Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25.871
1.
Article En | MEDLINE | ID: mdl-38765503

Objective: Potassium channels have an important role in the vascular adaptation during pregnancy and a reduction in the expression of adenosine triphosphate-sensitive potassium channels (Katp) has been linked to preeclampsia. Activation of Katp induces vasodilation; however, no previous study has been conducted to evaluate the effects of the inhibition of these channels in the contractility of preeclamptic arteries. Glibenclamide is an oral antihyperglycemic agent that inhibits Katp and has been widely used in vascular studies. Methods: To investigate the effects of the inhibition of Katp, umbilical arteries of preeclamptic women and women with healthy pregnancies were assessed by vascular contractility experiments, in the presence or absence of glibenclamide. The umbilical arteries were challenged with cumulative concentrations of potassium chloride (KCl) and serotonin. Results: There were no differences between the groups concerning the maternal age and gestational age of the patients. The percentage of smokers, caucasians and primiparae per group was also similar. On the other hand, blood pressure parameters were elevated in the preeclamptic group. In addition, the preeclamptic group presented a significantly higher body mass index. The newborns of both groups presented similar APGAR scores and weights. Conclusion: In the presence of glibenclamide, there was an increase in the KCl-induced contractions only in vessels from the PE group, showing a possible involvement of these channels in the disorder.


Glyburide , Pre-Eclampsia , Umbilical Arteries , Humans , Female , Pregnancy , Pre-Eclampsia/physiopathology , Umbilical Arteries/physiopathology , Adult , Glyburide/pharmacology , Vasoconstriction/drug effects , Young Adult , KATP Channels/metabolism , Potassium Chloride/pharmacology
2.
Arq Bras Cardiol ; 121(4): e20230236, 2024 Apr.
Article Pt, En | MEDLINE | ID: mdl-38695407

BACKGROUND: Vascular dysfunction constitutes the etiology of many diseases, such as myocardial infarction and hypertension, with the disruption of redox homeostasis playing a role in the imbalance of the vasomotor control mechanism. Our group previously has shown that thyroid hormones exert protective effects on the aortic tissue of infarcted rats by improving angiogenesis signaling. OBJECTIVE: Investigate the role of triiodothyronine (T3) on vascular response, exploring its effects on isolated aortas and whether there is an involvement of vascular redox mechanisms. METHODS: Isolated aortic rings (intact- and denuded-endothelium) precontracted with phenylephrine were incubated with T3 (10-8, 10-7, 10-6, 10-5, and 10-4 M), and tension was recorded using a force-displacement transducer coupled with an acquisition system. To assess the involvement of oxidative stress, aortic rings were preincubated with T3 and subsequently submitted to an in vitro reactive oxygen species (ROS) generation system. The level of significance adopted in the statistical analysis was 5%. RESULTS: T3 (10-4 M) promoted vasorelaxation of phenylephrine precontracted aortic rings in both intact- and denuded-endothelium conditions. Aortic rings preincubated in the presence of T3 (10-4 M) also showed decreased vasoconstriction elicited by phenylephrine (1 µM) in intact-endothelium preparations. Moreover, T3 (10-4 M) vasorelaxation effect persisted in aortic rings preincubated with NG-nitro-L-arginine methylester (L-NAME, 10 µM), a nonspecific NO synthase (NOS) inhibitor. Finally, T3 (10-4 M) exhibited, in vitro, an antioxidant role by reducing NADPH oxidase activity and increasing SOD activity in the aorta's homogenates. CONCLUSION: T3 exerts dependent- and independent-endothelium vasodilation effects, which may be related to its role in maintaining redox homeostasis.


FUNDAMENTO: A disfunção vascular constitui a etiologia de diversas doenças, incluindo infarto do miocárdio e hipertensão, diante da ruptura da homeostase oxi-redutiva ("redox"), desempenhando um papel no desequilíbrio do mecanismo de controle vasomotor. Nosso grupo demonstrou anteriormente que os hormônios tireoidianos melhoram a sinalização da angiogênese, exercendo efeitos protetores sobre o tecido aórtico de ratos infartados. OBJETIVOS: Investigar o papel da triiodotironina (T3) na resposta vascular, explorando seus efeitos em aortas isoladas e a presença de mecanismos redox vasculares. MÉTODOS: Anéis aórticos isolados (endotélio intacto e desnudado) pré-contraídos com fenilefrina foram incubados com T3 (10-8, 10-7, 10-6, 10-5 e 10-4 M) e a tensão foi registrada usando um transdutor de deslocamento de força acoplado a um sistema de coleta. Para avaliar o envolvimento do estresse oxidativo, os anéis aórticos foram pré-incubados com T3 e posteriormente submetidos a um sistema de geração de espécies reativas de oxigênio (ROS) in vitro. O nível de significância adotado na análise estatística foi de 5%. RESULTADOS: A T3 (10-4 M) promoveu o vasorrelaxamento dos anéis aórticos pré-contraídos com fenilefrina em endotélio intacto e desnudado. Os anéis aórticos pré-incubados na presença de T3 (10-4 M) também mostraram diminuição da vasoconstrição provocada pela fenilefrina (1 µM) em preparações de endotélio intacto. Além disso, o efeito vasorrelaxante da T3 (10-4 M) persistiu em anéis aórticos pré-incubados com éster metílico de NG-nitro-L-arginina (L-NAME, 10 µM), um inibidor inespecífico da NO sintase (NOS). Por fim, a T3 (10-4 M) exibiu, in vitro, um papel antioxidante ao reduzir a atividade da NADPH oxidase e aumentar a atividade da SOD nos homogenatos aórticos. CONCLUSÃO: A T3 exerce efeitos dependentes e independentes de endotélio, o que pode estar relacionado ao seu papel na manutenção da homeostase redox.


