Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
J Clin Invest ; 134(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145452

RESUMEN

T cells rewire their metabolic activities to meet the demand of immune responses, but how to coordinate the immune response by metabolic regulators in activated T cells is unknown. Here, we identified autocrine VEGF-B as a metabolic regulator to control lipid synthesis and maintain the integrity of the mitochondrial inner membrane for the survival of activated T cells. Disruption of autocrine VEGF-B signaling in T cells reduced cardiolipin mass, resulting in mitochondrial damage, with increased apoptosis and reduced memory development. The addition of cardiolipin or modulating VEGF-B signaling improved T cell mitochondrial fitness and survival. Autocrine VEGF-B signaling through GA-binding protein α (GABPα) induced sentrin/SUMO-specific protease 2 (SENP2) expression, which further de-SUMOylated PPARγ and enhanced phospholipid synthesis, leading to a cardiolipin increase in activated T cells. These data suggest that autocrine VEGF-B mediates a signal to coordinate lipid synthesis and mitochondrial fitness with T cell activation for survival and immune response. Moreover, autocrine VEGF-B signaling in T cells provides a therapeutic target against infection and tumors as well as an avenue for the treatment of autoimmune diseases.


Asunto(s)
Comunicación Autocrina , Cardiolipinas , Mitocondrias , Transducción de Señal , Linfocitos T , Factor B de Crecimiento Endotelial Vascular , Mitocondrias/metabolismo , Mitocondrias/inmunología , Animales , Ratones , Comunicación Autocrina/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transducción de Señal/inmunología , Cardiolipinas/inmunología , Cardiolipinas/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/inmunología , Activación de Linfocitos , PPAR gamma/metabolismo , PPAR gamma/inmunología , PPAR gamma/genética , Humanos
2.
PLoS One ; 19(7): e0305466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38990973

RESUMEN

In previous animal model studies, we demonstrated the potential of rAAV2-sVEGFRv-1, which encodes a truncated variant of the alternatively spliced soluble version of VEGF receptor-1 (VEGFR1), as a human gene therapy for age-related macular degeneration (AMD) and diabetic retinopathy (DR). Here, we elucidate in vitro some of the mechanisms by which rAAV2-sVEGFRv-1 exerts its therapeutic effects. Human umbilical vein endothelial cells (HUVECs) were infected with rAAV2-sVEGFRv-1 or a control virus vector in the presence of members of the VEGF family to identify potential binding partners via ELISA, which showed that VEGF-A, VEGF-B, and placental growth factor (PlGF) are all ligands of its transgene product. In order to determine the effects of rAAV2-sVEGFRv-1 on cell proliferation and permeability, processes that are important to the progression AMD and DR, HUVECs were infected with the therapeutic virus vector under the stimulation of VEGF-A, the major driver of the neovascularization that characterizes the forms of these conditions most associated with vision loss. rAAV2-sVEGFRv-1 treatment, as a result, markedly reduced the extent to which these processes occurred, with the latter determined by measuring zonula occludens 1 expression. Finally, the human microglial HMC3 cell line was used to show the effects of the therapeutic virus vector upon inflammatory processes, another major contributor to angiogenic eye disease pathophysiology, with rAAV2-sVEGFRv-1 reducing therein the secretion of pro-inflammatory cytokines interleukin (IL)-1ß and IL-6. Combined with our previously published in vivo data, the in vitro activity of the expressed transgene here further demonstrates the great promise of rAAV2-sVEGFRv-1 as a potential human gene therapeutic for addressing angiogenic ocular conditions.


Asunto(s)
Dependovirus , Terapia Genética , Células Endoteliales de la Vena Umbilical Humana , Factor A de Crecimiento Endotelial Vascular , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Dependovirus/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Proliferación Celular , Degeneración Macular/terapia , Degeneración Macular/genética , Degeneración Macular/metabolismo , Retinopatía Diabética/terapia , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor de Crecimiento Placentario/genética , Factor de Crecimiento Placentario/metabolismo
3.
J Cell Mol Med ; 28(10): e18268, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775031

RESUMEN

Colorectal cancer (CRC) is a highly prevalent malignancy affecting the digestive system on a global scale. This study aimed to explore the previously unexplored role of CHPF in the progression of CRC. Our results revealed a significant upregulation of CHPF expression in CRC tumour tissues compared to normal tissues, with its levels correlating with tumour malignancy. In vitro experiments using CRC cell lines demonstrated that inhibiting CHPF expression suppressed cell proliferation, colony formation and cell migration, while promoting apoptosis. Conversely, overexpressing CHPF had the opposite effect. Additionally, our xenograft models in mice confirmed the inhibitory impact of CHPF knockdown on CRC progression using various cell models. Mechanistic investigations unveiled that CHPF may enhance VEGFB expression through E2F1-mediated transcription. Functionally, suppressing VEGFB expression successfully mitigated the oncogenic effects induced by CHPF overexpression. Collectively, these findings suggest that CHPF may act as a tumour promoter in CRC, operating in a VEGFB-dependent manner and could be a potential target for therapeutic interventions in CRC treatment.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Factor B de Crecimiento Endotelial Vascular , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Ratones Desnudos , Transcripción Genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética
4.
Circ Res ; 134(11): 1465-1482, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655691

