Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 176
1.
PLoS One ; 19(5): e0302846, 2024.
Article En | MEDLINE | ID: mdl-38713668

The survival of the honey bee (Apis mellifera), which has a crucial role in pollination and ecosystem maintenance, is threatened by many pathogens, including parasites, bacteria, fungi and viruses. The ectoparasite Varroa destructor is considered the major cause of the worldwide decline in honey bee colony health. Although several synthetic acaricides are available to control Varroa infestations, resistant mites and side effects on bees have been documented. The development of natural alternatives for mite control is therefore encouraged. The study aims at exploring the effects of cinnamon and oregano essential oils (EOs) and of a mixed fruit cocktail juice on mite infestation levels and bee colony health. A multi-method study including hive inspection, mite count, molecular detection of fungal, bacterial and viral pathogens, analysis of defensin-1, hymenoptaecin and vitellogenin immune gene expression, colony density and honey production data, was conducted in a 20-hive experimental apiary. The colonies were divided into five groups: four treatment groups and one control group. The treatment groups were fed on a sugar syrup supplemented with cinnamon EO, oregano EO, a 1:1 mixture of both EOs, or a juice cocktail. An unsupplemented syrup was, instead, used to feed the control group. While V. destructor affected all the colonies throughout the study, no differences in mite infestation levels, population density and honey yield were observed between treatment and control groups. An overexpression of vitellogenin was instead found in all EO-treated groups, even though a significant difference was only found in the group treated with the 1:1 EO mixture. Viral (DWV, CBPV and BQCV), fungal (Nosema ceranae) and bacterial (Melissococcus plutonius) pathogens from both symptomatic and asymptomatic colonies were detected.


Mite Infestations , Varroidae , Animals , Varroidae/drug effects , Varroidae/physiology , Bees/parasitology , Bees/virology , Bees/drug effects , Oils, Volatile/pharmacology
2.
Biol Lett ; 20(5): 20230600, 2024 May.
Article En | MEDLINE | ID: mdl-38715462

Novel transmission routes change pathogen landscapes and may facilitate disease emergence. The varroa mite is a virus vector that switched to western honeybees at the beginning of the last century, leading to hive mortality, particularly in combination with RNA viruses. A recent invasion of varroa on the French island of Ushant introduced vector-mediated transmission to one of the last varroa-naive native honeybee populations and caused rapid changes in the honeybee viral community. These changes were characterized by a drastic increase in deformed wing virus type B prevalence and titre in honeybees, as well as knock-on effects in bumblebees, particularly in the year following the invasion. Slow bee paralysis virus also appeared in honeybees and bumblebees, with a 1 year delay, while black queen cell virus declined in honeybees. This study highlights the rapid and far-reaching effects of vector-borne transmission that can extend beyond the directly affected host species, and that the direction of the effect depends on the pathogen's virulence.


RNA Viruses , Varroidae , Animals , Bees/virology , Varroidae/virology , Varroidae/physiology , RNA Viruses/physiology , RNA Viruses/genetics , France/epidemiology , Introduced Species , Dicistroviridae/genetics , Dicistroviridae/physiology , Prevalence
3.
Curr Biol ; 34(9): 1893-1903.e3, 2024 May 06.
Article En | MEDLINE | ID: mdl-38636513

Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.


Crops, Agricultural , Pollination , Bees/physiology , Bees/parasitology , Animals , Varroidae/physiology , Canada , Stress, Physiological , Beekeeping/methods
4.
Exp Appl Acarol ; 92(3): 369-384, 2024 Apr.
Article En | MEDLINE | ID: mdl-38485887

