Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.095
1.
Cells ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38727269

The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.


Brain Injuries, Traumatic , Inflammation , Lysophosphatidylcholines , Mice, Inbred C57BL , Neurons , Valproic Acid , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/complications , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Mice , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Inflammation/pathology , Inflammation/drug therapy , Lysophosphatidylcholines/blood , Cell Death/drug effects , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Repressor Proteins/metabolism , Repressor Proteins/genetics
2.
Sci Rep ; 14(1): 8082, 2024 04 06.
Article En | MEDLINE | ID: mdl-38582936

Transcranial magnetic stimulation (TMS) is a neurostimulation device used to modulate brain cortex activity. Our objective was to enhance the therapeutic effectiveness of low-frequency repeated TMS (LF-rTMS) in a rat model of autism spectrum disorder (ASD) induced by prenatal valproic acid (VPA) exposure through the injection of superparamagnetic iron oxide nanoparticles (SPIONs). For the induction of ASD, we administered prenatal VPA (600 mg/kg, I.P.) on the 12.5th day of pregnancy. At postnatal day 30, SPIONs were injected directly into the lateral ventricle of the brain. Subsequently, LF-rTMS treatment was applied for 14 consecutive days. Following the treatment period, behavioral analyses were conducted. At postnatal day 60, brain tissue was extracted, and both biochemical and histological analyses were performed. Our data revealed that prenatal VPA exposure led to behavioral alterations, including changes in social interactions, increased anxiety, and repetitive behavior, along with dysfunction in stress coping strategies. Additionally, we observed reduced levels of SYN, MAP2, and BDNF. These changes were accompanied by a decrease in dendritic spine density in the hippocampal CA1 area. However, LF-rTMS treatment combined with SPIONs successfully reversed these dysfunctions at the behavioral, biochemical, and histological levels, introducing a successful approach for the treatment of ASD.


Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Female , Rats , Animals , Humans , Valproic Acid/pharmacology , Autistic Disorder/therapy , Autistic Disorder/drug therapy , Autism Spectrum Disorder/therapy , Autism Spectrum Disorder/drug therapy , Transcranial Magnetic Stimulation , Social Behavior , Magnetic Iron Oxide Nanoparticles , Prenatal Exposure Delayed Effects/therapy , Prenatal Exposure Delayed Effects/drug therapy , Disease Models, Animal , Behavior, Animal/physiology
3.
Biomolecules ; 14(4)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38672454

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by severe deficits in social communication and interaction, repetitive movements, abnormal focusing on objects, or activity that can significantly affect the quality of life of the afflicted. Neuronal and glial cells have been implicated. It has a genetic component but can also be triggered by environmental factors or drugs. For example, prenatal exposure to valproic acid or acetaminophen, or ingestion of propionic acid, can increase the risk of ASD. Recently, epigenetic influences on ASD have come to the forefront of investigations on the etiology, prevention, and treatment of this disorder. Epigenetics refers to DNA modifications that alter gene expression without making any changes to the DNA sequence. Although an increasing number of pharmaceuticals and environmental chemicals are being implicated in the etiology of ASD, here, we specifically focus on the molecular influences of the abovementioned chemicals on epigenetic alterations in neuronal and glial cells and their potential connection to ASD. We conclude that a better understanding of these phenomena can lead to more effective interventions in ASD.


Autism Spectrum Disorder , Epigenesis, Genetic , Neuroglia , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/chemically induced , Humans , Epigenesis, Genetic/drug effects , Neuroglia/metabolism , Neuroglia/drug effects , Valproic Acid/pharmacology , Valproic Acid/adverse effects , Propionates/pharmacology , Animals , Acetaminophen/adverse effects , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , DNA Methylation/drug effects
4.
Chem Biodivers ; 21(5): e202301959, 2024 May.
Article En | MEDLINE | ID: mdl-38469951

