Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2022: 5044046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222798

RESUMEN

Cardiac lymphatic vessel growth (lymphangiogenesis) and integrity play an essential role in maintaining tissue fluid balance. Inhibition of lymphatic lymphangiogenesis is involved in cardiac edema and cardiac remodeling after ischemic injury or pressure overload. However, whether lymphatic vessel integrity is disrupted during angiotensin II- (Ang II-) induced cardiac remodeling remains to be investigated. In this study, cardiac remodeling models were established by Ang II (1000 ng/kg/min) in VEGFR-3 knockdown (Lyve-1Cre VEGFR-3f/-) and wild-type (VEGFR-3f/f) littermates. Our results indicated that Ang II infusion not only induced cardiac lymphangiogenesis and upregulation of VEGF-C and VEGFR-3 expression in the time-dependent manner but also enhanced proteasome activity, MKP5 and VE-cadherin degradation, p38 MAPK activation, and lymphatic vessel hyperpermeability. Moreover, VEGFR-3 knockdown significantly inhibited cardiac lymphangiogenesis in mice, resulting in exacerbation of tissue edema, hypertrophy, fibrosis superoxide production, inflammation, and heart failure (HF). Conversely, administration of epoxomicin (a selective proteasome inhibitor) markedly mitigated Ang II-induced cardiac edema, remodeling, and dysfunction; upregulated MKP5 and VE-cadherin expression; inactivated p38 MAPK; and reduced lymphatic vessel hyperpermeability in WT mice, indicating that inhibition of proteasome activity is required to maintain lymphatic endothelial cell (LEC) integrity. Our results show that both cardiac lymphangiogenesis and lymphatic barrier hyperpermeability are implicated in Ang II-induced adaptive hypertrophic remodeling and dysfunction. Proteasome-mediated hyperpermeability of LEC junctions plays a predominant role in the development of cardiac remodeling. Selective stimulation of lymphangiogenesis or inhibition of proteasome activity may be a potential therapeutic option for treating hypertension-induced cardiac remodeling.


Asunto(s)
Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Edema Cardíaco/metabolismo , Vasos Linfáticos/metabolismo , Angiotensina II/administración & dosificación , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Edema Cardíaco/tratamiento farmacológico , Edema Cardíaco/patología , Edema Cardíaco/fisiopatología , Células Endoteliales/metabolismo , Linfangiogénesis/efectos de los fármacos , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Permeabilidad/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Receptor 3 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
Front Immunol ; 11: 559810, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584640

RESUMEN

Rationale: The recently discovered meningeal lymphatic vessels (mLVs) have been proposed to be the missing link between the immune and the central nervous system. The role of mLVs in modulating the neuro-immune response following a traumatic brain injury (TBI), however, has not been analyzed. Parenchymal T lymphocyte infiltration has been previously reported as part of secondary events after TBI, suggestive of an adaptive neuro-immune response. The phenotype of these cells has remained mostly uncharacterized. In this study, we identified subpopulations of T cells infiltrating the perilesional areas 30 days post-injury (an early-chronic time point). Furthermore, we analyzed how the lack of mLVs affects the magnitude and the type of T cell response in the brain after TBI. Methods: TBI was induced in K14-VEGFR3-Ig transgenic (TG) mice or in their littermate controls (WT; wild type), applying a controlled cortical impact (CCI). One month after TBI, T cells were isolated from cortical areas ipsilateral or contralateral to the trauma and from the spleen, then characterized by flow cytometry. Lesion size in each animal was evaluated by MRI. Results: In both WT and TG-CCI mice, we found a prominent T cell infiltration in the brain confined to the perilesional cortex and hippocampus. The majority of infiltrating T cells were cytotoxic CD8+ expressing a CD44hiCD69+ phenotype, suggesting that these are effector resident memory T cells. K14-VEGFR3-Ig mice showed a significant reduction of infiltrating CD4+ T lymphocytes, suggesting that mLVs could be involved in establishing a proper neuro-immune response. Extension of the lesion (measured as lesion volume from MRI) did not differ between the genotypes. Finally, TBI did not relate to alterations in peripheral circulating T cells, as assessed one month after injury. Conclusions: Our results are consistent with the hypothesis that mLVs are involved in the neuro-immune response after TBI. We also defined the resident memory CD8+ T cells as one of the main population activated within the brain after a traumatic injury.