RESUMEN

BACKGROUND: Preclinical studies have shown the therapeutic potential of VEGF-B (vascular endothelial growth factor B) in revascularization of the ischemic myocardium, but the associated cardiac hypertrophy and adverse side effects remain a concern. To understand the importance of endothelial proliferation and migration for the beneficial versus adverse effects of VEGF-B in the heart, we explored the cardiac effects of autocrine versus paracrine VEGF-B expression in transgenic and gene-transduced mice. METHODS: We used single-cell RNA sequencing to compare cardiac endothelial gene expression in VEGF-B transgenic mouse models. Lineage tracing was used to identify the origin of a VEGF-B-induced novel endothelial cell population and adeno-associated virus-mediated gene delivery to compare the effects of VEGF-B isoforms. Cardiac function was investigated using echocardiography, magnetic resonance imaging, and micro-computed tomography. RESULTS: Unlike in physiological cardiac hypertrophy driven by a cardiomyocyte-specific VEGF-B transgene (myosin heavy chain alpha-VEGF-B), autocrine VEGF-B expression in cardiac endothelium (aP2 [adipocyte protein 2]-VEGF-B) was associated with septal defects and failure to increase perfused subendocardial capillaries postnatally. Paracrine VEGF-B led to robust proliferation and myocardial migration of a novel cardiac endothelial cell lineage (VEGF-B-induced endothelial cells) of endocardial origin, whereas autocrine VEGF-B increased proliferation of VEGF-B-induced endothelial cells but failed to promote their migration and efficient contribution to myocardial capillaries. The surviving aP2-VEGF-B offspring showed an altered ratio of secreted VEGF-B isoforms and developed massive pathological cardiac hypertrophy with a distinct cardiac vessel pattern. In the normal heart, we found a small VEGF-B-induced endothelial cell population that was only minimally expanded during myocardial infarction but not during physiological cardiac hypertrophy associated with mouse pregnancy. CONCLUSIONS: Paracrine and autocrine secretions of VEGF-B induce expansion of a specific endocardium-derived endothelial cell population with distinct angiogenic markers. However, autocrine VEGF-B signaling fails to promote VEGF-B-induced endothelial cell migration and contribution to myocardial capillaries, predisposing to septal defects and inducing a mismatch between angiogenesis and myocardial growth, which results in pathological cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Linaje de la Célula , Endocardio , Células Endoteliales , Ratones Transgénicos , Factor B de Crecimiento Endotelial Vascular , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Ratones , Endocardio/metabolismo , Endocardio/patología , Comunicación Paracrina , Proliferación Celular , Comunicación Autocrina , Ratones Endogámicos C57BL , Femenino , Masculino , Movimiento Celular
5.
Int J Biol Macromol ; 267(Pt 1): 131507, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604419

RESUMEN

Vascular endothelial growth factor B (VEGFB), a member of the VEGF family, exhibits limited angiogenic activity in mammals but plays an unexpected role in targeting lipids to peripheral tissues. However, its role in lipid metabolism in fish is unknown. In this study, the vegfb gene was cloned and characterized from spotted sea bass (Lateolabrax maculatus). It encodes 254 amino acids and possesses the typical characteristics of the Vegfb family, demonstrating high homology with those from other vertebrate species. The vegfb gene exhibits the highest expression levels in the liver, followed by the gills, intestine, and adipose tissues in spotted sea bass. In vivo, high-lipid diets decreased vegfb expression and increased lipid deposition in liver of fish. In vitro, palmitic acid + oleic acid treatment or vegfb knockdown significantly increased TG and TC contents, promoting lipid droplet deposition in hepatocytes. Vegfb overexpression has the opposite effects, inhibiting lipid deposition and downregulating fatty acid transport and adipogenesis genes. In contrast, the vegfb knockdown significantly upregulated the expression levels of c/ebpα, plin2, and dgat1 (P < 0.05). These results demonstrate that Vegfb may play an important role in reducing lipid deposition by regulating fatty acid transport and adipogenesis in the hepatocytes of spotted sea bass.