Management, brood nest structure and factors associated with varroa mite infestation were studied in 60 apiaries of Africanized honey bees in the northwest region of the Central Valley of Costa Rica. Apiaries were monitored two times. The first monitoring was taken forward during the rainy season between May and November 2019. The second monitoring during the dry season between February and March 2020. Information about the beekeepers, apiaries and management was collected through a survey. Amount of open and capped brood, honey and pollen were measured in the field. The infestation rate of varroa (IRV) was quantified using standard laboratory methods. A determination of multi-residue pesticides in bee bread was made through GC-MS/MS and LC-MS/MS techniques. According to the results, most of the beekeepers produce honey (96.7%), participate in training activities (82.2%), and change the bee queens annually (70%). The first monitoring was characterized by a lower amount of capped brood and honey reserves compared to the second one. IRV was significantly higher in the first monitoring (6.0 ± 0.4) in comparison with the second one (3.0 ± 0.3) (U Mann-Whitney p < 0.001). The maximum value for the first monitoring exceeds 40%, while this value was close to 25% in the second monitoring. Mite infestation exposed significant differences in relation to the variables associated to the beekeeper's management, i.e., change of bee queen (p = 0.002) or when beekeepers monitor varroa mites (p = 0.004). Additionally, the IRV had inverse correlations (p < 0.01) with the number of comb sides with capped brood (Spearman's rho coefficient = - 0.190), and honey reserves (Spearman's rho coefficient = - 0.168). Furthermore, 23 of 60 bee bread samples presented one to five pesticide residues, being the most frequent antifungal agrochemicals.


Beekeeping , Mite Infestations , Varroidae , Animals , Bees/parasitology , Bees/physiology , Varroidae/physiology , Costa Rica , Mite Infestations/veterinary , Mite Infestations/parasitology , Honey/analysis , Nesting Behavior
5.
Exp Appl Acarol ; 92(4): 795-808, 2024 May.
Article En | MEDLINE | ID: mdl-38478141

Varroa destructor is a significant mite pest of western honey bees (Apis mellifera). Developing a method to rear and maintain populations of V. destructor in vitro would provide year-round access to the mites, allowing scientists to study their biology, behavior, and control more rapidly. In this study, we determined the impact of various rearing parameters on V. destructor survival and reproduction in vitro. This was done by collecting V. destructor from colonies, placing them in gelatin capsules containing honey bee larvae, and manipulating the following conditions experimentally: rearing temperature, colony source of honey bee larva, behavioral/developmental stages of V. destructor and honey bee larva, and mite:bee larva ratio. Varroa destructor survival was significantly impacted by temperature, colony source of larvae and mite behavioral stage. In addition, V. destructor reproduction was significantly impacted by mite: larva ratio, larval developmental stage, colony source of larva, and temperature. The following conditions optimized mite survival and reproduction in vitro: using a 4:1 mite:larva ratio, beginning the study with late stage uncapped larvae, using mites collected from adult bees, maintaining the rearing temperature at 34.5° C, and screening larval colony source. Ultimately, this research can be used to improve V. destructor in vitro rearing programs.


Larva , Varroidae , Animals , Varroidae/physiology , Bees/parasitology , Larva/growth & development , Larva/physiology , Beekeeping/methods , Reproduction , Temperature
6.
Exp Appl Acarol ; 92(3): 309-321, 2024 Apr.
Article En | MEDLINE | ID: mdl-38401013

Varroa destructor Anderson & Trueman (Acari: Varroidae) is of paramount significance in modern beekeeping, with infestations presenting a primary challenge that directly influences colony health, productivity, and overall apicultural sustainability. In order to control this mite, many beekeepers rely on a limited number of approved synthetic acaricides, including the pyrethroids tau-fluvalinate, flumethrin and organophosphate coumaphos. However, the excessive use of these substances has led to the widespread development of resistance in various beekeeping areas globally. In the present study, the occurrence of resistance mutations in the voltage-gated sodium channel (VGSC) and acetylcholinesterase (AChE), the target-site of pyrethroids and coumaphos, respectively, was examined in Varroa populations collected throughout the southeastern and eastern Anatolia regions of Türkiye. All Varroa samples belonged to the Korean haplotype, and a very low genetic distance was observed based on cytochrome c oxidase subunit I (COI) gene sequences. No amino acid substitutions were determined at the key residues of AChE. On the other hand, three amino acid substitutions, (L925V/I/M), previously associated with pyrethroid resistance, were identified in nearly 80% of the Turkish populations. Importantly, L925M, the dominant mutation in the USA, was detected in Turkish Varroa populations for the first time. To gain a more comprehensive perspective, we conducted a systematic analysis of the distribution of pyrethroid resistance mutations across Europe, based on the previously reported data. Varroa populations from Mediterranean countries such as Türkiye, Spain, and Greece exhibited the highest frequency of resistance mutation. Revealing the occurrence and geographical distribution of pyrethroid resistance mutations in V. destructor populations across the country will enhance the development of more efficient strategies for mite management.