Asunto(s)
Inmunidad Adaptativa , Lesiones Traumáticas del Encéfalo/etiología , Lesiones Traumáticas del Encéfalo/metabolismo , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Linfático/metabolismo , Sistema Linfático/fisiopatología , Neuroinmunomodulación , Animales , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Sistema Nervioso Central/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Memoria Inmunológica , Inmunofenotipificación , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Transgénicos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/deficiencia
3.
Nat Commun ; 8(1): 578, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924218

RESUMEN

Coronary artery anomalies may cause life-threatening cardiac complications; however, developmental mechanisms underpinning coronary artery formation remain ill-defined. Here we identify an angiogenic cell population for coronary artery formation in mice. Regulated by a DLL4/NOTCH1/VEGFA/VEGFR2 signaling axis, these angiogenic cells generate mature coronary arteries. The NOTCH modulator POFUT1 critically regulates this signaling axis. POFUT1 inactivation disrupts signaling events and results in excessive angiogenic cell proliferation and plexus formation, leading to anomalous coronary arteries, myocardial infarction and heart failure. Simultaneous VEGFR2 inactivation fully rescues these defects. These findings show that dysregulated angiogenic precursors link coronary anomalies to ischemic heart disease.Though coronary arteries are crucial for heart function, the mechanisms guiding their formation are largely unknown. Here, Wang et al. identify a unique, endocardially-derived angiogenic precursor cell population for coronary artery formation in mice and show that a DLL4/NOTCH1/VEGFA/VEGFR2 signaling axis is key for coronary artery development.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Fucosiltransferasas/genética , Neovascularización Fisiológica/genética , Transducción de Señal/genética , Animales , Proliferación Celular/genética , Enfermedad de la Arteria Coronaria/fisiopatología , Ecocardiografía , Fucosiltransferasas/deficiencia , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor 2 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
4.
Circ Res ; 120(9): 1414-1425, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28298294

RESUMEN

RATIONALE: Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what extent VEGFR3 signaling controls blood vessel permeability remains unknown. OBJECTIVE: To investigate the role of VEGFR3 in the regulation of VEGF-induced vascular permeability. METHODS AND RESULTS: Long-term global Vegfr3 gene deletion in adult mice resulted in increased fibrinogen deposition in lungs and kidneys, indicating enhanced vascular leakage at the steady state. Short-term deletion of Vegfr3 in blood vascular endothelial cells increased baseline leakage in various tissues, as well as in tumors, and exacerbated vascular permeability in response to VEGF, administered via intradermal adenoviral delivery or through systemic injection of recombinant protein. VEGFR3 gene silencing upregulated VEGFR2 protein levels and phosphorylation in cultured endothelial cells. Consistent with elevated VEGFR2 activity, vascular endothelial cadherin showed reduced localization at endothelial cell-cell junctions in postnatal retinas after Vegfr3 deletion, or after VEGFR3 silencing in cultured endothelial cells. Furthermore, concurrent deletion of Vegfr2 prevented VEGF-induced excessive vascular leakage in mice lacking Vegfr3. CONCLUSIONS: VEGFR3 limits VEGFR2 expression and VEGF/VEGFR2 pathway activity in quiescent and angiogenic blood vascular endothelial cells, thereby preventing excessive vascular permeability.


Asunto(s)
Permeabilidad Capilar , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Células Endoteliales/metabolismo , Pulmón/irrigación sanguínea , Vasos Retinianos/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Uniones Adherentes/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Carcinoma Pulmonar de Lewis/metabolismo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Femenino , Genotipo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica , Neovascularización Fisiológica , Fenotipo , Vasos Retinianos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Uniones Estrechas/metabolismo , Transfección , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
5.
Stem Cells Dev ; 24(3): 271-83, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25329370

RESUMEN

Lymphedema is a medically irreversible condition for which currently conservative and surgical therapies are either ineffective or impractical. The potential use of progenitor and stem cell-based therapies has offered a paradigm that may provide alternative treatment options for lymphatic disorders. Moreover, basic research, preclinical studies, as well as clinical trials have evaluated the therapeutic potential of various cell therapies in the field of lymphatic regeneration medicine. Among the available cell approaches, mesenchymal stem cells (MSCs) seem to be the most promising candidate mainly due to their abundant sources and easy availability as well as evitable ethical and immunological issues confronted with embryonic stem cells and induced pluripotent stem cells. In this context, the purpose of this review is to summarize various cell-based therapies for lymphedema, along with strengths and weaknesses of these therapies in the clinical application for lymphedema treatment. Particularly, we will highlight the use of MSCs for lymphatic regeneration medicine. In addition, the future perspectives of MSCs in the field of lymphatic regeneration will be discussed.