Asunto(s)
Lubina , Metabolismo de los Lípidos , Factor B de Crecimiento Endotelial Vascular , Animales , Lubina/genética , Lubina/metabolismo , Metabolismo de los Lípidos/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Clonación Molecular , Secuencia de Aminoácidos , Filogenia , Hígado/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Adipogénesis/genética
6.
J Physiol Biochem ; 80(2): 381-392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38536659

RESUMEN

Hepatocellular carcinoma (HCC) is a highly vascularized tumor, one of the most common and lethal cancer-related tumor deaths worldwide, with cell proliferation playing a key role. In this study our western blot results and data from TAGC demonstrate a strong association between Sorcin (SRI) overexpression and poor outcomes in HCC. Moreover, SRI overexpression was remarkably effective in promoting proliferation in vitro and increasing tumor growth in vivo, which were attenuated by knocking down SRI. Mechanistically, SRI regulated vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor B (VEGFB) through PI3K/Akt/FOXO1 signal pathway. Overall, our study indicates that SRI stimulates HCC growth by controlling VEGFA/B, which presents a fresh insight into the pathogenesis of hepatocarcinogenesis and a new therapeutic target for HCC.


Asunto(s)
Proteínas de Unión al Calcio , Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Factor A de Crecimiento Endotelial Vascular , Factor B de Crecimiento Endotelial Vascular , Animales , Humanos , Ratones , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética
7.
Int J Biol Macromol ; 264(Pt 2): 130782, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471613

RESUMEN

Vascular endothelial growth factor B (VEGFB) has been well demonstrated to play a crucial role in regulating vascular function by binding to the VEGF receptors (VEGFRs). However, the specific role of VEGFB and VEGFRs in pubertal mammary gland development remains unclear. In this study, we observed that blocking the VEGF receptors with Axitinib suppressed the pubertal mammary gland development. Meanwhile, the proliferation of mammary epithelial cells (HC11) was repressed by blocking the VEGF receptors with Axitinib. Additionally, knockdown of VEGFR1 rather than VEGFR2 and NRP1 elicited the inhibition of HC11 proliferation, suggesting the essential role of VEGFR1 during this process. Furthermore, Axitinib or VEGFR1 knockdown led to the inhibition of the PI3K/Akt pathway. However, the inhibition of HC11 proliferation induced by Axitinib and or VEGFR1 knockdown was eliminated by the Akt activator SC79, indicating the involvement of the PI3K/Akt pathway. Finally, the knockdown of VEGFB and VEGFR1 suppressed the pubertal development of mice mammary gland with the inhibition of the PI3K/Akt pathway. In summary, the results showed that knockdown of the VEGFB/VEGFR1 signaling suppresses pubertal mammary gland development of mice via the inhibition of the PI3K/Akt pathway, which provides a new target for the regulation of pubertal mammary gland development.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Factor B de Crecimiento Endotelial Vascular , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Axitinib/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular , Proliferación Celular
8.
J Cell Physiol ; 239(4): e31177, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214132

RESUMEN

It is well-recognized that blood flow at branches and bends of arteries generates disturbed shear stress, which plays a crucial in driving atherosclerosis. Flow-generated fluid shear stress (FSS), as one of the key hemodynamic factors, is appreciated for its critical involvement in regulating angiogenesis to facilitate wound healing and tissue repair. Endothelial cells can directly sense FSS but the mechanobiological mechanism by which they decode different patterns of FSS to trigger angiogenesis remains unclear. In the current study, laminar shear stress (LSS, 15 dyn/cm2) was employed to mimic physiological blood flow, while disturbed shear stress (DSS, ranging from 0.5 ± 4 dyn/cm2) was applied to simulate pathological conditions. The aim was to investigate how these distinct types of blood flow regulated endothelial angiogenesis. Initially, we observed that DSS impaired angiogenesis and downregulated endogenous vascular endothelial growth factor B (VEGFB) expression compared to LSS. We further found that the changes in membrane protein, migration and invasion enhancer 1 (MIEN1) play a role in regulating ERK/MAPK signaling, thereby contributing to endothelial angiogenesis in response to FSS. We also showed the involvement of MIEN1-directed cytoskeleton organization. These findings suggest the significance of shear stress in endothelial angiogenesis, thereby enhancing our understanding of the alterations in angiogenesis that occur during the transition from physiological to pathological blood flow.