Acaricides , Mutation , Pyrethrins , Varroidae , Varroidae/genetics , Varroidae/physiology , Animals , Pyrethrins/pharmacology , Acaricides/pharmacology , Turkey , Arthropod Proteins/genetics , Insecticide Resistance/genetics , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Drug Resistance/genetics , Voltage-Gated Sodium Channels/genetics
7.
Res Vet Sci ; 169: 105173, 2024 Mar.
Article En | MEDLINE | ID: mdl-38335895

Colony collapse disorder (CCD) has affected bees worldwide in recent decades, with southwestern Spain being no exception. This disorder is one of the main causes of Apis mellifera mortality and is believed to be caused by environmental, social and sanitary conditions. Dietary supplementation can help to improve some parameters of the general status and sanitary condition of bees, such as infestation by certain recurrent pathogens, including Varroa destructor and Nosema ceranae, by enhancing immune and social response. Thus, the aim of this study was to test a liquid hydrolysed protein supplement on the health and general status of the hive in several apiaries with access to the same natural food and under similar climatic conditions. We selected two groups of ten hives (supplemented by either placebo or protein) from five apiaries where the number of adult bees, amount of brood (open and operculated), honey and pollen reserves, infestation by V. destructor, N. ceranae, deformed wing virus (DWV) and chronic bee paralysis virus (CBPV) were measured. Additionally, we assess the expression of four immune system-related genes and a gene encoding vitellogenin. At the end of this work, treated hives showed a significant increase in open brood and a decrease in V. destructor infestation. Also, these hives showed a significant decrease in the mortality rate after the cold season. Therefore, supplementation with this product improved the health of the hive and could be a promising tool against bee colony loss.


Honey , RNA Viruses , Urticaria , Varroidae , Bees , Animals , Spain/epidemiology , Varroidae/physiology , Urticaria/veterinary , Dietary Supplements
8.
Sci Rep ; 14(1): 1148, 2024 01 11.
Article En | MEDLINE | ID: mdl-38212601

The Varroa destructor mite is a parasitic threat to managed and feral honey bee colonies around the world. Beekeepers use miticides to eliminate Varroa in commercial hives, but these chemicals can diminish bee health and increase miticide resistance. In contrast, feral honey bees have developed multiple ways to counteract mites without chemical treatment. We compared mite levels, grooming habits, and mite-biting behavior between feral Africanized honey bees (genomically verified Apis mellifera scutellata hybrids) and managed Italian honey bees (A. mellifera ligustica). Surprisingly, there was no difference in mite infestation levels between scutellata-hybrids and managed bees over one year despite the regular use of miticides in managed colonies. We also found no differences in the social immunity responses of the two groups, as measured by their hygienic habits (through worker brood pin-kill assays), self-grooming, and mite-biting behavior. However, we provide the first report that both scutellata-hybrids and managed honey bees bite off mite chemosensory forelegs, which the mites use to locate brood cells for reproduction, to a significantly greater degree than other legs (a twofold greater reduction in foreleg length relative to the most anterior legs). Such biting may impair mite reproduction.


Acaricides , Scabies , Varroidae , Bees , Animals , Varroidae/physiology , Reproduction/physiology , Habits
9.
PLoS Pathog ; 19(12): e1011897, 2023 Dec.
Article En | MEDLINE | ID: mdl-38150483