Asunto(s)
Linfangiogénesis , Linfedema/cirugía , Trasplante de Células Madre Mesenquimatosas , Animales , Ensayos Clínicos Fase I como Asunto , Células Madre Embrionarias/trasplante , Predicción , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Linfangiogénesis/efectos de los fármacos , Linfangiogénesis/genética , Sistema Linfático/fisiología , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Ratones , Ratones Noqueados , Complicaciones Posoperatorias/cirugía , Regeneración , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/fisiología , Factor C de Crecimiento Endotelial Vascular/farmacología , Factor C de Crecimiento Endotelial Vascular/uso terapéutico , Receptor 3 de Factores de Crecimiento Endotelial Vascular/deficiencia
6.
Nat Cell Biol ; 13(10): 1202-13, 2011 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-21909098

RESUMEN

Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting. Surprisingly, we found that endothelial deletion of Vegfr3, but not VEGFR-3-blocking antibodies, postnatally led to excessive angiogenic sprouting and branching, and decreased the level of Notch signalling, indicating that VEGFR-3 possesses passive and active signalling modalities. Furthermore, macrophages expressing the VEGFR-3 and VEGFR-2 ligand VEGF-C localized to vessel branch points, and Vegfc heterozygous mice exhibited inefficient angiogenesis characterized by decreased vascular branching. FoxC2 is a known regulator of Notch ligand and target gene expression, and Foxc2(+/-);Vegfr3(+/-) compound heterozygosity recapitulated homozygous loss of Vegfr3. These results indicate that macrophage-derived VEGF-C activates VEGFR-3 in tip cells to reinforce Notch signalling, which contributes to the phenotypic conversion of endothelial cells at fusion points of vessel sprouts.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica , Receptores Notch/metabolismo , Vasos Retinianos/metabolismo , Rombencéfalo/irrigación sanguínea , Transducción de Señal , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Anticuerpos/farmacología , Línea Celular Tumoral , Células Endoteliales/efectos de los fármacos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Neovascularización Patológica/genética , Neovascularización Fisiológica/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Receptores Notch/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transducción Genética , Transfección , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor D de Crecimiento Endotelial Vascular/genética , Factor D de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
7.
Mol Cell Biol ; 28(15): 4843-50, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18519586

RESUMEN

Lymphatic vessels play an important role in the regulation of tissue fluid balance, immune responses, and fat adsorption and are involved in diseases including lymphedema and tumor metastasis. Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR-3) is necessary for development of the blood vasculature during early embryogenesis, but later, VEGFR-3 expression becomes restricted to the lymphatic vasculature. We analyzed mice deficient in both of the known VEGFR-3 ligands, VEGF-C and VEGF-D. Unlike the Vegfr3(-/-) embryos, the Vegfc(-/-); Vegfd(-/-) embryos displayed normal blood vasculature after embryonic day 9.5. Deletion of Vegfr3 in the epiblast, using keratin 19 (K19) Cre, resulted in a phenotype identical to that of the Vegfr3(-/-) embryos, suggesting that this phenotype is due to defects in the embryo proper and not in placental development. Interestingly, the Vegfr3(neo) hypomorphic mutant mice carrying the neomycin cassette between exons 1 and 2 showed defective lymphatic development. Overexpression of human or mouse VEGF-D in the skin, under the K14 promoter, rescued the lymphatic hypoplasia of the Vegfc(+/-) mice in the K14-VEGF-D; Vegfc(+/-) compound mice, suggesting that VEGF-D is functionally redundant with VEGF-C in the stimulation of developmental lymphangiogenesis. Our results suggest VEGF-C- and VEGF-D-independent functions for VEGFR-3 in the early embryo.


Asunto(s)
Embrión de Mamíferos/metabolismo , Eliminación de Gen , Factor C de Crecimiento Endotelial Vascular/deficiencia , Factor D de Crecimiento Endotelial Vascular/deficiencia , Receptor 3 de Factores de Crecimiento Endotelial Vascular/deficiencia , Alelos , Animales , Vasos Sanguíneos/embriología , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/patología , Marcación de Gen , Linfangiogénesis , Vasos Linfáticos/anomalías , Vasos Linfáticos/embriología , Vasos Linfáticos/patología , Ratones , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...