Asunto(s)
Angiogénesis , Células Endoteliales , Hemodinámica , Humanos , Aterosclerosis/patología , Células Cultivadas , Células Endoteliales/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Estrés Mecánico , Factor B de Crecimiento Endotelial Vascular/metabolismo
9.
Cardiovasc Diabetol ; 23(1): 19, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195474

RESUMEN

AIMS: Diabetic cardiomyopathy (DCM) is a major cause of mortality in patients with diabetes, and the potential strategies for treating DCM are insufficient. Melatonin (Mel) has been shown to attenuate DCM, however, the underlying mechanism remains unclear. The role of vascular endothelial growth factor-B (VEGF-B) in DCM is little known. In present study, we aimed to investigate whether Mel alleviated DCM via regulation of VEGF-B and explored its underlying mechanisms. METHODS AND RESULTS: We found that Mel significantly alleviated cardiac dysfunction and improved autophagy of cardiomyocytes in type 1 diabetes mellitus (T1DM) induced cardiomyopathy mice. VEGF-B was highly expressed in DCM mice in comparison with normal mice, and its expression was markedly reduced after Mel treatment. Mel treatment diminished the interaction of VEGF-B and Glucose-regulated protein 78 (GRP78) and reduced the interaction of GRP78 and protein kinase RNA -like ER kinase (PERK). Furthermore, Mel increased phosphorylation of PERK and eIF2α, then up-regulated the expression of ATF4. VEGF-B-/- mice imitated the effect of Mel on wild type diabetic mice. Interestingly, injection with Recombinant adeno-associated virus serotype 9 (AAV9)-VEGF-B or administration of GSK2656157 (GSK), an inhibitor of phosphorylated PERK abolished the protective effect of Mel on DCM. Furthermore, rapamycin, an autophagy agonist displayed similar effect with Mel treatment; while 3-Methyladenine (3-MA), an autophagy inhibitor neutralized the effect of Mel on high glucose-treated neonatal rat ventricular myocytes. CONCLUSIONS: These results demonstrated that Mel attenuated DCM via increasing autophagy of cardiomyocytes, and this cardio-protective effect of Mel was dependent on VEGF-B/GRP78/PERK signaling pathway.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Melatonina , Humanos , Ratones , Ratas , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/prevención & control , Miocitos Cardíacos , Factor B de Crecimiento Endotelial Vascular , Melatonina/farmacología , Chaperón BiP del Retículo Endoplásmico , Diabetes Mellitus Experimental/tratamiento farmacológico , Transducción de Señal , Autofagia , Glucosa
10.
Arterioscler Thromb Vasc Biol ; 44(1): 177-191, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38150518

RESUMEN

BACKGROUND: The heart relies heavily on external fatty acid (FA) for energy production. VEGFB (vascular endothelial growth factor B) has been shown to promote endothelial FA uptake by upregulating FA transporters. However, its impact on LPL (lipoprotein lipase)-mediated lipolysis of lipoproteins, a major source of FA for cardiac use, is unknown. METHODS: VEGFB transgenic (Tg) rats were generated by using the α-myosin heavy chain promoter to drive cardiomyocyte-specific overexpression. To measure coronary LPL activity, Langendorff hearts were perfused with heparin. In vivo positron emission tomography imaging with [18F]-triglyceride-fluoro-6-thia-heptadecanoic acid and [11C]-palmitate was used to determine cardiac FA uptake. Mitochondrial FA oxidation was evaluated by high-resolution respirometry. Streptozotocin was used to induce diabetes, and cardiac function was monitored using echocardiography. RESULTS: In Tg hearts, the vectorial transfer of LPL to the vascular lumen is obstructed, resulting in LPL buildup within cardiomyocytes, an effect likely due to coronary vascular development with its associated augmentation of insulin action. With insulin insufficiency following fasting, VEGFB acted unimpeded to facilitate LPL movement and increase its activity at the coronary lumen. In vivo PET imaging following fasting confirmed that VEGFB induced a greater FA uptake to the heart from circulating lipoproteins as compared with plasma-free FAs. As this was associated with augmented mitochondrial oxidation, lipid accumulation in the heart was prevented. We further examined whether this property of VEGFB on cardiac metabolism could be useful following diabetes and its associated cardiac dysfunction, with attendant loss of metabolic flexibility. In Tg hearts, diabetes inhibited myocyte VEGFB gene expression and protein secretion together with its downstream receptor signaling, effects that could explain its lack of cardioprotection. CONCLUSIONS: Our study highlights the novel role of VEGFB in LPL-derived FA supply and utilization. In diabetes, loss of VEGFB action may contribute toward metabolic inflexibility, lipotoxicity, and development of diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas , Insulina , Ratas , Animales , Insulina/farmacología , Factor B de Crecimiento Endotelial Vascular/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Ratas Wistar , Miocitos Cardíacos/metabolismo , Ácidos Grasos/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Triglicéridos/metabolismo , Lipoproteína Lipasa/metabolismo , Miocardio/metabolismo
11.
J Am Heart Assoc ; 12(23): e032441, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38014691

