of docked complex and their immune response were further determined by MD simulation and C-ImmSim tool, respectively. RESULTS: A protein with immunogenic potential and good vaccine properties (candidate) was identified based on high binding scores, low percentile rank, non-allergenicity and good immunological properties, which were further used to calculate epitopes. Additionally, molecular docking possesses strong interaction; seventeen H-bonds interactions were reported, such as THR101-GLU264, THR185-THR270, ARG 257-ASP210, ARG 257-ASP 210, ASP259-LYS 174, ASN263-GLU237, CYS 265-GLU 233, CYS 265-TYR 197, GLU267- THR202, GLN 270-THR202, TYR345-ASP 210, TYR345-THR 213, ARG 346-ASN209, SER350- GLU141, SER350-GLU141, ASP 424-ARG220 and ARG426-THR216 with TLR-9. Finally, high expression was determined in E. coli (CAI = (0.9045), and GC content = (72%)). Using the IMOD server, all-atom MD simulations of docked complex affirmed its significant stability. The outcomes of immune simulation indicate that both T and B cells represent a strong response to the vaccination component. CONCLUSION: This type of in-silico technique may precisely decrease valuable time and expenses in vaccine designing against Borrelia burgdorferi for experimental planning in laboratories. Currently, scientists frequently utilize bioinformatics approaches that speed up their vaccine-based lab work.


Borrelia burgdorferi , Vaccines , Humans , Epitopes, T-Lymphocyte/chemistry , Molecular Docking Simulation , Vaccinology/methods , Escherichia coli , Epitopes, B-Lymphocyte/chemistry , Cloning, Molecular , Computational Biology , Vaccines, Subunit/chemistry
20.
Front Immunol ; 14: 1100188, 2023.
Article En | MEDLINE | ID: mdl-36845087

Background: Nocardia genus, a complex group of species classified to be aerobic actinomycete, can lead to severe concurrent infection as well as disseminated infection, typically in immunocompromised patients. With the expansion of the susceptible population, the incidence of Nocardia has been gradually growing, accompanied by increased resistance of the pathogen to existing therapeutics. However, there is no effective vaccine against this pathogen yet. In this study, a multi-epitope vaccine was designed against the Nocardia infection using reverse vaccinology combined with immunoinformatics approaches. Methods: First, the proteomes of 6 Nocardia subspecies Nocardia subspecies (Nocardia farcinica, Nocardia cyriacigeorgica, Nocardia abscessus, Nocardia otitidiscaviarum, Nocardia brasiliensis and Nocardia nova) were download NCBI (National Center for Biotechnology Information) database on May 1st, 2022 for the target proteins selection. The essential, virulent-associated or resistant-associated, surface-exposed, antigenic, non-toxic, and non-homologous with the human proteome proteins were selected for epitope identification. The shortlisted T-cell and B-cell epitopes were fused with appropriate adjuvants and linkers to construct vaccines. The physicochemical properties of the designed vaccine were predicted using multiple online servers. The Molecular docking and molecular dynamics (MD) simulation were performed to understand the binding pattern and binding stability between the vaccine candidate and Toll-like receptors (TLRs). The immunogenicity of the designed vaccines was evaluated via immune simulation. Results: 3 proteins that are essential, virulent-associated or resistant-associated, surface-exposed, antigenic, non-toxic, and non-homologous with the human proteome were selected from 218 complete proteome sequences of the 6 Nocardia subspecies epitope identification. After screening, only 4 cytotoxic T lymphocyte (CTL) epitopes, 6 helper T lymphocyte (HTL) epitopes, and 8 B cell epitopes that were antigenic, non-allergenic, and non-toxic were included in the final vaccine construct. The results of molecular docking and MD simulation showed that the vaccine candidate has a strong affinity for TLR2 and TLR4 of the host and the vaccine-TLR complexes were dynamically stable in the natural environment. The results of the immune simulation indicated that the designed vaccine had the potential to induce strong protective immune responses in the host. The codon optimization and cloned analysis showed that the vaccine was available for mass production. Conclusion: The designed vaccine has the potential to stimulate long-lasting immunity in the host, but further studies are required to validate its safety and efficacy.


Nocardia , Vaccinology , Humans , Molecular Docking Simulation , Vaccinology/methods , Proteome , Vaccines, Subunit , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Dynamics Simulation
...