Oxidation-Reduction , Oxidative Stress , Rats, Wistar , Reactive Oxygen Species , Triiodothyronine , Vasodilation , Animals , Vasodilation/drug effects , Vasodilation/physiology , Male , Triiodothyronine/pharmacology , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Phenylephrine/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Rats , Reproducibility of Results , Vasoconstrictor Agents/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , In Vitro Techniques , Vasoconstriction/drug effects , Vasoconstriction/physiology
3.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Article En | MEDLINE | ID: mdl-38726925

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Angiotensin II , Brain , Calcium , Hypertension , Kidney , Microvessels , Nitric Oxide , Vasoconstriction , Animals , Nitric Oxide/metabolism , Angiotensin II/pharmacology , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/drug therapy , Kidney/blood supply , Kidney/metabolism , Calcium/metabolism , Vasoconstriction/drug effects , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Brain/metabolism , Brain/blood supply , Mice , Disease Models, Animal , Male , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Inbred C57BL , Calcium Signaling/drug effects
4.
Lasers Med Sci ; 39(1): 122, 2024 May 04.
Article En | MEDLINE | ID: mdl-38703271

Pulsed dye lasers are used effectively in the treatment of psoriasis with long remission time and limited side effects. It is, however, not completely understood which biological processes underlie its favorable outcome. Pulsed dye laser treatment at 585-595 nm targets hemoglobin in the blood, inducing local hyperthermia in surrounding blood vessels and adjacent tissues. While the impact of destructive temperatures on blood vessels has been well studied, the effects of lower temperatures on the function of several cell types within the blood vessel wall and its periphery are not known. The aim of our study is to assess the functionality of isolated blood vessels after exposure to moderate hyperthermia (45 to 60°C) by evaluating the function of endothelial cells, smooth muscle cells, and vascular nerves. We measured blood vessel functionality of rat mesenteric arteries (n=19) by measuring vascular contraction and relaxation before and after heating vessels in a wire myograph. To this end, we elicited vascular contraction by addition of either high potassium solution or the thromboxane analogue U46619 to stimulate smooth muscle cells, and electrical field stimulation (EFS) to stimulate nerves. For measurement of endothelium-dependent relaxation, we used methacholine. Each vessel was exposed to one temperature in the range of 45-60°C for 30 seconds and a relative change in functional response after hyperthermia was determined by comparison with the response per stimulus before heating. Non-linear regression was used to fit our dataset to obtain the temperature needed to reduce blood vessel function by 50% (Half maximal effective temperature, ET50). Our findings demonstrate a substantial decrease in relative functional response for all three cell types following exposure to 55°C-60°C. There was no significant difference between the ET50 values of the different cell types, which was between 55.9°C and 56.9°C (P>0.05). Our data show that blood vessel functionality decreases significantly when exposed to temperatures between 55°C-60°C for 30 seconds. The results show functionality of endothelial cells, smooth muscle cells, and vascular nerves is similarly impaired. These results help to understand the biological effects of hyperthermia and may aid in tailoring laser and light strategies for selective photothermolysis that contribute to disease modification of psoriasis after pulsed dye laser treatment.


Lasers, Dye , Animals , Rats , Male , Lasers, Dye/therapeutic use , Myocytes, Smooth Muscle/physiology , Myocytes, Smooth Muscle/radiation effects , Vasodilation/radiation effects , Vasodilation/physiology , Temperature , Muscle, Smooth, Vascular/radiation effects , Muscle, Smooth, Vascular/physiology , Endothelial Cells/radiation effects , Endothelial Cells/physiology , Vasoconstriction/radiation effects , Vasoconstriction/physiology , Endothelium, Vascular/radiation effects , Rats, Wistar
5.
Cells ; 13(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38727324

Norbormide (NRB) is a Rattus-selective toxicant, which was serendipitously discovered in 1964 and formerly marketed as an eco-friendly rodenticide that was deemed harmless to non-Rattus species. However, due to inconsistent efficacy and the emergence of second-generation anticoagulants, its usage declined, with registration lapsing in 2003. NRBs' lethal action in rats entails irreversible vasoconstriction of peripheral arteries, likely inducing cardiac damage: however, the precise chain of events leading to fatality and the target organs involved remain elusive. This unique contractile effect is exclusive to rat arteries and is induced solely by the endo isomers of NRB, hinting at a specific receptor involvement. Understanding NRB's mechanism of action is crucial for developing species-selective toxicants as alternatives to the broad-spectrum ones currently in use. Recent research efforts have focused on elucidating its cellular mechanisms and sites of action using novel NRB derivatives. The key findings are as follows: NRB selectively opens the rat mitochondrial permeability transition pore, which may be a factor that contributes to its lethal effect; it inhibits rat vascular KATP channels, which potentially controls its Rattus-selective vasoconstricting activity; and it possesses intracellular binding sites in both sensitive and insensitive cells, as revealed by fluorescent derivatives. These studies have led to the development of a prodrug with enhanced pharmacokinetic and toxicological profiles, which is currently undergoing registration as a novel efficacious eco-sustainable Rattus-selective toxicant. The NRB-fluorescent derivatives also show promise as non-toxic probes for intracellular organelle labelling. This review documents in more detail these developments and their implications.