RESUMEN

BACKGROUND: Vasoregulatory autoantibodies including autoantibodies targeting G-protein-coupled receptors might play a functional role in vascular diseases. We investigated the impact of vasoregulatory autoantibodies on clinical outcome after ischemic stroke. METHODS AND RESULTS: Data were used from the PROSCIS-B (Prospective Cohort With Incident Stroke-Berlin). Autoantibody-targeting receptors such as angiotensin II type 1 receptor (AT1R), endothelin-1 type A receptor, complement factor-3 and -5 receptors, vascular endothelial growth factor receptor-1 and -2, vascular endothelial growth factor A and factor B were measured. We explored associations of high antibody levels with (1) poor functional outcome defined as modified Rankin Scale >2 or Barthel Index <60 at 1 year after stroke, (2) Barthel Index scores over time using general estimating equations, and (3) secondary vascular events (recurrent stroke, myocardial infarction) or death up to 3 years using Cox proportional hazard models. We included 491 patients with ischemic stroke with data on autoantibody levels and outcome. In models adjusted for demographics and vascular risk factors, high autoantibody concentrations (quartile 4) targeting complement factor C3a receptor, vascular endothelial growth factor receptor-2, and vascular endothelial growth factor B were associated with poor functional outcome at 1 year: (odds ratio, 2.0 [95% CI, 1.1-3.6]; odds ratio, 1.8 [95% CI, 1.1-3.2]; and odds ratio, 2.1 [95% CI, 1.2-3.6], respectively) and with lower Barthel Index scores over 3 years (complement factor C3a receptor: adjusted ß=-3.3 [95% CI, -5.7 to -0.5]; VEGF-B: adjusted ß=-2.4 [95% CI, -4.8 to -0.06]). Patients with high autoantibody levels were not at higher risk for secondary vascular events or death. CONCLUSIONS: High levels of autoantibodies against vascular endothelial growth factor receptor-2, vascular endothelial growth factor B, and complement factor C3a receptor measured are associated with poor functional outcome after stroke but not with recurrent vascular events or death. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01363856.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Factor A de Crecimiento Endotelial Vascular , Factor B de Crecimiento Endotelial Vascular , Accidente Cerebrovascular Isquémico/complicaciones , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Estudios Prospectivos , Autoanticuerpos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/complicaciones
12.
Mol Med Rep ; 28(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37681454

RESUMEN

Vascular endothelial growth factor B (VEGFB) plays a crucial role in glucolipid metabolism and is highly associated with type 2 diabetes mellitus (T2DM). The role of VEGFB in the insulin secretion of ß cells remains unverified. Thus, the present study aimed to discuss the effect of VEGFB on regulating insulin secretion in T2DM development, and its underlying mechanism. A high­fat diet and streptozocin (STZ) were used for inducing T2DM in mice model, and VEGFB gene in islet cells of T2DM mice was knocked out by CRISPR Cas9 and overexpressed by adeno­Associated Virus (AAV) injection. The effect of VEGFB and its underlying mechanism was assessed by light microscopy, electron microscopy and fluorescence confocal microscopy, enzyme­linked immunosorbent assay, mass spectrometer and western blot analysis. The decrement of insulin secretion in islet ß cell of T2DM mice were aggravated and blood glucose remained at a high level after VEGFB knockout (KO). However, glucose tolerance and insulin sensitivity of T2DM mice were improved after the AAV­VEGFB186 injection. VEGFB KO or overexpression can inhibit or activate PLCγ/IP3R in a VEGFR1­dependent manner. Then, the change of PLCγ/IP3R caused by VEGFB/VEGFR1 will alter the expression of key factors on the Ca2+/CaMK2 signaling pathway such as PPP3CA. Moreover, VEGFB can cause altered insulin secretion by changing the calcium concentration in ß cells of T2DM mice. These findings indicated that VEGFB activated the Ca2+/CaMK2 pathway via VEGFR1­PLCγ and IP3R pathway to regulate insulin secretion, which provides new insight into the regulatory mechanism of abnormal insulin secretion in T2DM.