This study aimed to explore the potential protective impacts of Moringa oleifera extract on major alteration in salivary glands of rats exposed to sodium valproate (VA). Groups were defined as control, control+moringa extract, sodium valproate, and sodium valproate+moringa extract. Antioxidant and oxidant status, activities of digestive and metabolic enzymes were examined. VA treatment led to various biochemical changes in the salivary glands, including decreased levels of antioxidants like glutathione, glutathione-S-transferase, and superoxide dismutase (except for sublingual superoxide dismutase). Conversely, a decrease in alpha-amylase, alkaline and acid phosphatase, lactate dehydrogenase, protease, and maltase activities were observed. The study also demonstrated that VA induces oxidative stress, increases lipid peroxidation, sialic acid, and nitric oxide levels in the salivary glands. Total oxidant capacity was raised in all glands except in the sublingual gland. The electrophoretic patterns of proteins were similar. Moringa oleifera extract exhibited protective properties, reversing these VA-induced biochemical changes due to its antioxidant and therapeutic attributes. This research suggests that moringa extract might serve as an alternative treatment approach for individuals using VA and experiencing salivary gland issues, although further research is necessary to confirm these findings in human subjects.


Antioxidants , Moringa oleifera , Plant Extracts , Salivary Glands , Valproic Acid , Moringa oleifera/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats , Salivary Glands/drug effects , Salivary Glands/metabolism , Valproic Acid/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Male , Oxidative Stress/drug effects , Rats, Wistar , Lipid Peroxidation/drug effects
5.
Article Ru | MEDLINE | ID: mdl-38529870

OBJECTIVE: To study the effect of phenosanic acid (PA) and its combination with valproic acid (VA) on the development of the Epi system. MATERIAL AND METHODS: A model of focal chronic epilepsy in rats was created by applying metallic cobalt to the surface of the sensorimotor area of the cortex. Long-term electrodes were implanted in the sensorimotor cortex of the left and right hemispheres, the hippocampus, and the hypothalamus. The effect of PA (80 mg/kg) and its combination with VA (200 mg/kg) on discharge activity was carried out on the 2nd day and at the stage of generalization of the Epi system - on the 6th day. The stability of the Epi system on day 10 was assessed by provoking the development of epileptic status (Epi status) in response to the administration of thiolactone homocysteine (HMC) at a dose of 5.5 mmol/kg. RESULTS: In rats treated with PA, low discharge activity is observed, which is confirmed by the absence of EEG and motor manifestations of status epilepticus caused by HMC. PA does not suppress paroxysmal activity at the stages of development of the Epi system. VA significantly suppresses paroxysmal activity, but does not affect the formation of new foci of Epi activity in subcortical structures and the contralateral cortex. The epi system of rats treated with VA is characterized by high discharge activity by the 10th day of the experiment and lability to provocation of epi status. The combination of drugs is more pronounced than PA, but less than VA, reduces the numerical characteristics of paroxysmal activity in the brain structures of rats. CONCLUSION: PA when administered alone, in combination with VA, causes a slowdown in the generalization of convulsive foci of Epi activity and prevents the formation of a stable Epi system. VA, having a pronounced anticonvulsant effect, does not weaken the development of the Epi system in the model of focal cobalt-induced epilepsy.


Epilepsies, Partial , Epilepsy , Rats , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Epilepsy/chemically induced , Epilepsy/drug therapy , Anticonvulsants/adverse effects , Seizures/drug therapy , Epilepsies, Partial/drug therapy , Cobalt/adverse effects , Electroencephalography
6.
Mol Biol Rep ; 51(1): 427, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38498238

BACKGROUND: Drug resistance is one of the most critical problems in gastric cancer therapy. This study was performed to investigate the valproic acid effects on the proliferation of sensitive and resistant cell lines of human gastric cancer, and to explore the mechanism of the agent on multi drug resistance and apoptosis genes. METHODS: The cytotoxicity effect of valproic acid on the EPG85.257 and EPG85.257RDB cells was assessed by the MTT assay, and the IC50 concentration was evaluated. Apoptosis, genotoxicity, and drug resistance pump activity were evaluated using comet assay, Real-time PCR, and flow cytometry, respectively. Cell proliferation was assayed using a scratch test. RESULTS: Dose-dependent toxicity was recorded after treatment of cells with valproic acid. Valproic acid represented a significant growth inhibition on EPG85.257 cells with IC50 values of 5.84 µM and 4.78 µM after 48 h and 72 h treatment, respectively. In contrast, the drug-resistant counterpart represented 8.7 µM and 7.02 µM IC50 values after the same treatment time. Valproic acid induced PTEN, Bcl2, P53, Bax, P21, and caspase3 expression in EPG85.257 cells, whereas p21, p53, PTEN, and ABCB1 were overexpressed in EPG5.257RDB. Valproic acid hindered cell migration in both cell lines (P < 0.01). Valproate genotoxicity was significantly higher in the parent cells than in their resistant EPG85.257RDB counterparts. Valproate led to a 62% reduction in the daunorubicin efflux of the MDR1 pump activity. CONCLUSIONS: Valproate can affect drug resistance in gastric cancer via a unique mechanism independent of MDR1 expression.


Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Valproic Acid/pharmacology , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Protein p53 , Drug Resistance, Multiple/genetics , Apoptosis , Cell Line, Tumor , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/pharmacology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/pharmacology , Vesicular Transport Proteins/therapeutic use
7.
Pharmacol Rep ; 76(2): 348-367, 2024 Apr.
Article En | MEDLINE | ID: mdl-38519733

BACKGROUND: The study aimed to assess the influence of a single valproate (VPA) administration on inhibitory and excitatory neurotransmitter concentrations in the brain structures involved in epileptogenesis in pentylenetetrazol (PTZ)-kindled rats. METHODS: Adult, male Wistar rats were kindled by repeated intraperitoneal (ip) injections of PTZ at a subconvulsive dose (30 mg/kg, three times a week). Due to the different times required to kindle the rats (18-22 injections of PTZ), a booster dose of PTZ was administrated 7 days after the last rats were kindled. Then rats were divided into two groups: acute administration of VPA (400 mg/kg) or saline given ip. The concentration of amino acids, kynurenic acid (KYNA), monoamines, and their metabolites in the prefrontal cortex, hippocampus, amygdala, and striatum was assessed by high-pressure liquid chromatography (HPLC). RESULTS: It was found that a single administration of VPA increased the gamma-aminobutyric acid (GABA), tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and KYNA concentrations and decreased aspartate (ASP) levels in PTZ-kindled rats in the prefrontal cortex, hippocampus, amygdala and striatum. CONCLUSIONS: Our results indicate that a single administration of VPA in the PTZ-kindled rats restored proper balance between excitatory (decreasing the level of ASP) and inhibitory neurotransmission (increased concentration GABA, KYNA) and affecting serotoninergic neurotransmission in the prefrontal cortex, hippocampus, amygdala, and striatum.


Amino Acids , Kindling, Neurologic , Rats , Male , Animals , Amino Acids/pharmacology , Pentylenetetrazole/pharmacology , Valproic Acid/pharmacology , Kynurenic Acid/metabolism , Rats, Wistar , Brain/metabolism , Kindling, Neurologic/metabolism , Amines/metabolism , gamma-Aminobutyric Acid/metabolism
8.
Eur J Pharmacol ; 970: 176475, 2024 May 05.
Article En | MEDLINE | ID: mdl-38438061

Sodium valproate (VPA), a histone deacetylase (HDAC) inhibitor, could be a promising candidate to treat acute myocardial infarction (AMI). In this study, AMI was induced in New Zealand White rabbits by occluding the left circumflex coronary artery for 1 h, followed by reperfusion. The animals were distributed into three experimental groups: the sham-operated group (SHAM), the AMI group and the AMI + VPA group (AMI treated with VPA 500 mg/kg/day). After 5 weeks, abdominal aorta was removed and used for isometric recording of tension in organ baths or protein expression by Western blot, and plasma for the determination of nitrate/nitrite (NOx) levels by colorimetric assay. Our results indicated that AMI induced a reduction of the endothelium-dependent response to acetylcholine without modifying the endothelium-independent response to sodium nitroprusside, leading to endothelial dysfunction. VPA treatment reversed AMI-induced endothelial dysfunction and even increased NO sensitivity in vascular smooth muscle. This response was consistent with an antioxidant effect of VPA, as it was able to reverse the superoxide dismutase 1 (SOD 1) down-regulation induced by AMI. Our experiments also ruled out that the VPA mechanism was related to eNOS, iNOS, sGC and arginase expression or changes in NOx plasma levels. Therefore, we conclude that VPA improves vasodilation by increasing NO bioavailability, likely due to its antioxidant effect. Since endothelial dysfunction was closely related to AMI, VPA treatment could increase aortic blood flow, making it a potential agent in reperfusion therapy that can prevent the vascular damage.


Myocardial Infarction , Valproic Acid , Rabbits , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Antioxidants , Myocardial Infarction/metabolism , Aorta/metabolism , Endothelium/metabolism , Endothelium, Vascular/metabolism
9.
Pharmacol Biochem Behav ; 237: 173721, 2024 Apr.
Article En | MEDLINE | ID: mdl-38307465

Autism spectrum disorder (ASD) is a neurodevelopment disorder that mainly arises due to abnormalities in different brain regions, resulting in behavioral deficits. Besides its diverse phenotypical features, ASD is associated with complex and varied etiology, presenting challenges in understanding its precise neuro-pathophysiology. Pioglitazone was reported to have a fundamental role in neuroprotection in various other neurological disorders. The present study aimed to investigate the therapeutic potential of pioglitazone in the prenatal valproic acid (VPA)-model of ASD in Wistar rats. Pregnant female Wistar rats received VPA on Embryonic day (E.D12.5) to induce autistic-like-behavioral and neurobiological alterations in their offspring. VPA-exposed rats presented core behavioral symptoms of ASD such as deficits in social interaction, poor spatial and learning behavior, increased anxiety, locomotory and repetitive activity, and decreased exploratory activity. Apart from these, VPA exposure also stimulated neurochemical and histopathological neurodegeneration in various brain regions. We administered three different doses of pioglitazone i.e., 2.5, 5, and 10 mg/kg in rats to assess various parameters. Of all the doses, our study highlighted that 10 mg/kg pioglitazone efficiently attenuated the autistic symptoms along with other neurochemical alterations such as oxidative stress, neuroinflammation, and apoptosis. Moreover, pioglitazone significantly attenuated the neurodegeneration by restoring the neuronal loss in the hippocampus and cerebellum. Taken together, our study suggests that pioglitazone exhibits therapeutic potential in alleviating behavioral abnormalities induced by prenatal VPA exposure in rats. However, further research is needed to fully understand and establish pioglitazone's effectiveness in treating ASD.


Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Rats , Female , Animals , Humans , Valproic Acid/pharmacology , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Rats, Wistar , Pioglitazone/pharmacology , Autistic Disorder/chemically induced , Social Behavior , Behavior, Animal , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/drug therapy , Disease Models, Animal
10.
CNS Neurosci Ther ; 30(2): e14583, 2024 02.
Article En | MEDLINE | ID: mdl-38357846

OBJECTIVE: To explore the mechanism involved in variable phenotypes of epilepsy models induced by γ-aminobutyric acid type A γ2 subunit (GABRG2) mutations. METHODS: The zebrafish carrying wild-type (WT) GABRG2, mutant GABRG2(P282S), GABRG2(F343L) and GABRG2(I107T) were established by Tol2kit transgenesis system and Gateway method. Behavioral analysis of different transgenic zebrafish was performed with the DanioVision Video-Track framework and the brain activity was analyzed by field potential recording with MD3000 Bio-signal Acquisition and Processing System. The transcriptome analysis was applied to detect the underlying mechanisms of variable phenotypes caused by different GABRG2 mutations. RESULTS: The established Tg(hGABRG2P282S ) zebrafish showed hyperactivity and spontaneous seizures, which were more sensitive to chemical and physical epileptic stimulations. Traditional antiepileptic drugs, such as Clonazepam (CBZ) and valproic acid (VPA), could ameliorate the hyperactivity in Tg(hGABRG2P282S ) zebrafish. The metabolic pathway was significantly changed in the brain transcriptome of Tg(hGABRG2P282S ) zebrafish. In addition, the behavioral activity, production of pro-inflammatory factors, and activation of the IL-2 receptor signal pathway varied among the three mutant zebrafish lines. CONCLUSION: We successfully established transgenic zebrafish epileptic models expressing human mutant GABRG2(P282S), in which CBZ and VPA showed antiepileptic effects. Differential inflammatory responses, especially the SOCS/JAK/STAT signaling pathway, might be related to the phenotypes of genetic epilepsy induced by GABRG2 mutations. Further study will expand the pathological mechanisms of genetic epilepsies and provide a theoretical basis for searching for effective drug treatment.


Epilepsy , Zebrafish , Animals , Humans , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Epilepsy/genetics , Mutation/genetics , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Phenotype , Inflammation/genetics
11.
Cells ; 13(4)2024 Feb 07.
Article En | MEDLINE | ID: mdl-38391920

Internal granular progenitors (IGPs) in the developing cerebellar cortex of ferrets differentiate towards neural and glial lineages. The present study tracked IGPs that proliferated in response to valproic acid (VPA) to determine their fate during cerebellar cortical histogenesis. Ferret kits were used to administer VPA (200 µg/g body weight) on postnatal days 6 and 7. EdU and BrdU were injected on postnatal days 5 and 7, respectively, to label the post-proliferative and proliferating cells when exposed to VPA. At postnatal day 20, when the external granule layer was most expanded, EdU- and BrdU-single-labeled cells were significantly denser in the inner granular layer of VPA-exposed ferrets than in controls. No EdU- or BrdU-labeling was found in Purkinje cells and molecular layer interneurons. Significantly higher percentages of NeuN and Pax6 immunostaining in VPA-exposed ferrets revealed VPA-induced differentiation of IGPs towards granular neurons in BrdU-single-labeled cells. In contrast, both EdU- and BrdU-single-labeled cells exhibited significantly greater percentages of PCNA immunostaining, which appeared in immature Bergman glia, in the internal granular layer of VPA-exposed ferrets. These findings suggest that VPA affects the proliferation of IGPs to induce differentiative division towards granular neurons as well as post-proliferative IGPs toward differentiation into Bergmann glia.


Ferrets , Valproic Acid , Humans , Animals , Valproic Acid/pharmacology , Bromodeoxyuridine , Cerebellar Cortex , Purkinje Cells
12.
Mol Biol Rep ; 51(1): 353, 2024 Feb 24.
Article En | MEDLINE | ID: mdl-38401030

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, a limited range of activities, and deficiencies in social communications. Bone marrow mesenchymal stem cells (BM-MSCs), which secrete factors that stimulate surrounding microenvironment, and BM-MSCs conditioned medium (BM-MSCs-CM), which contains cell-secreted products, have been speculated to hold potential as a therapy for ASD. This study aimed to compare the therapeutic effects of BM-MSCs and BM-MSCs-CM on behavioral and microglial changes in an animal model of autism induced by valproic acid (VPA). METHODS AND RESULTS: Pregnant Wistar rats were administered by VPA at a dose of 600 mg/kg at 12.5 days post-conception. After birth, male pups were included in the study. At 6 weeks of age, one group of rats received intranasal administration of BM-MSCs, while another group received BM-MSCs-CM. The rats were allowed to recover for 2 weeks. Behavioral tests, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry were performed. Both BM-MSCs and BM-MSCs-CM administration significantly improved some behavioral deficits. Furthermore, these treatments notably reduced Iba-1 marker associated with microgliosis. Additionally, there was a significant reduction in the expression of pro-inflammatory cytokines IL-1ß and IL-6, and an increase in the levels of the anti-inflammatory cytokine IL-10 in rats administered by BM-MSCs and BM-MSCs-CM. CONCLUSIONS: Post-developmental administration of BM-MSCs and BM-MSCs-CM can ameliorate prenatal neurodevelopmental deficits, restore cognitive and social behaviors, and modulate microglial and inflammatory markers. Results indicated that the improvement rate was higher in the BM-MSCs group than BM-MSCs-CM group.


Autism Spectrum Disorder , Autistic Disorder , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Pregnancy , Female , Rats , Male , Animals , Valproic Acid/pharmacology , Valproic Acid/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Autistic Disorder/chemically induced , Autistic Disorder/therapy , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Rats, Wistar , Mesenchymal Stem Cells/metabolism , Cytokines/metabolism , Mesenchymal Stem Cell Transplantation/methods , Bone Marrow Cells/metabolism
13.
Eur J Pharmacol ; 967: 176335, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38331341

This study aimed to investigate the effects of fucoxanthin, a natural compound found in seaweed, on various aspects of autism using a rat model induced by valproic acid (VPA). Pregnant rats were administered VPA (600 mg/kg) on gestational day 12.5, and male pups were orally administered fucoxanthin at 50, 100, or 200 mg/kg beginning on post-natal day (PND) 23-43. Behavioral assessments were conducted on PND 45-53, and on PND 54, the animals were sacrificed for further biochemical analyses (superoxide dismutase (SOD) and glutathione (GSH), nitric oxide (NO)) via UV spectroscopy. Inflammatory markers (IL-17, TNF-α, and IL-1ß) were also analyzed by sandwich ELISA, and the molecular parameters were evaluated through ELISA. The results revealed that, compared with VPA, fucoxanthin improved behavior and neuronal morphology. Specifically, fucoxanthin administration was found to enhance spatial memory, reduce pain sensitivity, and improve social interaction, locomotor activity, balance, and motor coordination. Fucoxanthin also exhibited anti-inflammatory and antioxidant effects, as indicated by the restoration of SOD and GSH levels and reduced inflammatory cytokine levels. Molecular analyses revealed that fucoxanthin restored the levels of GSK-3ß and AKT. Furthermore, fucoxanthin regulates neurotransmitters, which are related to increasing GABA and reducing glutamate levels in the cortex and cerebellum. The therapeutic effects were dose-dependent, with higher doses (200 mg/kg) showing greater efficacy than lower doses (100 mg/kg) in improving behavioral, biochemical, neurotransmitter, and molecular parameters. Fucoxanthin is a potential treatment for autism, but further research, including clinical trials, is necessary to determine its effectiveness in humans.


Autistic Disorder , Prenatal Exposure Delayed Effects , Xanthophylls , Pregnancy , Female , Humans , Rats , Male , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Autistic Disorder/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Social Behavior , Oxidative Stress , Signal Transduction , Superoxide Dismutase/metabolism , Disease Models, Animal
15.
Nitric Oxide ; 145: 21-32, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38382865

Neuronal differentiation of adipose tissue-derived stem cells (ASCs) is greatly promoted by valproic acid (VPA) with cAMP elevating agents thorough NO signaling pathways, but its mechanism is not fully understood. In the present study, we investigate the involvement of protein S-nitrosylation in the VPA-promoted neuronal differentiation of ASCs. The whole amount of S-nitrosylated protein was increased by the treatment with VPA alone for three days in ASCs. An inhibitor of thioredoxin reductase (TrxR), auranofin, further increased the amount of S-nitrosylated protein and enhances the VPA-promoted neuronal differentiation in ASCs. On the contrary, another inhibitor of TrxR, dinitrochlorobenzene, inhibited the VPA-promoted neuronal differentiation in ASCs even with cAMP elevating agents, which was accompanied by unexpectedly decreased S-nitrosylated protein. It was considered from these results that increased protein S-nitrosylation is involved in VPA-promoted neuronal differentiation of ASCs. By the proteomic analysis of S-nitrosylated protein in VPA-treated ASCs, no identified proteins could be specifically related to VPA-promoted neuronal differentiation. The identified proteins, however, included those involved in the metabolism of substances regulating neuronal differentiation, such as aspartate and glutamate.


Neurons , Valproic Acid , Valproic Acid/pharmacology , Neurons/metabolism , Proteomics , Stem Cells/metabolism , Adipose Tissue
16.
Mol Brain ; 17(1): 12, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38409127

