Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 101
1.
J Clin Invest ; 134(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38747293

Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.


Class I Phosphatidylinositol 3-Kinases , Vascular Malformations , Humans , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Animals , Vascular Malformations/genetics , Vascular Malformations/pathology , Vascular Malformations/physiopathology , Vascular Malformations/metabolism , Vascular Malformations/enzymology , Endothelial Cells/enzymology , Endothelial Cells/pathology , Endothelial Cells/metabolism , Stress, Mechanical , Gain of Function Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/physiopathology , Hemangioma, Cavernous, Central Nervous System/pathology
2.
J Cutan Pathol ; 51(5): 353-359, 2024 May.
Article En | MEDLINE | ID: mdl-38199812

BACKGROUND: Venous malformations (VMs) are distinguished from lymphatic malformations (LMs) when specific diagnostic skin lesions are present. In the deep type, this is difficult by clinico-radiologic evaluation alone. We aimed to investigate the usefulness of lymphatic vessel endothelial cell (LEC) markers for the differential diagnosis of the deep VMs and LMs. METHODS: A retrospective study was conducted based on the medical records of patients with VMs and LMs who underwent biopsy with both D2-40 and PROX-1 immunohistochemistry. We compared the initial clinico-radiological diagnosis with the final pathological diagnosis and identified which ones showed a difference. RESULTS: From 261 patients who had VMs and LMs, 111 remained after the exclusion of those who showed definite surface diagnostic features. After pathological diagnosis with the expressions of D2-40 and PROX-1, 38 of 111 (34.2%) patients' final diagnoses were changed. Among these 38 cases, diagnosis was not changed by D2-40 positivity alone, but changed by PROX-1 positivity alone (52.6%) or by both (47.4%). The diagnostic changes were more frequent in the deep category (43.7%) than in the superficial category. CONCLUSIONS: Identifying the expression of D2-40, and especially PROX-1, in the differential diagnosis of VMs and LMs may provide important treatment guidelines and understanding their natural course.


Lymphatic Vessels , Skin Diseases , Vascular Malformations , Humans , Immunohistochemistry , Retrospective Studies , Vascular Malformations/diagnosis , Vascular Malformations/metabolism , Skin , Skin Diseases/metabolism
3.
Sci Rep ; 13(1): 11074, 2023 07 08.
Article En | MEDLINE | ID: mdl-37422456

Somatic activating MAP2K1 mutations in endothelial cells (ECs) cause extracranial arteriovenous malformation (AVM). We previously reported the generation of a mouse line allowing inducible expression of constitutively active MAP2K1 (p.K57N) from the Rosa locus (R26GT-Map2k1-GFP/+) and showed, using Tg-Cdh5CreER, that EC expression of mutant MAP2K1 is sufficient for the development of vascular malformations in the brain, ear, and intestines. To gain further insight into the mechanism by which mutant MAP2K1 drives AVM development, we induced MAP2K1 (p.K57N) expression in ECs of postnatal-day-1 pups (P1) and investigated the changes in gene expression in P9 brain ECs by RNA-seq. We found that over-expression of MAP2K1 altered the transcript abundance of > 1600 genes. Several genes had > 20-fold changes between MAP2K1 expressing and wild-type ECs; the highest were Col15a1 (39-fold) and Itgb3 (24-fold). Increased expression of COL15A1 in R26GT-Map2k1-GFP/+; Tg-Cdh5CreER+/- brain ECs was validated by immunostaining. Ontology showed that differentially expressed genes were involved in processes important for vasculogenesis (e.g., cell migration, adhesion, extracellular matrix organization, tube formation, angiogenesis). Understanding how these genes and pathways contribute to AVM formation will help identify targets for therapeutic intervention.


Arteriovenous Malformations , Vascular Malformations , Animals , Mice , Arteriovenous Malformations/genetics , Endothelial Cells/metabolism , Mutation , Vascular Malformations/metabolism , MAP Kinase Kinase 1/genetics
4.
Sci Adv ; 9(7): eade8939, 2023 02 15.
Article En | MEDLINE | ID: mdl-36791204

Somatic activating mutations of PIK3CA are associated with development of vascular malformations (VMs). Here, we describe a microfluidic model of PIK3CA-driven VMs consisting of human umbilical vein endothelial cells expressing PIK3CA activating mutations embedded in three-dimensional hydrogels. We observed enlarged, irregular vessel phenotypes and the formation of cyst-like structures consistent with clinical signatures and not previously observed in cell culture models. Pathologic morphologies occurred concomitant with up-regulation of Rac1/p21-activated kinase (PAK), mitogen-activated protein kinase cascades (MEK/ERK), and mammalian target of rapamycin (mTORC1/2) signaling networks. We observed differential effects between alpelisib, a PIK3CA inhibitor, and rapamycin, an mTORC1 inhibitor, in mitigating matrix degradation and network topology. While both were effective in preventing vessel enlargement, rapamycin failed to reduce MEK/ERK and mTORC2 activity and resulted in hyperbranching, while inhibiting PAK, MEK1/2, and mTORC1/2 mitigates abnormal growth and vascular dilation. Collectively, these findings demonstrate an in vitro platform for VMs and establish a role of dysregulated Rac1/PAK and mTORC1/2 signaling in PIK3CA-driven VMs.


TOR Serine-Threonine Kinases , Vascular Malformations , Humans , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Sirolimus/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Vascular Malformations/metabolism , rac1 GTP-Binding Protein/metabolism
5.
Angiogenesis ; 26(1): 37-52, 2023 02.
Article En | MEDLINE | ID: mdl-35902510

Orbital cavernous venous malformation (OCVM) is a sporadic vascular anomaly of uncertain etiology characterized by abnormally dilated vascular channels. Here, we identify a somatic missense mutation, c.121G > T (p.Gly41Cys) in GJA4, which encodes a transmembrane protein that is a component of gap junctions and hemichannels in the vascular system, in OCVM tissues from 25/26 (96.2%) individuals with OCVM. GJA4 expression was detected in OCVM tissue including endothelial cells and the stroma, through immunohistochemistry. Within OCVM tissue, the mutation allele frequency was higher in endothelial cell-enriched fractions obtained using magnetic-activated cell sorting. Whole-cell voltage clamp analysis in Xenopus oocytes revealed that GJA4 c.121G > T (p.Gly41Cys) is a gain-of-function mutation that leads to the formation of a hyperactive hemichannel. Overexpression of the mutant protein in human umbilical vein endothelial cells led to a loss of cellular integrity, which was rescued by carbenoxolone, a non-specific gap junction/hemichannel inhibitor. Our data suggest that GJA4 c.121G > T (p.Gly41Cys) is a potential driver gene mutation for OCVM. We propose that hyperactive hemichannel plays a role in the development of this vascular phenotype.


Gain of Function Mutation , Vascular Malformations , Humans , Endothelial Cells , Gap Junctions/genetics , Mutation , Veins , Vascular Malformations/metabolism
6.
J Hum Genet ; 67(12): 721-728, 2022 Dec.
Article En | MEDLINE | ID: mdl-36171295

Recent studies have shown that the PI3K signaling pathway plays an important role in the pathogenesis of slow-flow vascular malformations (SFVMs). Analysis of genetic mutations has advanced our understanding of the mechanisms involved in SFVM pathogenesis and may identify new therapeutic targets. We screened for somatic variants in a cohort of patients with SFVMs using targeted next-generation sequencing. Targeted next-generation sequencing of 29 candidate genes associated with vascular anomalies or with the PI3K signaling pathway was performed on affected tissues from patients with SFVMs. Fifty-nine patients with SFVMs (venous malformations n = 21, lymphatic malformations n = 27, lymphatic venous malformations n = 1, and Klippel-Trenaunay syndrome n = 10) were included in the study. TEK and PIK3CA were the most commonly mutated genes in the study. We detected eight TEK pathogenic variants in 10 samples (16.9%) and three PIK3CA pathogenic variants in 28 samples (47.5%). In total, 37 of 59 patients (62.7%) with SFVMs harbored pathogenic variants in these three genes involved in the PI3K signaling pathway. Inhibitors of this pathway may prove useful as molecular targeted therapies for SFVMs.