Asunto(s)
Traumatismos Craneocerebrales , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Ratones , Secreción de Insulina , Factor B de Crecimiento Endotelial Vascular , Transducción de Señal , Dependovirus/genética
13.
Signal Transduct Target Ther ; 8(1): 305, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37591843

RESUMEN

Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Factor B de Crecimiento Endotelial Vascular , Humanos , Factor 2 de Crecimiento de Fibroblastos/genética , Inmunoterapia , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
14.
Shock ; 60(4): 503-516, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553892

RESUMEN

ABSTRACT: This study investigated the temporal dynamics of childhood sepsis by analyzing gene expression changes associated with proinflammatory processes. Five datasets, including four meningococcal sepsis shock (MSS) datasets (two temporal and two longitudinal) and one polymicrobial sepsis dataset, were selected to track temporal changes in gene expression. Hierarchical clustering revealed three temporal phases: early, intermediate, and late, providing a framework for understanding sepsis progression. Principal component analysis supported the identification of gene expression trajectories. Differential gene analysis highlighted consistent upregulation of vascular endothelial growth factor A (VEGF-A) and nuclear factor κB1 (NFKB1), genes involved in inflammation, across the sepsis datasets. NFKB1 gene expression also showed temporal changes in the MSS datasets. In the postmortem dataset comparing MSS cases to controls, VEGF-A was upregulated and VEGF-B downregulated. Renal tissue exhibited higher VEGF-A expression compared with other tissues. Similar VEGF-A upregulation and VEGF-B downregulation patterns were observed in the cross-sectional MSS datasets and the polymicrobial sepsis dataset. Hexagonal plots confirmed VEGF-R (VEGF receptor)-VEGF-R2 signaling pathway enrichment in the MSS cross-sectional studies. The polymicrobial sepsis dataset also showed enrichment of the VEGF pathway in septic shock day 3 and sepsis day 3 samples compared with controls. These findings provide unique insights into the dynamic nature of sepsis from a transcriptomic perspective and suggest potential implications for biomarker development. Future research should focus on larger-scale temporal transcriptomic studies with appropriate control groups and validate the identified gene combination as a potential biomarker panel for sepsis.


Asunto(s)
Sepsis , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Transcriptoma , Factor B de Crecimiento Endotelial Vascular , Estudios Transversales , Sepsis/genética , Biomarcadores
15.
Anim Reprod Sci ; 254: 107265, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37270879

RESUMEN

In cattle, the establishment of appropriate endometrial vasculature during the estrous cycle is required for preparing a receptive endometrium. This study aimed to investigate 1) mRNA expression of potent pro- and anti-angiogenic factors, 2) protein localization of the anti-angiogenic factor thrombospondin (TSP), and 3) vascularity in the endometrium of repeat breeder (RB) and normally fertile (non-RB) cows. Caruncular and intercaruncular endometrium was collected from RB and non-RB cows during the luteal phase of the estrous cycle. RB cows had greater mRNA expression levels of TSP ligands (TSP1 and TSP2) and receptors (CD36 and CD47) than non-RB cows. Although the mRNA expression levels of most angiogenic factors did not change by repeat breeding, RB cows had greater mRNA expression of fibroblast growth factor receptor 1 (FGFR1), angiopoietin 1 (ANGPT1), and ANGPT2 and a less mRNA expression of vascular endothelial growth factor B (VEGFB) than non-RB cows. By immunohistochemistry, TSP1, TSP2, CD36, and CD47 were detected in the luminal epithelium, glandular epithelium, stromal cells, and blood vessels of the endometrium. Two indexes of vascularity, the number of blood vessels and the percentage of area stained positive for the von Willebrand factor, were lower in the endometrium of RB than in that of non-RB cows. These results demonstrate that RB cows have a greater expression of both ligands and receptors for the anti-angiogenic factor TSP and a reduced vascular distribution in the endometrium compared with non-RB cows, suggesting suppressed endometrial angiogenesis.


Asunto(s)
Antígeno CD47 , Factor B de Crecimiento Endotelial Vascular , Femenino , Bovinos , Animales , Factor B de Crecimiento Endotelial Vascular/metabolismo , Antígeno CD47/metabolismo , Inductores de la Angiogénesis/metabolismo , Ligandos , Endometrio/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Front Endocrinol (Lausanne) ; 14: 1169405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251664

RESUMEN

Objective: Vascular endothelial growth factors (VEGFs, including VEGF-A, VEGF-B, VEGF-C, VEGF-D and PLGF) have important roles in the development and function of the peripheral nervous system. Studies have confirmed that VEGFs, especially VEGF-A (so called VEGF) may be associated with the diabetic peripheral neuropathy (DPN) process. However, different studies have shown inconsistent levels of VEGFs in DPN patients. Therefore, we conducted this meta-analysis to evaluate the relationship between cycling levels of VEGFs and DPN. Methods: This study searched 7 databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, WanFang Database, and Chinese Biomedical Literature (CBM), to find the target researches. The random effects model was used to calculate the overall effect. Results: 14 studies with 1983 participants were included, among which 13 studies were about VEGF and 1 was VEGF-B, so only the effects of VEGF were pooled. The result showed that there were obviously increased VEGF levels in DPN patients compared with diabetic patients without DPN (SMD:2.12[1.34, 2.90], p<0.00001) and healthy people (SMD:3.50[2.24, 4.75], p<0.00001). In addition, increased circulating VEGF levels were not associated with an increased risk of DPN (OR:1.02[0.99, 1.05], p<0.00001). Conclusion: Compared with healthy people and diabetic patients without DPN, VEGF content in the peripheral blood of DPN patients is increased, but current evidence does not support the correlation between VEGF levels and the risk of DPN. This suggests that VEGF may play a role in the pathogenesis and repairment of DPN.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Humanos , Factor A de Crecimiento Endotelial Vascular , Factor B de Crecimiento Endotelial Vascular
17.
Medicina (Kaunas) ; 59(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37109664