Rodenticides , Animals , Rats , Rodenticides/toxicity , Humans , Vasoconstriction/drug effects , Mitochondrial Permeability Transition Pore/metabolism
6.
Braz J Med Biol Res ; 57: e13304, 2024.
Article En | MEDLINE | ID: mdl-38775546

Arthritis has important cardiovascular repercussions. Phenylephrine-induced vasoconstriction is impaired in rat aortas in the early phase of the adjuvant-induced arthritis (AIA), around the 15th day post-induction. Therefore, the present study aimed to verify the effects of AIA on hyporesponsiveness to phenylephrine in rat aortas. AIA was induced by intradermal injection of Mycobacterium tuberculosis (3.8 mg/dL) in the right hind paw of male Wistar rats (n=27). Functional experiments in isolated aortas were carried out 15 days after AIA induction. Morphometric and stereological analyses of the aortas were also performed 36 days after the induction of AIA. AIA did not promote structural modifications in the aortas at any of the time points studied. AIA reduced phenylephrine-induced contraction in endothelium-intact aortas, but not in endothelium-denuded aortas. However, AIA did not change KCl-induced contraction in either endothelium-intact or denuded aortas. L-NAME (non-selective NOS inhibitor), 1400W (selective iNOS inhibitor), and ODQ (guanylyl cyclase inhibitor) reversed AIA-induced hyporesponsiveness to phenylephrine in intact aortas. 7-NI (selective nNOS inhibitor) increased the contraction induced by phenylephrine in aortas from AIA rats. In summary, the hyporesponsiveness to phenylephrine induced by AIA was endothelium-dependent and mediated by iNOS-derived NO through activation of the NO-guanylyl cyclase pathway.


Arthritis, Experimental , Nitric Oxide , Phenylephrine , Rats, Wistar , Animals , Male , Phenylephrine/pharmacology , Arthritis, Experimental/physiopathology , Arthritis, Experimental/chemically induced , Nitric Oxide/metabolism , Vasoconstriction/drug effects , Endothelium, Vascular/drug effects , Vasoconstrictor Agents/pharmacology , Rats , Aorta/drug effects
7.
JACC Cardiovasc Interv ; 17(9): 1091-1102, 2024 May 13.
Article En | MEDLINE | ID: mdl-38749588

BACKGROUND: Invasive CFT is the gold standard for diagnosing coronary vasomotor dysfunction in patients with ANOCA. Most institutions recommend only testing the left coronary circulation. Therefore, it is unknown whether testing multiple coronary territories would increase diagnostic yield. OBJECTIVES: The aim of this study was to evaluate the diagnostic yield of multivessel, compared with single-vessel, invasive coronary function testing (CFT) in patients with angina and nonobstructive coronary arteries (ANOCA). METHODS: Multivessel CFT was systematically performed in patients with suspected ANOCA. Vasoreactivity testing was performed using acetylcholine provocation in the left (20 to 200 µg) and right (20 to 80µg) coronary arteries. A pressure-temperature sensor guidewire was used for coronary physiology assessment in all three epicardial vessels. RESULTS: This multicenter study included a total of 228 vessels from 80 patients (57.8 ± 11.8 years of age, 60% women). Compared with single-vessel CFT, multivessel testing resulted in more patients diagnosed with coronary vasomotor dysfunction (86.3% vs 68.8%; P = 0.0005), coronary artery spasm (60.0% vs 47.5%; P = 0.004), and CMD (62.5% vs 36.3%; P < 0.001). Coronary artery spasm (n = 48) predominated in the left coronary system (n = 38), though isolated right coronary spasm was noted in 20.8% (n = 10). Coronary microvascular dysfunction (CMD), defined by abnormal index of microcirculatory resistance and/or coronary flow reserve, was present 62.5% of the cohort (n = 50). Among the cohort with CMD, 27 patients (33.8%) had 1-vessel CMD, 15 patients (18.8%) had 2-vessel CMD, and 8 patients (10%) had 3-vessel CMD. CMD was observed at a similar rate in the territories supplied by all 3 major coronary vessels (left anterior descending coronary artery = 36.3%, left circumflex coronary artery = 33.8%, right coronary artery = 31.3%; P = 0.486). CONCLUSIONS: Multivessel CFT resulted in an increased diagnostic yield in patients with ANOCA compared with single-vessel testing. The results of this study suggest that multivessel CFT has a role in the management of patients with ANOCA.


Acetylcholine , Angina Pectoris , Coronary Artery Disease , Coronary Circulation , Coronary Vasospasm , Coronary Vessels , Predictive Value of Tests , Vasodilator Agents , Humans , Female , Male , Middle Aged , Aged , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Vasodilator Agents/administration & dosage , Coronary Vasospasm/physiopathology , Coronary Vasospasm/diagnosis , Acetylcholine/administration & dosage , Angina Pectoris/physiopathology , Angina Pectoris/diagnosis , Angina Pectoris/etiology , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Cardiac Catheterization , Coronary Angiography , Reproducibility of Results , Vasodilation , Vasoconstriction
9.
Circ Res ; 134(10): 1259-1275, 2024 May 10.
Article En | MEDLINE | ID: mdl-38597112

BACKGROUND: GPCRs (G-protein-coupled receptors) play a central role in the regulation of smooth muscle cell (SMC) contractility, but the function of SMC-expressed orphan GPCR class C group 5 member C (GPRC5C) is unclear. The aim of this project is to define the role of GPRC5C in SMC in vitro and in vivo. METHODS: We studied the role of GPRC5C in the regulation of SMC contractility and differentiation in human and murine SMC in vitro, as well as in tamoxifen-inducible, SMC-specific GPRC5C knockout mice under basal conditions and in vascular disease in vivo. RESULTS: Mesenteric arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed ex vivo significantly reduced angiotensin II (Ang II)-dependent calcium mobilization and contraction, whereas responses to other relaxant or contractile factors were normal. In vitro, the knockdown of GPRC5C in human aortic SMC resulted in diminished Ang II-dependent inositol phosphate production and lower myosin light chain phosphorylation. In line with this, tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed reduced Ang II-induced arterial hypertension, and acute inactivation of GPRC5C was able to ameliorate established arterial hypertension. Mechanistically, we show that GPRC5C and the Ang II receptor AT1 dimerize, and knockdown of GPRC5C resulted in reduced binding of Ang II to AT1 receptors in HEK293 cells, human and murine SMC, and arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice. CONCLUSIONS: Our data show that GPRC5C regulates Ang II-dependent vascular contraction by facilitating AT1 receptor-ligand binding and signaling.


Angiotensin II , Mice, Knockout , Muscle, Smooth, Vascular , Receptors, G-Protein-Coupled , Animals , Angiotensin II/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Humans , Muscle, Smooth, Vascular/metabolism , Mice , Cells, Cultured , Vasoconstriction , Myocytes, Smooth Muscle/metabolism , Male , Mice, Inbred C57BL , Mesenteric Arteries/metabolism , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/chemically induced , Hypertension/genetics , Muscle Contraction
10.
Biochem Biophys Res Commun ; 712-713: 149961, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38648679

Blood pressure is a crucial physiological parameter and its abnormalities can cause a variety of health problems. We have previously reported that mice with systemic deletion of nardilysin (NRDC), an M16 family metalloprotease, exhibit hypotension. In this study, we aimed to clarify the role of NRDC in vascular smooth muscle cell (VSMC) by generating VSMC-specific Nrdc knockout (VSMC-KO) mice. Our findings reveal that VSMC-KO mice also exhibit hypotension. Aortas isolated from VSMC-KO mice exhibited a weakened contractile response to phenylephrine, accompanied by reduced phosphorylation of myosin light chain 2 and decreased rhoA expression. VSMC isolated from VSMC-KO aortas showed a reduced increase in intracellular Ca2+ concentration induced by α-stimulants. These findings suggest that NRDC in VSMC regulates vascular contraction and blood pressure by modulating Ca2+ dynamics.


Blood Pressure , Calcium , Metalloendopeptidases , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Calcium/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Metalloendopeptidases/metabolism , Metalloendopeptidases/genetics , Male , Mice, Inbred C57BL , Hypotension/metabolism , Cells, Cultured , Aorta/metabolism , Aorta/cytology , Vasoconstriction/drug effects , Calcium Signaling
11.
Eur J Pharmacol ; 972: 176543, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38582274

Cyclosporin A, an immunosuppressive agent, is extensively utilized for the prevention of transplant rejection and treat autoimmune disease in the clinic, despite its association with a high risk of hypertension development among patients. Resveratrol is a kind of non-flavonoid phenolic compound that widely exists in many plants. The aim of the present study was to investigate the mechanism by which resveratrol ameliorates cyclosporin A-induced hypertension. The arterial rings of the mesentery were incubated with cyclosporin A and resveratrol in vitro. Rats were administered cyclosporin A and/or resveratrol for 3 weeks in vivo. Blood pressure was measured via the tail arteries. Vasoconstriction curves were recorded using a sensitive myograph. The protein expression was evaluated through Western blotting. This study demonstrated that resveratrol mitigated the cyclosporin A-induced increase in blood pressure in rats. Furthermore, resveratrol markedly inhibited the cyclosporin A-induced upregulation of thromboxane A2 receptor-mediated vasoconstriction in the rat mesenteric artery both in vitro and in vivo. Moreover, resveratrol activated AMPK/SIRT1 and inhibited the MAPK/NF-κB signaling pathway. In conclusion, resveratrol restored the cyclosporin A-induced upregulation of the thromboxane A2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in rats.


AMP-Activated Protein Kinases , Cyclosporine , Hypertension , Mesenteric Arteries , NF-kappa B , Rats, Sprague-Dawley , Resveratrol , Sirtuin 1 , Up-Regulation , Animals , Resveratrol/pharmacology , Cyclosporine/pharmacology , Sirtuin 1/metabolism , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Male , NF-kappa B/metabolism , Up-Regulation/drug effects , Rats , AMP-Activated Protein Kinases/metabolism , Vasoconstriction/drug effects , Blood Pressure/drug effects , Signal Transduction/drug effects , Mitogen-Activated Protein Kinases/metabolism
12.
Nutrients ; 16(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38674863

Copper (Cu), being an essential mineral, plays a crucial role in maintaining physiological homeostasis across multiple bodily systems, notably the cardiovascular system. However, an increased Cu level in the body may cause blood vessel dysfunction and oxidative stress, which is unfavorable for the cardiovascular system. Middle-aged (7-8 months old) male Wistar rats (n/group = 12) received a diet supplemented with 6.45 mg Cu/kg (100% of the recommended daily dietary quantity of copper) for 8 weeks (Group A). The experimental group received 12.9 mg Cu/kg of diet (200%-Group B). An ex vivo study revealed that supplementation with 200% Cu decreased the contraction of isolated aortic rings to noradrenaline (0.7-fold) through FP receptor modulation. Vasodilation to sodium nitroprusside (1.10-fold) and acetylcholine (1.13-fold) was potentiated due to the increased net effect of prostacyclin derived from cyclooxygenase-1. Nitric oxide (NO, 2.08-fold), superoxide anion (O2•-, 1.5-fold), and hydrogen peroxide (H2O2, 2.33-fold) measured in the aortic rings increased. Blood serum antioxidant status (TAS, 1.6-fold), Cu (1.2-fold), Zn (1.1-fold), and the Cu/Zn ratio (1.4-fold) increased. An increase in Cu (1.12-fold) and the Cu/Zn ratio (1.09-fold) was also seen in the rats' livers. Meanwhile, cyclooxygenase-1 (0.7-fold), cyclooxygenase-2 (0.4-fold) and glyceraldehyde 3-phosphate dehydrogenase (0.5-fold) decreased. Moreover, a negative correlation between Cu and Zn was found (r = -0.80) in rat serum. Supplementation with 200% Cu did not modify the isolated heart functioning. No significant difference was found in the body weight, fat/lean body ratio, and organ weight for either the heart or liver, spleen, kidney, and brain. Neither Fe nor Se, the Cu/Se ratio, the Se/Zn ratio (in serum and liver), heme oxygenase-1 (HO-1), endothelial nitric oxide synthase (eNOS), or intercellular adhesion molecule-1 (iCAM-1) (in serum) were modified. Supplementation with 200% of Cu potentiated pro-oxidant status and modified vascular contractility in middle-aged rats.


Copper , Oxidative Stress , Rats, Wistar , Animals , Male , Copper/blood , Oxidative Stress/drug effects , Rats , Vasoconstriction/drug effects , Antioxidants/pharmacology , Vasodilation/drug effects , Dietary Supplements , Aorta/drug effects , Aorta/metabolism
13.
Biomed Pharmacother ; 174: 116564, 2024 May.
Article En | MEDLINE | ID: mdl-38608525

During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.


Docosahexaenoic Acids , Hypertension , Mice, Inbred C57BL , Obesity , Vascular Remodeling , Animals , Male , Humans , Docosahexaenoic Acids/pharmacology , Hypertension/metabolism , Hypertension/drug therapy , Obesity/complications , Obesity/metabolism , Vascular Remodeling/drug effects , Mice , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Diet, High-Fat/adverse effects , Angiotensin II , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/drug therapy , Inflammation Mediators/metabolism , Mice, Obese , Vasoconstriction/drug effects , Inflammation/pathology , Inflammation/metabolism , Macrophages/drug effects , Macrophages/metabolism , Disease Models, Animal
14.
J Physiol ; 602(10): 2199-2226, 2024 May.
Article En | MEDLINE | ID: mdl-38656747

During the urine storage phase, tonically contracting urethral musculature would have a higher energy consumption than bladder muscle that develops phasic contractions. However, ischaemic dysfunction is less prevalent in the urethra than in the bladder, suggesting that urethral vasculature has intrinsic properties ensuring an adequate blood supply. Diameter changes in rat or mouse urethral arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in arteriolar smooth muscle (SMCs) and endothelial cells were visualised using NG2- and parvalbumin-GCaMP6 mice, respectively. Fluorescence immunohistochemistry was used to visualise the perivascular innervation. In rat urethral arterioles, sympathetic vasoconstrictions were predominantly suppressed by α,ß-methylene ATP (10 µM) but not prazosin (1 µM). Tadalafil (100 nM), a PDE5 inhibitor, diminished the vasoconstrictions in a manner reversed by N-ω-propyl-l-arginine hydrochloride (l-NPA, 1 µM), a neuronal NO synthesis (nNOS) inhibitor. Vesicular acetylcholine transporter immunoreactive perivascular nerve fibres co-expressing nNOS were intertwined with tyrosine hydroxylase immunoreactive sympathetic nerve fibres. In phenylephrine (1 µM) pre-constricted rat or mouse urethral arterioles, nerve-evoked vasodilatations or transient SMC Ca2+ reductions were largely diminished by l-nitroarginine (l-NA, 10 µM), a broad-spectrum NOS inhibitor, but not by l-NPA. The CGRP receptor antagonist BIBN-4096 (1 µM) shortened the vasodilatory responses, while atropine (1 µM) abolished the l-NA-resistant transient vasodilatory responses. Nerve-evoked endothelial Ca2+ transients were abolished by atropine plus guanethidine (10 µM), indicating its neurotransmitter origin and absence of non-adrenergic non-cholinergic endothelial NO release. In urethral arterioles, NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions pre- and post-synaptically to restrict arteriolar contractility. KEY POINTS: Despite a higher energy consumption of the urethral musculature than the bladder detrusor muscle, ischaemic dysfunction of the urethra is less prevalent than that of the bladder. In the urethral arterioles, sympathetic vasoconstrictions are predominately mediated by ATP, not noradrenaline. NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions by its pre-synaptic inhibition of sympathetic transmission as well as post-synaptic arteriolar smooth muscle relaxation. Acetylcholine released from parasympathetic nerves contributes to endothelium-dependent, transient vasodilatations, while CGRP released from sensory nerves prolongs NO-mediated vasodilatations. PDE5 inhibitors could be beneficial to maintain and/or improve urethral blood supply and in turn the volume and contractility of urethral musculature.


Urethra , Vasoconstriction , Animals , Female , Urethra/innervation , Urethra/physiology , Urethra/drug effects , Vasoconstriction/drug effects , Mice , Arterioles/drug effects , Arterioles/physiology , Arterioles/metabolism , Rats , Mice, Inbred C57BL , Rats, Sprague-Dawley , Sympathetic Nervous System/physiology , Sympathetic Nervous System/drug effects
15.
Animal Model Exp Med ; 7(2): 156-165, 2024 Apr.
Article En | MEDLINE | ID: mdl-38506157

INTRODUCTION: Hypoxic pulmonary vasoconstriction (HPV) can be a challenging clinical problem. It is not fully elucidated where in the circulation the regulation of resistance takes place. It is often referred to as if it is in the arteries, but we hypothesized that it is in the venous side of the pulmonary circulation. METHODS: In an open thorax model, pigs were treated with a veno-venous extra corporeal membrane oxygenator to either oxygenate or deoxygenate blood passing through the pulmonary vessels. At the same time the lungs were ventilated with extreme variations of inspired air from 5% to 100% oxygen, making it possible to make combinations of high and low oxygen content through the pulmonary circulation. A flow probe was inserted around the main pulmonary artery and catheters in the pulmonary artery and in the left atrium were used for pressure monitoring and blood tests. Under different combinations of oxygenation, pulmonary vascular resistance (PVR) was calculated. RESULTS: With unchanged level of oxygen in the pulmonary artery and reduced inspired oxygen fraction lowering oxygen tension from 29 to 6.7 kPa in the pulmonary vein, PVR was doubled. With more extreme hypoxia PVR suddenly decreased. Combinations with low oxygenation in the pulmonary artery did not systematic influence PVR if there was enough oxygen in the inspired air and in the pulmonary veins. DISCUSSION: The impact of hypoxia occurs from the alveolar level and forward with the blood flow. The experiments indicated that the regulation of PVR is mediated from the venous side.


Hypoxia , Oxygen , Pulmonary Artery , Pulmonary Veins , Vascular Resistance , Animals , Pulmonary Artery/physiopathology , Hypoxia/physiopathology , Oxygen/metabolism , Oxygen/blood , Swine , Pulmonary Circulation , Vasoconstriction
16.
Eur J Neurol ; 31(5): e16246, 2024 May.
Article En | MEDLINE | ID: mdl-38470001

BACKGROUND: Posterior reversible encephalopathy syndrome (PRES) and reversible cerebral vasoconstriction syndrome (RCVS) may cause ischaemic stroke and intracranial haemorrhage. The aim of our study was to assess the frequency of the afore-mentioned outcomes. METHODS: We performed a PROSPERO-registered (CRD42022355704) systematic review and meta-analysis accessing PubMed until 7 November 2022. The inclusion criteria were: (1) original publication, (2) adult patients (≥18 years), (3) enrolling patients with PRES and/or RCVS, (4) English language and (5) outcome information. Outcomes were frequency of (1) ischaemic stroke and (2) intracranial haemorrhage, divided into subarachnoid haemorrhage (SAH) and intraparenchymal haemorrhage (IPH). The Cochrane Risk of Bias tool was used. RESULTS: We identified 848 studies and included 48 relevant studies after reviewing titles, abstracts and full text. We found 11 studies on RCVS (unselected patients), reporting on 2746 patients. Among the patients analysed, 15.9% (95% CI 9.6%-23.4%) had ischaemic stroke and 22.1% (95% CI 10%-39.6%) had intracranial haemorrhage. A further 20.3% (95% CI 11.2%-31.2%) had SAH and 6.7% (95% CI 3.6%-10.7%) had IPH. Furthermore, we found 28 studies on PRES (unselected patients), reporting on 1385 patients. Among the patients analysed, 11.2% (95% CI 7.9%-15%) had ischaemic stroke and 16.1% (95% CI 12.3%-20.3%) had intracranial haemorrhage. Further, 7% (95% CI 4.7%-9.9%) had SAH and 9.7% (95% CI 5.4%-15%) had IPH. CONCLUSIONS: Intracranial haemorrhage and ischaemic stroke are common outcomes in PRES and RCVS. The frequency reported in the individual studies varied considerably.


Brain Ischemia , Ischemic Stroke , Posterior Leukoencephalopathy Syndrome , Stroke , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Adult , Humans , Brain Ischemia/complications , Brain Ischemia/epidemiology , Stroke/complications , Stroke/epidemiology , Posterior Leukoencephalopathy Syndrome/complications , Posterior Leukoencephalopathy Syndrome/epidemiology , Vasoconstriction , Vasospasm, Intracranial/complications , Vasospasm, Intracranial/epidemiology , Intracranial Hemorrhages/complications , Intracranial Hemorrhages/epidemiology , Ischemic Stroke/complications , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/epidemiology
17.
Addict Biol ; 29(3): e13385, 2024 Mar.
Article En | MEDLINE | ID: mdl-38488472

Alcohol consumption is popular worldwidely and closely associated with cardiovascular diseases. Influences of paternal preconception alcohol consumption on offspring cerebral arteries are largely unknown. Male rats were randomly given alcohol or water before being mated with alcohol-naive females to produce alcohol- and control-sired offspring. Middle cerebral artery (MCA) was tested with a Danish Myo Technology wire myograph, patch-clamp, IONOPTIX, immunofluorescence and quantitative PCR. Alcohol consumption enhanced angiotensin II (AngII)-mediated constriction in male offspring MCA mainly via AT1R. PD123,319 only augmented AngII-induced constriction in control offspring. AngII and Bay K8644 induced stronger intracellular calcium transient in vascular smooth muscle cells (VSMCs) from MCA of alcohol offspring. L-type voltage-dependent calcium channel (L-Ca2+ ) current at baseline and after AngII-stimulation was higher in VSMCs. Influence of large-conductance calcium-activated potassium channel (BKC a ) was lower. Caffeine induced stronger constriction and intracellular calcium release in alcohol offspring. Superoxide anion was higher in alcohol MCA than control. Tempol and thenoyltrifluoroacetone alleviated AngII-mediated contractions, while inhibition was significantly higher in alcohol group. The mitochondria were swollen in alcohol MCA. Despite lower Kcnma1 and Prkce expression, many genes expressions were higher in alcohol group. Hypoxia induced reactive oxygen species production and increased AT1R expression in control MCA and rat aorta smooth muscle cell line. In conclusion, this study firstly demonstrated paternal preconception alcohol potentiated AngII-mediated vasoconstriction in offspring MCA via ROS-AT1R. Alcohol consumption increased intracellular calcium via L-Ca2+ channel and endoplasmic reticulum and decreased BKCa function. The present study provided new information for male reproductive health and developmental origin of cerebrovascular diseases.


Angiotensin II , Vasoconstriction , Female , Rats , Male , Animals , Angiotensin II/pharmacology , Angiotensin II/metabolism , Calcium/metabolism , Cerebral Arteries/metabolism , Alcohol Drinking , Oxidative Stress
18.
Taiwan J Obstet Gynecol ; 63(2): 234-237, 2024 Mar.
Article En | MEDLINE | ID: mdl-38485321

OBJECTIVE: With the development of diagnostic imaging, a new clinical entity called reversible cerebral vasoconstriction syndrome (RCVS), which is considered to be a cause of secondary headache, has emerged. We herein present two cases of RCVS with different patterns of clinical progression. CASE REPORT: Case 1 occurred during labor, whereas case 2 occurred after delivery. Neither case presnted thunderclap headache at the onset of symptoms. Hypertensive disorders of pregnancy did not occur during the pregnancy or the puerperium in either case. Neurological symptoms following mild headache (Case 1: coma; Case 2: paralysis of the right extremities) were observed. CONCLUSION: Even when a patient has no risk factors for RCVS and had no severe headache, it is important not to miss any of the neurological symptoms. Magnetic resonance imaging (MRI) strongly supports the diagnosis, even during pregnancy. In addition, the diagnosis should always be reviewed while excluding eclampsia.


Cerebrovascular Disorders , Vasoconstriction , Pregnancy , Female , Humans , Magnetic Resonance Imaging , Postpartum Period , Headache
19.
Am J Physiol Renal Physiol ; 326(5): F802-F813, 2024 May 01.
Article En | MEDLINE | ID: mdl-38545652

Men are likely at greater risk for heat-induced acute kidney injury compared with women, possibly due to differences in vascular control. We tested the hypothesis that the renal vasoconstrictor and vasodilator responses will be greater in younger women compared with men during passive heat stress. Twenty-five healthy adults [12 women (early follicular phase) and 13 men] completed two experimental visits, heat stress or normothermic time-control, assigned in a block-randomized crossover design. During heat stress, participants wore a water-perfused suit perfused with 50°C water. Core temperature was increased by ∼0.8°C in the first hour before commencing a 2-min cold pressor test (CPT). Core temperature remained clamped and at 1-h post-CPT, subjects ingested a whey protein shake (1.2 g of protein/kg body wt), and measurements were taken pre-, 75 min, and 150 min post-protein. Beat-to-beat blood pressure (Penaz method) was measured and segmental artery vascular resistance (VR, Doppler ultrasound) was calculated as segmental artery blood velocity ÷ mean arterial pressure. CPT-induced increases in segmental artery VR did not differ between trials (trial effect: P = 0.142) nor between men (heat stress: 1.5 ± 1.0 mmHg/cm/s, normothermia: 1.4 ± 1.0 mmHg/cm/s) and women (heat stress: 1.4 ± 1.2 mmHg/cm/s, normothermia: 2.1 ± 1.1 mmHg/cm/s) (group effect: P = 0.429). Reductions in segmental artery VR following oral protein loading did not differ between trials (trial effect: P = 0.080) nor between men (heat stress: -0.6 ± 0.8 mmHg/cm/s, normothermia: -0.6 ± 0.6 mmHg/cm/s) and women (heat stress: -0.5 ± 0.5 mmHg/cm/s, normothermia: -1.1 ± 0.6 mmHg/cm/s) (group effect: P = 0.204). Renal vasoconstrictor responses to the cold pressor test and vasodilator responses following an oral protein load during heat stress or normothermia do not differ between younger men and younger women in the early follicular phase of the menstrual cycle.NEW & NOTEWORTHY The mechanisms underlying greater heat-induced acute kidney injury risk in men versus women remain unknown. This study examined renal vascular control, including both vasodilatory (oral protein load) and vasoconstrictor (cold presser test) responses, during normothermia and heat stress and compared these responses between men and women. The results indicated that in both conditions neither renal vasodilatory nor vasoconstrictor responses differ between younger men and younger women.


Heat-Shock Response , Vasodilation , Humans , Female , Male , Adult , Young Adult , Heat-Shock Response/physiology , Cross-Over Studies , Sex Factors , Vascular Resistance , Kidney/blood supply , Vasoconstriction , Renal Circulation , Renal Artery , Heat Stress Disorders/physiopathology , Blood Pressure/physiology , Age Factors
20.
PLoS One ; 19(3): e0295558, 2024.
Article En | MEDLINE | ID: mdl-38466700

BACKGROUND: Reversible cerebral vasoconstriction syndrome (RCVS) is a syndrome of recurrent thunderclap headaches and reversible vasoconstriction of the cerebral arteries on neuroimaging within 3 months of onset. Initial non-contrast computed tomography (CT) can reveal abnormalities such as ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage (SAH) can be present in patients with RCVS and may delay diagnosis. AIMS: We conducted a systematic review and meta-analysis in accordance with the PRISMA guidelines. We aimed to estimate the prevalence of imaging abnormalities on initial non-contrast CT head in adult patients with RCVS. DATA SOURCES & ELIGIBILITY CRITERIA: We searched electronic databases including MEDLINE, EMBASE, and the Cochrane Register of Clinical Trials from inception to August 2, 2022. Eligible studies included articles reporting the prevalence of non-contrast CT abnormalities on initial neuroimaging in patients with RCVS, aged 18 and older. Case series, observational studies and clinical trials were included. Data was extracted directly from included papers using a standardized data charting form. RESULTS: The search yielded 722 titles with duplicates removed. Twenty studies that included 379 patients with RCVS met inclusion criteria. We classified non-contrast CT abnormalities as either ischemic stroke, ICH, or SAH. We pooled prevalence data using a random effects model with the inverse-variance weighted method. The most common imaging finding was SAH with a pooled prevalence of 24% (95% CI:17%-33%), followed by ICH at 14% (95% CI:8%-22%), and ischemic stroke at 10% (95% CI:7%-14%). The pooled prevalence of any of these imaging abnormalities on initial non-contrast CT was 31% (95% CI:23%-40%). Risk of bias was moderate to very-high-risk for case-series and low-risk for observational studies. CONCLUSION: Our review demonstrates that one-third of patients with RCVS will have an abnormality on initial non-contrast CT head, including either an ischemic stroke, ICH, or SAH. These findings highlight the diagnostic challenges of RCVS imaging and contribute to our understanding of this disease.


Cerebrovascular Disorders , Ischemic Stroke , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Adult , Humans , Vasoconstriction , Prevalence , Vasospasm, Intracranial/diagnostic imaging , Vasospasm, Intracranial/epidemiology , Cerebrovascular Disorders/diagnostic imaging , Cerebrovascular Disorders/epidemiology , Subarachnoid Hemorrhage/diagnosis , Tomography, X-Ray Computed , Headache
...