Phosphatidylinositol 3-Kinases , Vascular Malformations , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Vascular Malformations/genetics , Vascular Malformations/metabolism , Vascular Malformations/pathology , High-Throughput Nucleotide Sequencing , Mutation
7.
Cell Tissue Res ; 390(2): 229-243, 2022 Nov.
Article En | MEDLINE | ID: mdl-35916917

Vascular wall resident stem cells (VW-SCs) play a key role in vascular formation and remodeling under both physiological and pathological situations. They not only serve as a reservoir to supply all types of vascular cells needed, but also regulate vascular homeostasis by paracrine effects. Venous malformations (VMs) are common congenital vascular malformations which are just characterized by the deficient quantity and abnormal function of vascular cells. However, the existence and role of VW-SCs in VMs is still unclear at present. In this study, the level and distribution of VW-SCs in 22 specimens of VMs were measured by immunochemistry, double-labeling immunofluorescence, and qPCR, followed by the Spearman rank correlation test. We found that both the protein and mRNA expression levels of CD34, vWF, VEGFR2, CD44, CD90, and CD105 were significantly downregulated in VMs compared with that in normal venules. VW-SCs were sporadically distributed or even absent within and outside the endothelium of VMs. The expression of the VW-SC-related markers was positively correlated with the density of both endothelial cells and perivascular cells. All those results and established evidence indicated that VW-SCs were more sporadically distributed with fewer amounts in VMs, which possibly contributing to the deficiency of vascular cells in VMs.


Endothelial Cells , Vascular Malformations , Humans , Endothelial Cells/metabolism , Vascular Malformations/metabolism , Stem Cells/metabolism , Pericytes/metabolism
8.
Cell Tissue Res ; 389(3): 517-530, 2022 Sep.
Article En | MEDLINE | ID: mdl-35786766

Venous malformations (VMs), featuring localized dilated veins, are the most common developmental vascular anomalies. Aberrantly organized perivascular extracellular matrix (ECM) is one of the prominent pathological hallmarks of VMs, accounting for vascular dysfunction. Although previous studies have revealed various proteins involved in ECM remodeling, the detailed pattern and molecular mechanisms underlying the endothelium-ECM interplay have not been fully elucidated. Our previous studies revealed drastically elevated extracellular vesicle (EV) secretion in VM lesions. Here, we identified increased EV-carried MMP14 in lesion fluids of VMs and culture medium of TIE2-L914F mutant endothelial cells (ECs), along with stronger ECM degradation. Knockdown of RAB27A, a required regulator for vesicle docking and fusion, led to decreased secretion of EV-carried MMP14 in vitro. Histochemical analysis further demonstrated a highly positive correlation between RAB27A in the endothelium and MMP14 in the perivascular environment. Therefore, our results proved that RAB27A-regulated secretion of EV-MMP14, as a new pattern of endothelium-ECM interplay, contributed to the development of VMs by promoting ECM degradation.


Extracellular Vesicles , Matrix Metalloproteinase 14/metabolism , Vascular Malformations , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Extracellular Vesicles/metabolism , Humans , Vascular Malformations/metabolism , Vascular Malformations/pathology
9.
J Oral Pathol Med ; 51(10): 911-919, 2022 Nov.
Article En | MEDLINE | ID: mdl-35854627

BACKGROUNDS: Head and neck vascular malformation (HNVM) is a highly complex congenital condition that is difficult to diagnose, monitor and treat. Therefore, it is critical to explore serum cytokines that may be related to its pathology and prognosis. METHODS: An antibody-based microarray was used to examine the expression of 31 angiogenic cytokines in 11 HNVM patients relative to 11 healthy subjects. ELISA was used to verify the results. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the differentially expressed cytokines (DECs). Additionally, we explored the function of DECs in human umbilical vein endothelial cells (HUVECs) in vitro via CCK-8, wound healing, transwell and tube formation assays. RESULTS: Expression of interleukin (IL)-10, matrix metallopeptidase-9 (MMP-9) and vascular endothelial growth factor receptor 2 (VEGF-R2) in HNVM patients was significantly higher, whereas levels of IL-12p40 and angiostatin were significantly lower in HNVM patients relative to healthy controls (p < 0.05). However, ELISA only verified that IL-10, MMP-9, VEGF-R2 and IL-12p40 had significant expression changes. Functional enrichment analysis revealed DECs mainly participated in the RAS signalling pathway. Functional studies demonstrated that IL-10, MMP-9 and VEGF-R2 promote cell proliferation, migration, invasion and tube formation, while IL-12p40 inhibited these processes in HUVECs. CONCLUSIONS: The present study not only indicates that IL-10, MMP-9, VEGF-R2 and IL-12p40 may participate in the development of HNVMs but also provides a theoretical basis for the discovery of new targeted molecules in the treatment of HNVMs.


Vascular Endothelial Growth Factor A , Vascular Malformations , Humans , Vascular Endothelial Growth Factor A/metabolism , Interleukin-10/metabolism , Cell Movement , Matrix Metalloproteinase 9/metabolism , Interleukin-12 Subunit p40/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Vascular Malformations/metabolism , Cytokines/metabolism
10.
EMBO Mol Med ; 14(7): e15619, 2022 07 07.
Article En | MEDLINE | ID: mdl-35695059

Low-flow vascular malformations are congenital overgrowths composed of abnormal blood vessels potentially causing pain, bleeding and obstruction of different organs. These diseases are caused by oncogenic mutations in the endothelium, which result in overactivation of the PI3K/AKT pathway. Lack of robust in vivo preclinical data has prevented the development and translation into clinical trials of specific molecular therapies for these diseases. Here, we demonstrate that the Pik3caH1047R activating mutation in endothelial cells triggers a transcriptome rewiring that leads to enhanced cell proliferation. We describe a new reproducible preclinical in vivo model of PI3K-driven vascular malformations using the postnatal mouse retina. We show that active angiogenesis is required for the pathogenesis of vascular malformations caused by activating Pik3ca mutations. Using this model, we demonstrate that the AKT inhibitor miransertib both prevents and induces the regression of PI3K-driven vascular malformations. We confirmed the efficacy of miransertib in isolated human endothelial cells with genotypes spanning most of human low-flow vascular malformations.


Phosphatidylinositol 3-Kinases , Vascular Malformations , Aminopyridines , Animals , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells/metabolism , Imidazoles , Mice , Mutation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vascular Malformations/genetics , Vascular Malformations/metabolism , Vascular Malformations/pathology
11.
JCI Insight ; 7(4)2022 02 22.
Article En | MEDLINE | ID: mdl-35015735

Capillary malformation-arteriovenous malformation (CM-AVM) is a blood vascular anomaly caused by inherited loss-of-function mutations in RASA1 or EPHB4 genes, which encode p120 Ras GTPase-activating protein (p120 RasGAP/RASA1) and Ephrin receptor B4 (EPHB4). However, whether RASA1 and EPHB4 function in the same molecular signaling pathway to regulate the blood vasculature is uncertain. Here, we show that induced endothelial cell-specific (EC-specific) disruption of Ephb4 in mice resulted in accumulation of collagen IV in the EC ER, leading to EC apoptotic death and defective developmental, neonatal, and pathological angiogenesis, as reported previously in induced EC-specific RASA1-deficient mice. Moreover, defects in angiogenic responses in EPHB4-deficient mice could be rescued by drugs that inhibit signaling through the Ras pathway and drugs that promote collagen IV export from the ER. However, EPHB4-mutant mice that expressed a form of EPHB4 that is unable to physically engage RASA1 but retains protein tyrosine kinase activity showed normal angiogenic responses. These findings provide strong evidence that RASA1 and EPHB4 function in the same signaling pathway to protect against the development of CM-AVM independent of physical interaction and have important implications for possible means of treatment of this disease.


Collagen Type IV/metabolism , DNA/genetics , Endothelial Cells/pathology , Mutation , Neovascularization, Pathologic/genetics , Receptor, EphB4/genetics , Vascular Malformations/genetics , Animals , Cells, Cultured , DNA Mutational Analysis , Endothelial Cells/metabolism , Mice , Mice, Transgenic , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Receptor, EphB4/metabolism , Vascular Malformations/metabolism , Vascular Malformations/pathology , p120 GTPase Activating Protein/deficiency
12.
J Mol Cell Cardiol ; 162: 130-143, 2022 01.
Article En | MEDLINE | ID: mdl-34536440

Venous malformation (VM) and cavernous venous malformation (CVM) are two types of vascular malformations. Even if the two diseases are similar in appearance and imaging, the distinct cellular components and signaling pathways between them might help distinguish the two from a molecular perspective. Here, we performed single-cell profiling of 35,245 cells from two VM samples and three CVM samples, with a focus on endothelial cells (ECs), smooth muscle cells (SMCs) and immune microenvironment (IME). Clustering analysis based on differential gene expression unveiled 11 specific cell types, and determined CVM had more SMCs. Re-clustering of ECs and SMCs indicated CVM was dominated by arterial components, while VM is dominated by venous components. Gene set variation analysis suggested the activation of inflammation-related pathways in VM ECs, and upregulation of myogenesis pathway in CVM SMCs. In IME analysis, immune cells were identified to accounted for nearly 30% of the total cell number, including macrophages, monocytes, NK cells, T cells and B cells. Notably, more macrophages and monocytes were discovered in VM, indicating innate immune responses might be more closely related to VM pathogenesis. In addition, angiogenesis pathway was highlighted among the significant pathways of macrophages & monocytes between CVM and VM. In VM, VEGFA was highly expressed in macrophages & monocytes, while its receptors were all abundantly present in ECs. The close interaction of VEGFA on macrophages with its receptors on ECs was also predicted by CellPhoneDB analysis. Our results document cellular composition, significant pathways, and critical IME in CVM and VM development.


Transcriptome , Vascular Malformations , Endothelial Cells/metabolism , Humans , Myocytes, Smooth Muscle/metabolism , Vascular Malformations/genetics , Vascular Malformations/metabolism , Vascular Malformations/pathology , Veins/abnormalities
13.
J Vasc Surg Venous Lymphat Disord ; 10(2): 469-481.e2, 2022 03.
Article En | MEDLINE | ID: mdl-34506963

OBJECTIVE: Venous malformations (VMs) are the most frequent vascular malformations and are characterized by dilated and tortuous veins with a dysregulated vascular extracellular matrix. The purpose of the present study was to investigate the potential involvement of microRNA-21 (miR-21), a multifunctional microRNA tightly associated with extracellular matrix regulation, in the pathogenesis of VMs. METHODS: The expression of miR-21, collagen I, III, and IV, transforming growth factor-ß (TGF-ß), and Smad3 (mothers against decapentaplegic homolog 3) was evaluated in VMs and normal skin tissue using in situ hybridization, immunohistochemistry, Masson trichrome staining, and real-time polymerase chain reaction. Human umbilical vein endothelial cells (HUVECs) were used to explore the underlying mechanisms. RESULTS: miR-21 expression was markedly decreased in the VM specimens compared with normal skin, in parallel with downregulation of collagen I, III, and IV and the TGF-ß/Smad3 pathway in VMs. Moreover, our data demonstrated that miR-21 positively regulated the expression of collagens in HUVECs and showed a positive association with the TGF-ß/Smad3 pathway in the VM tissues. In addition, miR-21 was found to mediate TGF-ß-induced upregulation of collagens in HUVECs. Our data have indicated that miR-21 and the TGF-ß/Smad3 pathway could form a positive feedback loop to synergistically regulate endothelial collagen synthesis. In addition, TGF-ß/Smad3/miR-21 feedback loop signaling was upregulated in bleomycin-treated HUVECs and VM specimens, which was accompanied by increased collagen deposition. CONCLUSIONS: To the best of our knowledge, the present study has, for the first time, revealed downregulation of miR-21 in VMs, which might contribute to decreased collagen expression via the TGF-ß/Smad3/miR-21 signaling feedback loop. These findings provide new information on the pathogenesis of VMs and might facilitate the development of new therapies for VMs.


Collagen/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , MicroRNAs/metabolism , Skin/blood supply , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Vascular Malformations/metabolism , Veins/metabolism , Bleomycin/toxicity , Case-Control Studies , Cells, Cultured , Collagen/genetics , Down-Regulation , Feedback, Physiological , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/pathology , Humans , MicroRNAs/genetics , Phosphorylation , Signal Transduction , Vascular Malformations/genetics , Vascular Malformations/pathology , Veins/abnormalities , Veins/pathology
14.
Circ Res ; 129(1): 131-135, 2021 06 25.
Article En | MEDLINE | ID: mdl-34166069

Vascular malformations, affecting ≈1% to 1.5% of the population, comprise a spectrum of developmental patterning defects of capillaries, arteries, veins, and/or lymphatics. The majority of vascular malformations occur sporadically; however, inherited malformations exist as a part of complex congenital diseases. The malformations, ranging from birthmarks to life-threatening conditions, are present at birth, but may reveal signs and symptoms-including pain, bleeding, disfigurement, and functional defects of vital organs-in infancy, childhood, or adulthood. Vascular malformations often exhibit recurrent patterns at affected sites due to the lack of curative treatments. This review series provides a state-of-the-art assessment of vascular malformation research at basic, clinical, genetic, and translational levels.


Blood Vessels/abnormalities , Lymphatic Abnormalities , Lymphatic Vessels/abnormalities , Vascular Malformations , Animals , Blood Vessels/metabolism , Genetic Predisposition to Disease , Genetic Variation , Humans , Lymphatic Abnormalities/genetics , Lymphatic Abnormalities/metabolism , Lymphatic Abnormalities/pathology , Lymphatic Abnormalities/therapy , Lymphatic Vessels/metabolism , Phenotype , Risk Factors , Vascular Malformations/genetics , Vascular Malformations/metabolism , Vascular Malformations/pathology , Vascular Malformations/therapy
15.
Circ Res ; 129(1): 155-173, 2021 06 25.
Article En | MEDLINE | ID: mdl-34166070

Vascular and lymphatic malformations represent a challenge for clinicians. The identification of inherited and somatic mutations in important signaling pathways, including the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin), RAS (rat sarcoma)/RAF (rapidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinases), HGF (hepatocyte growth factor)/c-Met (hepatocyte growth factor receptor), and VEGF (vascular endothelial growth factor) A/VEGFR (vascular endothelial growth factor receptor) 2 cascades has led to the evaluation of tailored strategies with preexisting cancer drugs that interfere with these signaling pathways. The era of theranostics has started for the treatment of vascular anomalies. Registration: URL: https://www.clinicaltrialsregister.eu; Unique identifier: 2015-001703-32.


Angiogenesis Inhibitors/therapeutic use , Blood Vessels/abnormalities , Blood Vessels/drug effects , Mutation , Neovascularization, Physiologic/drug effects , Protein Kinase Inhibitors/therapeutic use , Vascular Malformations/drug therapy , Vascular Malformations/genetics , Angiogenesis Inhibitors/adverse effects , Animals , Blood Vessels/metabolism , Genetic Predisposition to Disease , Humans , Molecular Targeted Therapy , Phenotype , Protein Kinase Inhibitors/adverse effects , Signal Transduction , Vascular Malformations/metabolism , Vascular Malformations/pathology
16.
Circulation ; 144(10): 805-822, 2021 09 07.
Article En | MEDLINE | ID: mdl-34182767

BACKGROUND: Activin receptor-like kinase 1 (ALK1) is an endothelial transmembrane serine threonine kinase receptor for BMP family ligands that plays a critical role in cardiovascular development and pathology. Loss-of-function mutations in the ALK1 gene cause type 2 hereditary hemorrhagic telangiectasia, a devastating disorder that leads to arteriovenous malformations. Here, we show that ALK1 controls endothelial cell polarization against the direction of blood flow and flow-induced endothelial migration from veins through capillaries into arterioles. METHODS: Using Cre lines that recombine in different subsets of arterial, capillary-venous, or endothelial tip cells, we show that capillary-venous Alk1 deletion was sufficient to induce arteriovenous malformation formation in the postnatal retina. RESULTS: ALK1 deletion impaired capillary-venous endothelial cell polarization against the direction of blood flow in vivo and in vitro. Mechanistically, ALK1-deficient cells exhibited increased integrin signaling interaction with vascular endothelial growth factor receptor 2, which enhanced downstream YAP/TAZ nuclear translocation. Pharmacologic inhibition of integrin or YAP/TAZ signaling rescued flow migration coupling and prevented vascular malformations in Alk1-deficient mice. CONCLUSIONS: Our study reveals ALK1 as an essential driver of flow-induced endothelial cell migration and identifies loss of flow-migration coupling as a driver of arteriovenous malformation formation in hereditary hemorrhagic telangiectasia disease. Integrin-YAP/TAZ signaling blockers are new potential targets to prevent vascular malformations in patients with hereditary hemorrhagic telangiectasia.


Arteriovenous Malformations , Endothelial Cells , Telangiectasia, Hereditary Hemorrhagic , Vascular Endothelial Growth Factor A , Animals , Humans , Arteriovenous Malformations/metabolism , Cell Movement/physiology , Endothelial Cells/metabolism , Telangiectasia, Hereditary Hemorrhagic/mortality , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Malformations/metabolism , Mice
17.
PLoS One ; 16(5): e0252342, 2021.
Article En | MEDLINE | ID: mdl-34043714

Venous malformations (VMs) are slow-flow malformations of the venous vasculature and are the most common type of vascular malformation with a prevalence of 1%. Germline and somatic mutations have been shown to contribute to VM pathogenesis, but how these mutations affect VM pathobiology is not well understood. The goal of this study was to characterize VM endothelial and mural cell expression by performing a comprehensive expression analysis of VM vasculature. VM specimens (n = 16) were stained for pan-endothelial, arterial, venous, and endothelial progenitor cell proteins; proliferation was assessed with KI67. Endothelial cells in the VM vessels were abnormally orientated and improperly specified, as seen by the misexpression of both arterial and endothelial cell progenitor proteins not observed in control vessels. Consistent with arterialization of the endothelial cells, VM vessels were often surrounded by multiple layers of disorganized mural cells. VM endothelium also had a significant increase in proliferative endothelial cells, which may contribute to the dilated channels seen in VMs. Together the expression analysis indicates that the VM endothelium is misspecified and hyperproliferative, suggesting that VMs are biologically active lesions, consistent with clinical observations of VM progression over time.


Endothelium, Vascular , Vascular Malformations , Cell Proliferation , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Female , Fetus , Gene Expression , Humans , Male , Vascular Malformations/metabolism , Vascular Malformations/pathology , Veins
18.
Angiogenesis ; 24(2): 213-236, 2021 05.
Article En | MEDLINE | ID: mdl-33844116

There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.


Blood Vessels/metabolism , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Vascular Malformations/metabolism , Animals , Blood Vessels/pathology , Endothelial Cells/pathology , Humans , Lymphatic Vessels/pathology , Vascular Malformations/pathology
19.
Antioxid Redox Signal ; 34(11): 875-889, 2021 04 10.
Article En | MEDLINE | ID: mdl-31621376

Significance: Cardiovascular disorders are the most important cause of morbidity and mortality in the Western world. Monogenic developmental disorders of the heart and vessels are highly valuable to study the physiological and pathological processes in cardiovascular system homeostasis. The arterial tortuosity syndrome (ATS) is a rare, autosomal recessive connective tissue disorder showing lengthening, tortuosity, and stenosis of the large arteries, with a propensity for aneurysm formation. In histopathology, it associates with fragmentation and disorganization of elastic fibers in several tissues, including the arterial wall. ATS is caused by pathogenic variants in SLC2A10 encoding the facilitative glucose transporter (GLUT)10. Critical Issues: Although several hypotheses have been forwarded, the molecular mechanisms linking disrupted GLUT10 activity with arterial malformations are largely unknown. Recent Advances: The vascular and systemic manifestations and natural history of ATS patients have been largely delineated. GLUT10 was identified as an intracellular transporter of dehydroascorbic acid, which contributes to collagen and elastin cross-linking in the endoplasmic reticulum, redox homeostasis in the mitochondria, and global and gene-specific methylation/hydroxymethylation affecting epigenetic regulation in the nucleus. We revise here the current knowledge on ATS and the role of GLUT10 within the compartmentalization of ascorbate in physiological and diseased states. Future Directions: Centralization of clinical, treatment, and outcome data will enable better management for ATS patients. Establishment of representative animal disease models could facilitate the study of pathomechanisms underlying ATS. This might be relevant for other forms of vascular dysplasia, such as isolated aneurysm formation, hypertensive vasculopathy, and neovascularization. Antioxid. Redox Signal. 34, 875-889.


Arteries/abnormalities , Ascorbic Acid/genetics , Glucose Transport Proteins, Facilitative/genetics , Homeostasis/genetics , Joint Instability/genetics , Skin Diseases, Genetic/genetics , Vascular Malformations/genetics , Animals , Arteries/metabolism , Arteries/pathology , Ascorbic Acid/metabolism , Ascorbic Acid/therapeutic use , Elastic Tissue/metabolism , Elastic Tissue/pathology , Humans , Joint Instability/metabolism , Joint Instability/pathology , Joint Instability/therapy , Mitochondria/drug effects , Mitochondria/genetics , Mutation/genetics , Oxidation-Reduction , Skin Diseases, Genetic/metabolism , Skin Diseases, Genetic/pathology , Skin Diseases, Genetic/therapy , Vascular Malformations/metabolism , Vascular Malformations/pathology , Vascular Malformations/therapy
20.
Methods Mol Biol ; 2206: 179-192, 2021.
Article En | MEDLINE | ID: mdl-32754818

Xenograft models allow for an in vivo approach to monitor cellular functions within the context of a host microenvironment. Here we describe a protocol to generate a xenograft model of venous malformation (VM) based on the use of human umbilical vein endothelial cells (HUVEC) expressing a constitutive active form of the endothelial tyrosine kinase receptor TEK (TIE2 p.L914F) or patient-derived EC containing TIE2 and/or PIK3CA gene mutations. Hyperactive somatic TIE2 and PIK3CA mutations are a common hallmark of VM in patient lesions. The EC are injected subcutaneously on the back of athymic nude mice to generate ectatic vascular channels and recapitulate histopathological features of VM patient tissue histology. Lesion plugs with TIE2/PIK3CA-mutant EC are visibly vascularized within 7-9 days of subcutaneous injection, making this a great tool to study venous malformation.


Heterografts/pathology , Human Umbilical Vein Endothelial Cells/pathology , Vascular Malformations/pathology , Veins/pathology , Animals , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Heterografts/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , Mice, Nude , Receptor, TIE-2/metabolism , Vascular Malformations/metabolism , Veins/metabolism
...