RESUMEN

Background and Objectives: Impaired wound healing represents an unsolved medical issue with a high impact on patients' quality of life and global health care. Even though hypoxia is a significant limiting factor for wound healing, it reveals stimulating effects in gene and protein expression at cellular levels. In particular, hypoxically treated human adipose tissue-derived stem cells (ASCs) have previously been used to stimulate tissue regeneration. Therefore, we hypothesized that they could promote lymphangiogenesis or angiogenesis. Materials and Methods: Dermal regeneration matrices were seeded with human umbilical vein endothelial cells (HUVECs) or human dermal lymphatic endothelial cells (LECs) that were merged with ASCs. Cultures were maintained for 24 h and 7 days under normoxic or hypoxic conditions. Finally, gene and protein expression were measured regarding subtypes of VEGF, corresponding receptors, and intracellular signaling pathways, especially hypoxia-inducible factor-mediated pathways using multiplex-RT-qPCR and ELISA assays. Results: All cell types reacted to hypoxia with an alteration of gene expression. In particular, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor B (VEGFB), vascular endothelial growth factor C (VEGFC), vascular endothelial growth factor receptor 1 (VEGFR1/FLT1), vascular endothelial growth factor receptor 2 (VEGFR2/KDR), vascular endothelial growth factor receptor 3 (VEGFR3/FLT4), and prospero homeobox 1 (PROX1) were overexpressed significantly depending on upregulation of hypoxia-inducible factor 1 alpha (HIF-1a). Moreover, co-cultures with ASCs showed a more intense change in gene and protein expression profiles and gained enhanced angiogenic and lymphangiogenic potential. In particular, long-term hypoxia led to continuous stimulation of HUVECs by ASCs. Conclusions: Our findings demonstrated the benefit of hypoxic conditioned ASCs in dermal regeneration concerning angiogenesis and lymphangiogenesis. Even a short hypoxic treatment of 24 h led to the stimulation of LECs and HUVECs in an ASC-co-culture. Long-term hypoxia showed a continuous influence on gene expressions. Therefore, this work emphasizes the supporting effects of hypoxia-conditioned-ASC-loaded collagen scaffolds on wound healing in dermal regeneration.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular , Factor B de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Linfangiogénesis , Células Endoteliales/metabolismo , Calidad de Vida , Hipoxia de la Célula/genética , Hipoxia , Células Madre
18.
J Biomater Appl ; 37(10): 1858-1873, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37082911

RESUMEN

BACKGROUND: Commercial fibrin glue is increasingly finding its way into clinical practice in surgeries to seal anastomosis, and initiate hemostasis or tissue repair. Human biological glue is also being discussed as a possible cell carrier. To date, there are only a few studies addressing the effects of fibrin glue on the cell-molecular level. This study examines the effects of fibrin glue on angiogenesis and lymphangiogenesis, as well as adipose-derived stem cells (ASCs) with a focus on gene and protein expression in scaffolds regularly used for tissue engineering approaches. METHODS: Collagen-based dermal regeneration matrices (DRM) were seeded with human umbilical vein endothelial cells (HUVEC), human dermal lymphatic endothelial cells (LECs), or adipose-derived stem cells (ASC) and fixed with or without fibrin glue according to the experimental group. Cultures were maintained for 1 and 7 days. Finally, angiogenic and lymphangiogenic gene and protein expression were measured with special regard to subtypes of vascular endothelial growth factor (VEGF) and corresponding receptors using Multiplex-qPCR and ELISA assays. In addition, the hypoxia-induced factor 1-alpha (HIF1a) mediated intracellular signaling pathways were included in assessments to analyze a hypoxic encapsulating effect of fibrin polymers. RESULTS: All cell types reacted to fibrin glue application with an alteration of gene and protein expression. In particular, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor B (VEGFB), vascular endothelial growth factor C (VEGFC), vascular endothelial growth receptor 1 (VEGFR1/FLT1), vascular endothelial growth receptor 2 (VEGFR2/KDR), vascular endothelial growth receptor 3 (VEGFR3/FLT4) and Prospero Homeobox 1 (PROX1) were depressed significantly depending on fibrin glue. Especially short-term fibrin effect led to a continuous downregulation of respective gene and protein expression in HUVECs, LECs, and ASCs. CONCLUSION: Our findings demonstrate the impact of fibrin glue application in dermal regeneration with special regard to angiogenesis and lymphangiogenesis. In particular, a short fibrin treatment of 24 hours led to a decrease in gene and protein levels of LECS, HUVECs, and ASCs. In contrast, the long-term application showed less effect on gene and protein expressions. Therefore, this work demonstrated the negative effects of fibrin-treated cells in tissue engineering approaches and could affect wound healing during dermal regeneration.