BACKGROUND: Autism spectrum disorder (ASD) encompasses a diverse range of neurodevelopmental disorders, but the precise underlying pathogenesis remains elusive. This study aim to explore the potential mechanism of TREM2 in regulating microglia function in ASD. MATERIALS AND METHODS: The offspring rat model of ASD was established through prenatal exposure to valproic acid (VPA), and the behavioral symptoms of the ASD model were observed. On postnatal day (PND) 7 and PND 28, the effects of prenatally exposure to VPA on synaptic development and microglia phenotype of offspring rats were observed. Primary microglia were cultured in vitro. Lentivirus and adenovirus were utilized to interfere with TREM2 and overexpress TREM2. RESULTS: Prenatally VPA exposure induced offspring rats to show typical ASD core symptoms, which led to abnormal expression of synapse-related proteins in the prefrontal cortex of offspring rats, changed the phenotype of microglia in offspring rats, promoted the polarization of microglia to pro-inflammatory type, and increased inflammatory response. The experimental results in vitro showed that overexpression of TREM2 could increase the expression of Gephyrin, decrease the content of CD86 protein and increase the content of CD206 protein. In addition, after the expression of TREM2 was interfered, the content of p-P38 MAPK protein increased and the content of p-ELK-1 protein decreased. CONCLUSION: The protective influence of TREM2 on the VPA-induced ASD model is attributed to its inhibition of the P38 MAPK pathway, this protective effect may be achieved by promoting the polarization of microglia to anti-inflammatory phenotype and improving the neuronal synaptic development.


Autism Spectrum Disorder , Animals , Female , Pregnancy , Rats , Autism Spectrum Disorder/metabolism , Disease Models, Animal , Microglia/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Valproic Acid/pharmacology
17.
Phytomedicine ; 126: 155459, 2024 Apr.
Article En | MEDLINE | ID: mdl-38417243

BACKGROUND: Osteosarcoma is the most prevalent malignant bone tumour with a poor prognosis. Shikonin (SHK) is derived from the traditional Chinese medicine Lithospermum that has been extensively studied for its notable anti-tumour effects, including for osteosarcoma. However, its application has certain limitations. Valproic acid (VPA) is a histone deacetylase inhibitor (HDACI) that has recently been employed as an adjunctive therapeutic agent that allows chromatin to assume a more relaxed state, thereby enhancing anti-tumour efficacy. PURPOSE: This study was aimed to investigate the synergistic anti-tumour efficacy of SHK in combination with VPA and elucidate its underlying mechanism. METHODS/STUDY DESIGN: CCK-8 assays were utilized to calculate the combination index. Additional assays, including colony formation, acridine orange/ethidium bromide double fluorescent staining, and flow cytometry, were employed to evaluate the effects on osteosarcoma cells. Wound healing and transwell assays were utilized to assess cell mobility. RNA sequencing, PCR, and Western blot analyses were conducted to uncover the underlying mechanism. Rescue experiments were performed to validate the mechanism of apoptotic induction. The impact of SHK and VPA combination treatment on primary osteosarcoma cells was also assessed. Finally, in vivo experiments were conducted to validate its anti-tumour effects and mechanism. RESULTS: The combination of SHK and VPA synergistically inhibited the proliferation and migration of osteosarcoma cells in vitro and induced apoptosis in these cells. Through a comprehensive analysis involving RNA sequencing, PCR, Western blot, and rescue experiments, we have substantiated our hypothesis that the combination of SHK and VPA induced apoptosis via the ROS-EGR1-Bax axis. Importantly, our in vivo experiments corroborated these findings, demonstrating the potential of the SHK and VPA combination as a promising therapeutic approach for osteosarcoma. CONCLUSION: The combination of SHK and VPA exerted an anti-tumour effect by inducing apoptosis through the ROS-EGR1-Bax pathway. Repurposing the old drug VPA demonstrated its effectiveness as an adjunctive therapeutic agent for SHK, enhancing its anti-tumour efficacy and revealing its potential value. Furthermore, our study expanded the application of natural compounds in the anti-tumour field and overcame some of their limitations through combination therapy. Finally, we enhanced the understanding of the mechanistic pathways linking reactive oxygen species (ROS) accumulation and apoptosis in osteosarcoma cells. Additionally, we elucidated the role of EGR1 in osteosarcoma cells, offering novel strategies and concepts for the treatment of osteosarcoma.


Bone Neoplasms , Naphthoquinones , Osteosarcoma , Humans , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein , Apoptosis , Osteosarcoma/pathology , Cell Line, Tumor , Bone Neoplasms/metabolism , Cell Proliferation , Early Growth Response Protein 1/pharmacology
18.
Dev Psychobiol ; 66(2): e22469, 2024 Feb.
Article En | MEDLINE | ID: mdl-38351305

Autism spectrum disorder (ASD) is characterized by deficits in social interaction and communication and repetitive and restricted behaviors. Sex dimorphism in the brain, including midbrain dopaminergic circuits, can explain differences in social behavior impairment and stereotypic behaviors between male and female individuals with ASD. These abnormal patterns may be due to alterations in dopamine synthesis in the ventral tegmental area (VTA) and substantia nigra (SN). We used an autism-like mouse model by prenatal valproic acid (VPA) exposure. CD1 pregnant female mice were injected with 500 mg/kg VPA or 0.9% NaCl as a vehicle on gestational day 12.5. In the offspring, on postnatal day 31, we examined the social and repetitive behaviors and the number of tyrosine hydroxylase (TH)-positive cells in VTA and SN by sex. Male VPA mice showed impaired social behavior and increased repetitive behaviors when compared to male vehicles. In females, we did not find statistically significant differences in social or repetitive behaviors between the groups. Male VPA mice had fewer TH+ cells in the SN than control-vehicle mice. Interestingly, no cellular changes were observed between females. This study supports the notion that sex dimorphism of certain brain regions is involved in the etiopathogenesis and clinical presentation of ASD.


Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Mice , Female , Male , Animals , Humans , Valproic Acid/pharmacology , Sex Characteristics , Dopaminergic Neurons/pathology , Social Behavior , Substantia Nigra/pathology , Disease Models, Animal , Prenatal Exposure Delayed Effects/pathology , Behavior, Animal/physiology
19.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38339037

Hepatocellular carcinoma (HCC) is among the main causes of death by cancer worldwide, representing about 80-90% of all liver cancers. Treatments available for advanced HCC include atezolizumab, bevacizumab, sorafenib, among others. Atezolizumab and bevacizumab are immunological options recently incorporated into first-line treatments, along with sorafenib, for which great treatment achievements have been reached. However, sorafenib resistance is developed in most patients, and therapeutical combinations targeting cancer hallmark mechanisms and intracellular signaling have been proposed. In this review, we compiled evidence of the mechanisms of cell death caused by sorafenib administered alone or in combination with valproic acid and metformin and discussed them from a molecular perspective.


Carcinoma, Hepatocellular , Liver Neoplasms , Metformin , Humans , Carcinoma, Hepatocellular/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use , Liver Neoplasms/metabolism , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Bevacizumab , Metformin/pharmacology , Metformin/therapeutic use , Cell Death
20.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 174-183, 2024 02 25.
Article En | MEDLINE | ID: mdl-38273784

The most frequent primary brain tumor in adults is glioma, yet no effective curative treatments are currently available. Our previous study demonstrated the enhancing effects of JARID2 on glioma sensitivity to TMZ treatment. In this study, miR-155 is predicted to target JARID2. miR-155 is overexpressed in clinical glioma specimens and cell lines. miR-155 overexpression in glioma cells enhances cell viability and represses cell apoptosis. Through targeting, miR-155 inhibits JARID2 expression. miR-155 inhibition inhibits glioma cell viability and enhances cell apoptosis, whereas JARID2 knockdown enhances cell viability and inhibits cell apoptosis; JARID2 knockdown partially reverses miR-155 inhibition effects on glioma phenotypes. miR-155 inhibition reduces but knockdown of JARID2 promotes the tumor formation ability of glioma cells in vivo. Valproic acid (VPA) upregulates JARID2 expression, inhibits glioma cell viability and enhances cell apoptosis. VPA downregulates the expression level of miR-155 by increasing the methylation level of the miR-155 promoter, suggesting that the miR-155/JARID2 axis is implicated in VPA inhibition of glioma cell viability and enhancement of glioma cell apoptosis. This study demonstrates a new mechanism of VPA treatment of gliomas by affecting the miR-155/JARID2 axis, which could be regarded as a new strategy for the prevention and treatment of glioma.


Brain Neoplasms , Glioma , MicroRNAs , Humans , Valproic Acid/pharmacology , Cell Line, Tumor , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , MicroRNAs/metabolism , Methylation , Cell Proliferation/genetics , Apoptosis/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic
...