Honeybees play a major role in crop pollination, which supports the agricultural economy and international food supply. The colony health of honeybees is threatened by the parasitic mite Varroa destructor, which inflicts physical injury on the hosts and serves as the vector for variable viruses. Recently, it shows that V. destructor may also transmit bacteria through the feeding wound, yet it remains unclear whether the invading bacteria can exhibit pathogenicity to the honeybees. Here, we incidentally isolate Enterococcus faecalis, one of the most abundant bacteria in Varroa mites, from dead bees during our routine generation of microbiota-free bees in the lab. In vivo tests show that E. faecalis is only pathogenic in Apis mellifera but not in Apis cerana. The expression of antimicrobial peptide genes is elevated following infection in A. cerana. The gene-based molecular evolution analysis identifies positive selection of genes encoding Späetzle 4 (Spz4) in A. cerana, a signaling protein in the Toll pathway. The amino acid sites under positive selection are related to structural changes in Spz4 protein, suggesting improvement of immunity in A. cerana. The knock-down of Spz4 in A. cerana significantly reduces the survival rates under E. faecalis challenge and the expression of antimicrobial peptide genes. Our results indicate that bacteria associated with Varroa mites are pathogenic to adult bees, and the positively selected gene Spz4 in A. cerana is crucial in response to this mite-related pathogen.


Microbiota , Varroidae , Bees , Animals , Varroidae/physiology , Enterococcus faecalis/genetics , Ligands , Antimicrobial Peptides
10.
J Virol ; 97(12): e0114923, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-37966226

IMPORTANCE: The parasitic mite Varroa destructor is a significant driver of worldwide colony losses of our most important commercial pollinator, the Western honey bee Apis mellifera. Declines in honey bee health are frequently attributed to the viruses that mites vector to honey bees, yet whether mites passively transmit viruses as a mechanical vector or actively participate in viral amplification and facilitate replication of honey bee viruses is debated. Our work investigating the antiviral RNA interference response in V. destructor demonstrates that key viruses associated with honey bee declines actively replicate in mites, indicating that they are biological vectors, and the host range of bee-associated viruses extends to their parasites, which could impact virus evolution, pathogenicity, and spread.


Bees , Disease Vectors , Host Specificity , Parasites , Varroidae , Virus Replication , Viruses , Animals , Bees/parasitology , Bees/virology , Parasites/physiology , Parasites/virology , Varroidae/physiology , Varroidae/virology , Viruses/growth & development , Viruses/pathogenicity , RNA Interference
11.
J Insect Physiol ; 151: 104571, 2023 12.
Article En | MEDLINE | ID: mdl-37832840

Several concurrent stress factors can impact honey bee health and colony stability. Although a satisfactory knowledge of the effect of almost every single factor is now available, a mechanistic understanding of the many possible interactions between stressors is still largely lacking. Here we studied, both at the individual and colony level, how honey bees are affected by concurrent exposure to cold and parasitic infection. We found that the parasitic mite Varroa destructor, further than increasing the natural mortality of bees, can induce an anorexia that reduces their capacity to thermoregulate and thus react to sub-optimal temperatures. This, in turn, could affect the collective response of the bee colony to cold temperatures aggravating the effect already observed at the individual level. These results highlight the important role that biotic factors can have by shaping the response to abiotic factors and the strategic need to consider the potential interactions between stressors at all levels of the biological organization to better understand their impact.


Varroidae , Bees , Animals , Varroidae/physiology , Cold Temperature
12.
Sci Rep ; 13(1): 11842, 2023 07 22.
Article En | MEDLINE | ID: mdl-37481663

Placing honey bee colonies in cold storage has been proposed as a way to induce a pause in brood production as part of a Varroa mite treatment plan. Here, we exposed colonies to combinations of with or without an October cold storage period and with or without a subsequent miticide application. We then measured the effects of those treatments on colony-level variables (i.e. colony size, Varroa infestation level, survivorship and hive weight and temperature) and pooled individual-level variables that are associated with nutritional and stress responses. Colonies were assessed before and after cold storage, and again post winter, for a total duration of about 5 months, and the experiment was repeated. Brood levels were significantly lower after cold storage, and hive temperatures indicated that most or all brood had emerged after about two weeks in cold storage. However, Varroa levels at the end of the experiments in February were not significantly different among treatment groups. Colonies kept outside (not subjected to cold storage) and treated with a miticide had higher survivorship on average than any other treatment group, but no other group comparisons were significant, and long-term impact of cold storage on adult bee populations and on colony thermoregulation was low. The bee forage environment was also very different between the 2 years of the study, as rainfall and bee forage availability were much higher the second year. Colonies were over 2.5 times larger on average the second year compared to the first, both in terms of adult bee mass and brood area, and expression levels of nutrition and stress response genes were also significantly higher the second year. The results indicate that limited cold storage would likely have little long-term impact on most colony and individual measures of health, but for such a strategy to succeed levels of stressors, such as Varroa, may also need to be low.


Acaricides , Varroidae , Animals , Bees , Varroidae/physiology , Acaricides/pharmacology , Seasons , Temperature
13.
PLoS One ; 18(7): e0288821, 2023.
Article En | MEDLINE | ID: mdl-37459342

Host age at parasites' exposure is often neglected in studies on host-parasite interactions despite the important implications for epidemiology. Here we compared the impact of the parasitic mite Varroa destructor, and the associated pathogenic virus DWV on different life stages of their host, the western honey bee Apis mellifera. The pre-imaginal stages of the honey bee proved to be more susceptible to mite parasitization and viral infection than adults. The higher viral load in mite-infested bees and DWV genotype do not appear to be the drivers of the observed difference which, instead, seems to be related to the immune-competence of the host. These results support the existence of a trade-off between immunity and growth, making the pupa, which is involved in the highly energy-demanding process of metamorphosis, more susceptible to parasites and pathogens. This may have important implications for the evolution of the parasite's virulence and in turn for honey bee health. Our results highlight the important role of host's age and life stage at exposure in epidemiological modelling. Furthermore, our study could unravel new aspects of the complex honey bee-Varroa relationship to be addressed for a sustainable management of this parasite.


Varroidae , Virus Diseases , Animals , Bees , Varroidae/physiology , Host-Parasite Interactions
14.
Sci Rep ; 13(1): 10340, 2023 06 26.
Article En | MEDLINE | ID: mdl-37365202

Varroa destructor is one of the main causes of colony losses of the western honey bee (Apis mellifera). Many efforts exist to breed honey bees resistant to V. destructor. Varroa sensitive hygiene (VSH) is a commonly selected behavioural trait; VSH workers remove the pupae of mite infested brood cells with high efficiency, interrupting the reproduction of the mite. The cues and triggers for this behaviour are not yet fully understood. To determine what elicits this removal behaviour, we examined preselected VSH workers´ responses to four different groups of objects inserted into freshly capped cells: live mites, dead mites, odour reduced mites, and glass beads. These were also compared to control cells that were opened and closed without inserting any object. The pupae in cells containing inorganic objects (glass beads) were removed at similar rates to the control, demonstrating that an object alone does not trigger a removal response. Dead and odour reduced mites were removed at a higher frequency than control cells, but less frequently than live mites. Workers sometimes removed items resting near the top of the cell without removing the pupa. Our results demonstrate that although mite odour from dead mites triggers removal behaviour, the pupa of cells containing live mites were removed more frequently, suggesting that other cues (i.e. odour from feeding wound) or signals (i.e. pupal movement to signal distress) are important. Future research should focus on elucidating these other cues or signals from the brood and mites, as mite presence alone seems to be insufficient.


Varroidae , Animals , Bees , Varroidae/physiology , Behavior, Animal/physiology , Reproduction , Odorants , Hygiene , Pupa
15.
PLoS One ; 18(2): e0281130, 2023.
Article En | MEDLINE | ID: mdl-36791085

The global spread of the parasitic mite Varroa destructor instigated a substantial decline in both managed and feral honeybee (Apis mellifera) colonies mainly across the Northern hemisphere. In response, many beekeepers began to treat their colonies with chemical acaricides to control mite populations in managed colonies. However, some countries or beekeepers allowed their bees to develop mite-resistance by adopting a "treatment-free" approach, rather than using selective breeding programs. Yet, the distribution and proportion of beekeepers either treating or not within the United Kingdom (UK) is unknown, as it is in most Northern hemisphere countries. Therefore, the aim of this study was to conduct a beekeeper survey to determine the current treatment strategies within the UK. We gathered 2,872 beekeeper responses from an estimated 30,000 UK beekeepers belonging to 242 bee-associations in the winter of 2020/21. The survey indicated that the majority (72-79%) of UK beekeepers are still treating their bees for Varroa, typically twice-yearly using chemical-based methods. Six percent or 1,800 UK beekeepers were treatment-free for six years or more. This is reflected by our finding that 78 associations out of 242 consist of responders who entirely treated, while only four associations had more than 75% of their members that were non-treating. Overall treatment status was not affected by association currently. Using the baseline data from this survey it will be possible in the future to observer if a shift towards treatment-free beekeeping occurs or not.


Acaricides , Varroidae , Bees , Animals , Varroidae/physiology , Beekeeping/methods , Habits , Seasons
16.
PLoS One ; 18(2): e0282120, 2023.
Article En | MEDLINE | ID: mdl-36809298

Chemical communication is a widely used mode of communication for social insects and has been demonstrated to be involved in many behaviours and physiological processes such as reproduction, nutrition or the fight against parasites and pathogens. In the honey bee, Apis mellifera, the release of chemical compounds by the brood plays a role in worker behaviour, physiology, and foraging activities and colony health as a whole. Several compounds have already been described as brood pheromones, such as components of the brood ester pheromone and (E)-ß-ocimene. Several other compounds originating from diseased or varroa-infested brood cells have been described as triggering the hygienic behaviour of workers. So far, studies of brood emissions have focused on specific stages of development and little is known about the emission of volatile organic compounds by the brood. In this study, we investigate the semiochemical profile of worker honey bee brood during its whole developmental cycle, from egg to emergence, with a specific focus on volatile organic compounds. We describe variation in emissions of thirty-two volatile organic compounds between brood stages. We highlight candidate compounds that are particularly abundant in specific stages and discuss their potential biological significance.


Varroidae , Volatile Organic Compounds , Bees , Animals , Larva/physiology , Pheromones , Behavior, Animal , Varroidae/physiology
17.
Insect Biochem Mol Biol ; 152: 103877, 2023 01.
Article En | MEDLINE | ID: mdl-36403678

The extensive annual loss of honey bees (Apis mellifera L.) represents a global problem affecting agriculture and biodiversity. The parasitic mite Varroa destructor, associated with viral co-infections, plays a key role in this loss. Despite years of intensive research, the complex mechanisms of Varroa - honey bee interaction are still not fully defined. Therefore, this study employed a unique combination of transcriptomic, proteomic, metabolomic, and functional analyses to reveal new details about the effect of Varroa mites and naturally associated factors, including viruses, on honey bees. We focused on the differences between Varroa parasitised and unparasitised ten-day-old worker bees collected before overwintering from the same set of colonies reared without anti-mite treatment. Supplementary comparison to honey bees collected from colonies with standard anti-Varroa treatment can provide further insights into the effect of a pyrethroid flumethrin. Analysis of the honey bees exposed to mite parasitisation revealed alterations in the transcriptome and proteome related to immunity, oxidative stress, olfactory recognition, metabolism of sphingolipids, and RNA regulatory mechanisms. The immune response and sphingolipid metabolism were strongly activated, whereas olfactory recognition and oxidative stress pathways were inhibited in Varroa parasitised honey bees compared to unparasitised ones. Moreover, metabolomic analysis confirmed the depletion of nutrients and energy stores, resulting in a generally disrupted metabolism in the parasitised workers. The combined omics-based analysis conducted on strictly parasitised bees revealed the key molecular components and mechanisms underlying the detrimental effects of Varroa sp. and its associated pathogens. This study provides the theoretical basis and interlinked datasets for further research on honey bee response to biological threats and the development of efficient control strategies against Varroa mites.


Varroidae , Bees/genetics , Animals , Varroidae/physiology , Proteomics , Gene Expression Profiling , Transcriptome , Smell
18.
J Econ Entomol ; 116(1): 68-77, 2023 02 10.
Article En | MEDLINE | ID: mdl-36573405

Landscapes can affect parasite epidemiology in wild and agricultural animals. Honey bees are threatened by loss of floral resources and by parasites, principally the mite Varroa destructor and the viruses it vectors. Existing mite control relies heavily on chemical treatments that can adversely affect bees. Alternative, pesticide-free control methods are needed to mitigate infestation with these ectoparasites. Many flowering plants provide nectar and pollen that confer resistance to parasites. Enrichment of landscapes with antiparasitic floral resources could therefore provide a sustainable means of parasite control in pollinators. Floral rewards of Asteraceae plants can reduce parasitic infection in diverse bee species, including honey and bumble bees. Here, we tested the effects of sunflower (Helianthus annuus) cropland and pollen supplementation on honey bee resistance to macro- and microparasites. Although sunflower had nonsignificant effects on microparasites, We found that increased sunflower pollen availability correlated with reduced Varroa mite infestation in landscapes and pollen-supplemented colonies. At the landscape level, each doubling of sunflower crop area was associated with a 28% reduction in mite infestation. In field trials, late-summer supplementation of colonies with sunflower pollen reduced mite infestation by 2.75-fold relative to artificial pollen. United States sunflower crop acreage has declined by 2% per year since 1980, however, suggesting reduced availability of this floral resource. Although further research is needed to determine whether the observed effects represent direct inhibition of mite fecundity or mite-limiting reductions in honey bee brood-rearing, our findings suggest the potential for sunflower plantings or pollen supplements to counteract a major driver of honey bee losses worldwide.


Asteraceae , Helianthus , Honey , Mite Infestations , Varroidae , Animals , Bees , Varroidae/physiology , Mite Infestations/prevention & control , Mite Infestations/veterinary , Mite Infestations/parasitology
19.
Sci Rep ; 12(1): 17263, 2022 10 14.
Article En | MEDLINE | ID: mdl-36241660

The devastating Varroa mite (Varroa destructor Anderson and Trueman) is an obligatory ectoparasite of the honey bee, contributing to significant colony losses in North America and throughout the world. The limited number of conventional acaricides to reduce Varroa mites and prevent disease in honey bee colonies is challenged with wide-spread resistance and low target-site selectivity. Here, we propose a biorational approach using comparative genomics for the development of honey bee-safe and selective acaricides targeting the Varroa mite-specific neuropeptidergic system regulated by proctolin, which is lacking in the honey bee. Proctolin is a highly conserved pentapeptide RYLPT (Arg-Tyr-Leu-Pro-Thr) known to act through a G protein-coupled receptor to elicit myotropic activity in arthropod species. A total of 33 different peptidomimetic and peptide variants were tested on the Varroa mite proctolin receptor. Ligand docking model and mutagenesis studies revealed the importance of the core aromatic residue Tyr2 in the proctolin ligand. Peptidomimetics were observed to have significant oral toxicity leading to the paralysis and death of Varroa mites, while there were no negative effects observed for honey bees. We have demonstrated that a taxon-specific physiological target identified by advanced genomics information offers an opportunity to develop Varroa mite-selective acaricides, hence, expedited translational processes.


Acaricides , Peptidomimetics , Varroidae , Acaricides/pharmacology , Animals , Bees/genetics , Genomics , Ligands , Peptidomimetics/pharmacology , Varroidae/physiology
20.
Anim Genet ; 53(1): 156-160, 2022 Feb.
Article En | MEDLINE | ID: mdl-34729804

Recapping of Varroa destructor-infested brood cells is a trait that has recently attracted interest in honey bee breeding to select mite-resistant Apis mellifera colonies. To investigate the genetic architecture of this trait, we evaluated a sample of A. mellifera mellifera colonies (N = 155) from Switzerland and France and performed a genome-wide association study, using a pool of 500 workers per colony for next-generation sequencing. The results revealed that two QTL were significantly (P < 0.05) associated with recapping of V. destructor-infested brood cells. The best-associated QTL is located on chromosome 5 in a region previously found to be associated with grooming behaviour, a resistance trait against V. destructor, in A. mellifera and Apis cerana. The second best-associated QTL is located on chromosome 4 in an intron of the Dscam gene, which is involved in neuronal wiring. Previous research demonstrated that genes involved in neuronal wiring are associated with recapping and varroa sensitive hygiene. Therefore, our study confirms the role of a gene region on chromosome 5 in social immunity and simultaneously provides novel insights into genetic interactions between common mite resistance traits in honey bees.


Bees/genetics , Nesting Behavior , Quantitative Trait Loci , Varroidae/physiology , Animals , Bees/parasitology , France , Genome-Wide Association Study , Reproduction , Switzerland
...