Asunto(s)
Linfangiogénesis , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Linfangiogénesis/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Adhesivo de Tejido de Fibrina/farmacología , Adhesivo de Tejido de Fibrina/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo
19.
Front Endocrinol (Lausanne) ; 14: 1108126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875456

RESUMEN

Objective: Epigenetics was reported to mediate the effects of environmental risk factors on disease pathogenesis. We intend to unleash the role of DNA methylation modification in the pathological process of cardiovascular diseases in diabetes. Methods: We screened differentially methylated genes by methylated DNA immunoprecipitation chip (MeDIP-chip) among the enrolled participants. In addition, methylation-specific PCR (MSP) and gene expression validation in peripheral blood of participants were utilized to validate the DNA microarray findings. Results: Several aberrantly methylated genes have been explored, including phospholipase C beta 1 (PLCB1), cam kinase I delta (CAMK1D), and dopamine receptor D5 (DRD5), which participated in the calcium signaling pathway. Meanwhile, vascular endothelial growth factor B (VEGFB), placental growth factor (PLGF), fatty acid transport protein 3 (FATP3), coagulation factor II, thrombin receptor (F2R), and fatty acid transport protein 4 (FATP4) which participated in vascular endothelial growth factor receptor (VEGFR) signaling pathway were also found. After MSP and gene expression validation in peripheral blood of participants, PLCB1, PLGF, FATP4, and VEGFB were corroborated. Conclusion: This study revealed that the hypomethylation of VEGFB, PLGF, PLCB1, and FATP4 might be the potential biomarkers. Besides, VEGFR signaling pathway regulated by DNA methylation might play a role in the cardiovascular diseases' pathogenesis of diabetes.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Humanos , Metilación de ADN , Proteínas de Transporte de Ácidos Grasos , Factor de Crecimiento Placentario , Factor A de Crecimiento Endotelial Vascular , Factor B de Crecimiento Endotelial Vascular
20.
Cardiovasc Res ; 119(7): 1553-1567, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-36951047

RESUMEN

AIMS: Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges. METHODS AND RESULTS: Male rats overexpressing the cardiac-specific VEGF-B transgene (VEGF-B TG) were treated for 3 or 6 weeks with deoxycorticosterone-acetate combined with a high-salt (HS) diet (DOCA + HS) to induce hypertension and cardiac damage. Extensive longitudinal echocardiographic studies of HF progression were conducted, starting at baseline. Sham-treated rats served as controls. To evaluate the metabolic alterations associated with HF, cardiac proteomics by mass spectrometry was performed. Hypertrophic non-treated VEGF-B TG hearts demonstrated high oxygen and adenosine triphosphate (ATP) demand with early onset of diastolic dysfunction. Administration of DOCA + HS to VEGF-B TG rats for 6 weeks amplified the progression from cardiac hypertrophy to HF, with a drastic drop in heart ATP concentration. Dobutamine stress echocardiographic analyses uncovered a significantly impaired systolic reserve. Mechanistically, the hallmark of the failing TG heart was an abnormal energy metabolism with decreased mitochondrial ATP, preceding the attenuated cardiac performance and leading to systolic HF. CONCLUSIONS: This study shows that the VEGF-B TG accelerates metabolic maladaptation which precedes structural cardiomyopathy in experimental hypertension and ultimately leads to systolic HF.


Asunto(s)
Acetato de Desoxicorticosterona , Insuficiencia Cardíaca Sistólica , Insuficiencia Cardíaca , Hipertensión , Ratas , Masculino , Animales , Factor B de Crecimiento Endotelial Vascular/metabolismo , Insuficiencia Cardíaca Sistólica/complicaciones , Proteómica , Hipertensión/metabolismo , Miocardio/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/complicaciones , Cardiomegalia/genética , Cardiomegalia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA