RESUMEN
BACKGROUND: Previous studies showed that the microinjection of antioxidants or the overexpression of superoxide dismutase within the rostral ventrolateral medulla (RVLM) reduces hypertension and sympathoexcitation in the 2-kidney, 1-clip (2K-1C) model. In this study, we hypothesized that angiotensin II (ANG II) type 1 receptor (AT1R) is involved in the oxidative stress within the RVLM and contributes to cardiovascular dysfunction in renovascular hypertension. METHODS: Losartan (30mg/kg/day, oral gavage) was administered for 7 consecutive days by week 5 after implantation of the clip (gap width = 0.2mm). Mean arterial pressure, baroreflex, and renal sympathetic nerve activity (rSNA) were evaluated. Superoxide production was evaluated by dihydroethidium (DHE) staining within the RVLM and within a control area. Systemic oxidative stress was characterized by measurement of thiobarbituric acid reactive substances (TBARS) and total glutathione (tGSH) in the blood. RESULTS: AT1R blockade significantly (P < 0.05) reduced hypertension by approximately 20% (n = 11) and sympathoexcitation to the kidneys by approximately 41% (n = 6) in the 2K-1C rats. Losartan treatment increased the baroreflex sensitivity of rSNA to pressor (67%) and depressor (140%) stimuli in the 2K-1C rats. AT1R blockade caused a significant (66%) reduction in DHE staining within the RVLM but not within the control area, reduced plasma TBARS (from 1.6±0.1 to 1.0±0.1 nmol/ml), and increased tGSH (from 3.4±0.4 to 5.2±0.3 µmol/g Hb) in the 2K-1C group only. CONCLUSIONS: Our findings suggest that the beneficial effects of ANG II blockade in renovascular hypertension are partly due to preferential reduction of oxidative stress in the RVLM.